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The combination of lifelong learning algorithms with autonomous intelligent 
systems (AIS) is gaining popularity due to its ability to enhance AIS performance, 
but the existing summaries in related fields are insufficient. Therefore, it is 
necessary to systematically analyze the research on lifelong learning algorithms 
with autonomous intelligent systems, aiming to gain a better understanding 
of the current progress in this field. This paper presents a thorough review 
and analysis of the relevant work on the integration of lifelong learning 
algorithms and autonomous intelligent systems. Specifically, we  investigate 
the diverse applications of lifelong learning algorithms in AIS’s domains such as 
autonomous driving, anomaly detection, robots, and emergency management, 
while assessing their impact on enhancing AIS performance and reliability. The 
challenging problems encountered in lifelong learning for AIS are summarized 
based on a profound understanding in literature review. The advanced and 
innovative development of lifelong learning algorithms for autonomous 
intelligent systems are discussed for offering valuable insights and guidance to 
researchers in this rapidly evolving field.
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1 Introduction

Autonomous intelligent systems (AIS), including intelligent robots, autonomous vehicles, 
and similar technologies, have emerged as a frontier direction in the field of artificial 
intelligence. These systems possess the ability to interact with humans and the environment, 
enabling them to execute tasks such as perception, planning, decision-making, and control. 
With the advancement of artificial intelligence, the algorithms employed by AIS for different 
tasks have transitioned from being model-driven to data-driven approaches. End-to-end AI 
algorithms based on deep learning, reinforcement learning, and other techniques have gained 
significant research attention.

However, as the data-driven algorithms rely on the type, scale, and quality of training data, 
the coherence, generality, and adaptability of the algorithms across different tasks and 
environments are great challenges. The challenge for AIS concerned in this paper is the ability 
to remember previous tasks when learning new ones, known as catastrophic forgetting (Shi 
et al., 2021). Catastrophic forgetting refers to the phenomenon where a neural network loses 
previously learned information after training on subsequent tasks, resulting in a drastic 
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performance drop on previous tasks (Serra et al., 2018). Therefore, it 
is crucial to improve the capability of AIS for lifelong learning, which 
aims to enhance knowledge retention and transfer, thereby addressing 
the problem of catastrophic forgetting.

Lifelong learning algorithms have made significant progress in 
dealing with the core problems faced by AIS and mitigating the impact 
of catastrophic forgetting. Lifelong learning algorithms aim to 
sequentially acquire proficiency in multiple tasks while pursuing two 
primary objectives: ensuring that the acquisition of new tasks does not 
lead to catastrophic forgetting of previously learned knowledge (Zhou 
and Cao, 2021a), and leveraging prior task knowledge to facilitate the 
acquisition of novel tasks. Despite numerous achievements in lifelong 
learning in recent years, there are still evident shortcomings. Firstly, 
lifelong learning still heavily relies on labeling, which can be costly, 
troublesome, prone to errors, and impractical for providing persistent 
human labeling for all future tasks (He et al., 2021). Secondly, adapting 
to drift in adaptation spaces poses a challenge for lifelong learning. 
Drift in adaptation spaces arises from uncertainties that impact the 
quality properties of adaptation options, potentially leading to no 
adaptation option satisfying the initial set of adaptation goals, thereby 
damaging system quality (Gheibi and Weyns, 2023). Additionally, the 
big data problem presents another major challenge. AIS with lifelong 
learning algorithms must handle the continuous influx of changing 
data and adapt to learning problems effectively (Yang, 2013).

In this paper, we aim to provide a comprehensive overview of 
lifelong learning algorithms for autonomous intelligent systems, 
covering the recent development, related applications, and existing 
challenges that need to be addressed. Furthermore, we will discuss the 
future outlook of lifelong learning with autonomous intelligent 
systems. The main contributions of this paper are as follows:

 (1) The thoroughly review and analysis of AIS and lifelong 
learning, along with the rationale for combining these two 
fields, are introduced.

 (2) Relevant applications of lifelong learning algorithms with AIS 
are presented to showcase their significant role in different 
industry applications.

 (3) Remaining problems are analyzed, and academic insights into 
the future trends of AIS Lifelong learning are expounded.

The rest of the paper is organized as follows. Section II elucidates 
the background information on the emergence and historical 
milestones of AIS and lifelong learning. Section III presents various 
applications of lifelong learning algorithms with AIS, highlighting the 
research status and latest progress. In Section IV, A comprehensive 
review of issues and challenges in lifelong learning for AIS and the 
outlook and future trends are discussed. Finally, the main conclusions 
are given in Section V.

2 The developing lifelong learning and 
autonomous intelligent systems

2.1 Autonomous intelligent systems

In recent decades, remarkable progress has been made in the 
development of unmanned systems, ranging from robots to 
unmanned aerial vehicles (UAVs), unmanned ground vehicles 

(UGVs), and unmanned marine vehicles (UMVs). What once were 
programming-based systems have now transformed into automatic 
unmanned systems and are further advancing toward autonomous 
intelligent systems (AIS). AIS represents the forefront of artificial 
intelligence development, characterized by exceptional levels of 
autonomy and intelligence. By harnessing advanced technologies such 
as artificial intelligence (AI), big data, and robotics, AIS enables the 
execution of complex tasks and adaptive decision-making. This 
section explores the potential applications of AIS across 
various domains.

2.1.1 Intelligent transportation and autonomous 
driving

The development of the automobile industry has driven an 
increased demand for safety and stability in modern transportation. 
As a result, autonomous driving technology has gained significant 
traction and is being widely deployed in the market (Xiao, 2022). This 
technology is revolutionizing intelligent transportation and smart city 
systems by enhancing the efficiency and safety of transportation 
networks. It’s worth noting that although autonomous driving has 
recently garnered more attention, the concept of autonomous vehicles 
dates back several decades, with various activities in this field taking 
place even further in the past (Khan, 2022).

The first autonomous car was introduced by Tsugawa at the 
Mechanical Engineering Laboratory in Tsukuba, Japan in the 1970s 
(OM Group of Companies, 2020). Subsequently, there have been 
numerous developments and initiatives worldwide. Notably, Ernst 
Dickmann’s vision guided Mercedes Benz in 1980 to achieve speeds 
of up to 39mph in a controlled environment (Delcker, 2020). With the 
integration of autonomous driving algorithms, vehicles possess self-
navigating capabilities, real-time traffic monitoring, and adaptive 
route planning based on changing environmental conditions. 
Furthermore, autonomous driving vehicle enables the efficient 
management of traffic, congestion control, and the integration of 
advanced communication and information technologies, thereby 
facilitating intelligent infrastructure.

However, the utilization of autonomous driving faces significant 
challenges in complex traffic environments characterized by dynamic 
and variable scenarios. A key issue lies in perception algorithms 
encountering the long-tail problem, where rare or unforeseen events 
pose difficulties for standard algorithms to handle. This challenge 
becomes even more pronounced in mixed traffic scenarios involving 
both human-driven and autonomous vehicles. In such settings, 
algorithms must continually iterate and improve to adapt to the 
varying and unpredictable nature of the environment (Zhu et al., 2021; 
Zhou et al., 2022; Li et al., 2023). Therefore, lifelong learning is critical 
for the development of reliable and safe autonomous systems capable 
of operating effectively in real-world environments.

2.1.2 Medical healthcare and service robotics
Service robots are typical AIS designed to assist humans, 

enhancing customer experiences across various industries such as 
hospitality, logistics, retail, and healthcare (Rajan and Cruz, 2022). 
With the advancements in AI and IoT technologies, service robots are 
continuously evolving and becoming more intelligent (Pan et  al., 
2010). The integration of healthcare and service robotics holds 
immense promise for improving patient care and enhancing efficiency. 
Intelligent service robots have the capability to assist in a range of 
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tasks, including patient monitoring, medication dispensing, and 
patient support, thereby relieving healthcare professionals from 
repetitive and time-consuming responsibilities. Additionally, 
intelligent service robots can analyze medical data, provide 
personalized treatment recommendations, and contribute to remote 
healthcare services, leading to improved accessibility and quality of 
care. By leveraging the power of AIS, service robots in healthcare 
settings can not only streamline processes but also contribute to better 
patient outcomes. They serve as valuable tools in alleviating the 
burden on healthcare professionals, enabling them to focus on more 
complex and critical aspects of patient care. Moreover, AIS-driven 
analysis of medical data helps generate valuable insights that can 
inform decision-making and improve treatment strategies (Qu 
et al., 2021).

However, the integration of intelligent service robots in the field 
of healthcare also presents certain challenges. One significant 
challenge is ensuring the safety and reliability of these robots in critical 
medical environments. As they interact closely with patients, it is 
essential to address concerns regarding privacy, data security, and 
potential errors in their operations. Additionally, there is a need for 
standardized regulations and guidelines to govern the use of service 
robots in healthcare settings.

Moreover, the complexity and diversity of healthcare scenarios 
pose challenges for intelligent service robots. Medical environments 
can be unpredictable, requiring robots to adapt to various situations, 
handle unexpected events, and effectively communicate with both 
patients and healthcare professionals. Achieving seamless human-
robot interaction and maintaining an appropriate balance between 
automation and human intervention is crucial in providing high-
quality and patient-centric care.

2.1.3 Urban security and UAV
UAV has garnered considerable attention in various military and 

civilian applications due to their improved stability and endurance 
(Mohsan et  al., 2022). Over the past decade, UAVs have been 
employed in a wide range of fields, including target detection and 
tracking, public safety, traffic monitoring, military operations, 
hazardous area exploration, indoor and outdoor navigation, 
atmospheric sensing, post-disaster operations, health care, data-
sharing, infrastructure management, emergency and crisis 
management, freight transport, wildfire monitoring and logistics 
(Hassija et al., 2019). For example, DARPA’s “Collaborative Operations 
in Denied Environment” (CODE) program seeks to enhance the 
mission capabilities of unmanned aerial vehicles (UAVs) by increasing 
autonomy and inter-platform collaboration. The United States military 
has integrated autonomous intelligent unmanned systems into combat 
through the Project Maven initiative, which employs artificial 
intelligence algorithms to identify relevant targets in Iraq and Syria. 
In the domain of urban security, UAV plays a critical role by leveraging 
AIS’s advanced surveillance and analytical capabilities. These 
intelligent drones enable efficient monitoring of public spaces, early 
detection of potential threats, and prompt response to emergencies. 
Moreover, AIS-driven drones enhance search and rescue operations, 
disaster management, and protection of critical infrastructure while 
minimizing human risk.

However, several crucial factors hinder the performance of UAVs 
in urban security. These factors include diverse scenes, stringent man–
machine safety requirements, limited availability of training data, and 

small sample sizes (Carrio et al., 2017; Teixeira et al., 2023). Addressing 
these challenges is essential to ensure the optimal functioning of UAVs 
in urban security scenarios. Efforts should be made to develop robust 
and adaptable AI algorithms that can handle diverse environmental 
conditions encountered in urban settings. Additionally, ensuring the 
safety of UAV operations requires stringent regulations and standards 
for both hardware and software components. Acquiring more 
extensive and representative training datasets is also necessary to 
improve the accuracy and reliability of AI models used in UAV 
systems. Lastly, efforts should be  made to address the limitations 
posed by small sample sizes by leveraging transfer learning techniques 
and collaborative data sharing initiatives.

2.1.4 Ocean exploration and UMV
AIS contributes significantly to ocean exploration and research 

through the development of UMV equipped with advanced sensing 
and navigation capabilities. UMVs integrated with AI algorithms can 
be used for tasks such as scientific exploration, hydrological surveys, 
emergency search and rescue, and security patrols (Kingston et al., 
2008; Wang et  al., 2016). The Monterey Bay Aquarium Research 
Institute (MBARI) has significantly reduced the human resources 
required for data analysis by 81% and simultaneously increased the 
labeling rate tenfold through its Ocean Vision AI program, which 
trains a vast underwater image database. The autonomous underwater 
robot, CUREE, developed in collaboration with WHOI, can 
autonomously track and monitor marine animals, facilitating effective 
marine management. These wide-ranging applications have 
contributed to the development of motion control techniques and 
have produced many interesting results in the literature, such as 
heading control (Kahveci and Ioannou, 2013), trajectory tracking 
control (Katayama and Aoki, 2014; Ding et  al., 2017), formation 
control (Li et al., 2018; Liao et al., 2024), and path-following problems 
(Shen et al., 2019).

The ocean environment presents complex and variable challenges 
that demand adaptive capabilities from UMV. In the deep-sea 
environment, UMV encounter various challenges, including changes 
in underwater terrain, marine biodiversity, and ocean currents. These 
changes can result in variations in sensor data and diverse appearances 
of targets. By employing lifelong learning algorithms, unmanned 
systems can adapt and learn in real-time, enhancing their performance 
and robustness (Wibisono et  al., 2023). Furthermore, deep-sea 
environments pose limitations in communication bandwidth, latency, 
and mission execution times. Traditional machine learning algorithms 
often struggle to adapt to new environments and tasks, as they are 
typically trained for specific purposes. Lifelong learning algorithms 
offer a solution by reducing reliance on external resources and human 
intervention. UMV equipped with these algorithms can autonomously 
learn and make decisions, increasing their independence and 
reliability (Wang et al., 2019).

2.1.5 Deep space exploration and spacecraft
Intelligent or autonomous control of an unmanned spacecraft is a 

promising technology (Soeder et al., 2014). And the ground-based 
mission control center will no longer be able to help the astronauts 
diagnose and fix spacecraft issues in real-time due to the longer 
connection durations associated with deep space exploration, using 
lifelong learning algorithms, unmanned systems can accumulate 
experience and knowledge during task execution and reduce reliance 
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on frequent interactions and updates, enhancing their autonomy and 
adaptability (Jeremy and et.al, 2013). Also, the deep space environment 
is extremely complex and full of unknown and uncertain factors, such 
as the landform of the planet’s surface, the relationship between 
celestial bodies, and the atmosphere of the planet. Traditional machine 
learning algorithms are difficult to pre-train to adapt to all possible 
situations. Lifelong learning algorithms enable unmanned systems to 
constantly learn and adapt to new environments and tasks as they 
explore (Bird et al., 2020). What is more, in deep space exploration 
missions, unmanned systems typically need to process huge data 
streams from various sensors and extract useful information from 
them. Lifelong learning algorithms can help systems automatically 
discover and learn new features and patterns, thereby improving their 
perception and understanding (Choudhary et al., 2022). As a result, 
each vehicle core subsystem will contain inbuilt intelligence to allow 
autonomous operation for both normal and emergency operations 
including defect identification and remediation. This extends previous 
work on creating an autonomous power control (Soeder et al., 2014) 
which involves the development of control architectures for deep 
space vehicles (Dever et al., 2014; May et al., 2014) and using software 
agents (May and Loparo, 2014). As a result, the application of AIS in 
deep space exploration and spacecraft missions opens up new frontiers 
for scientific discovery. Intelligent spacecraft equipped with AIS can 
autonomously navigate, perform complex maneuvers, and adapt to 
dynamic space environments. Advanced AI-based algorithms enable 
real-time analysis of vast amounts of space data, autonomous 
targeting, and intelligent resource allocation, facilitating enhanced 
mission efficiency and enabling breakthrough discoveries.

In conclusion, the development of unmanned systems has evolved 
from programming-based to AIS. AIS leverages advanced technologies 
such as AI, big data, and robotics to enable complex tasks and adaptive 
decision-making. Across domains including intelligent transportation, 
healthcare, urban security, ocean exploration, and space missions, AIS 
demonstrates immense potential for revolutionizing various industries 
and pushing the boundaries of technological advancements. However, 
Autonomous intelligent systems require continuous learning to enable 
their applications in various domains. With the advancements in 
technologies such as deep learning, reinforcement learning, and large-
scale AI models like AIGC (Artificial Intelligence General Cognitive), 
AISs are moving toward achieving general task learning and lifelong 
evolution. Establishing a lifelong learning paradigm is crucial for the 
future development of these autonomous systems. Embracing this 
paradigm will pave the way for remarkable advancements in the field 
of autonomous intelligent systems.

Besides the technical perspective, there are actually other angles 
people should take into consideration to enrich and improve the 
connotation of autonomous intelligent systems. For one thing, the 
ethical and social perspective cannot be ignored. Ethically and socially, 
the deployment of autonomous intelligence systems raises significant 
questions around accountability, privacy, job displacement, and 
fairness. The decision-making processes of AIS need to be transparent, 
explainable, and align with societal values to ensure trust and 
acceptance. Addressing these concerns involves interdisciplinary 
research, incorporating insights from ethics, law, and social sciences 
into the development and governance of AIS. For another thing, 
autonomous intelligent systems are also closely linked to the 
Sustainable Development Goals. They have the potential to help 
address global challenges in environmental protection, health, 

education and more, such as protecting the environment through 
intelligent monitoring and management of resources, or improving 
the quality and accessibility of education through personalized 
education systems. However, this also requires environmental impact, 
resource consumption and long-term sustainability to be taken into 
account when designing and applying autonomous intelligent systems.

2.2 Lifelong learning

Lifelong learning, alternatively known as continuous learning or 
incremental learning, traces its roots back to the mid-20th century. 
Early computer scientists and artificial intelligence researchers 
contemplated ways to enable computer systems to continuously learn 
and adapt to new knowledge. The adage “one is never too old to learn” 
holds true and applies equally to AIS.

In 1957, Frank Rosenblatt’s perceptron emerged as an early neural 
network model that introduced the idea of machines improving their 
ideas and performance gradually through repeated training (Block 
et  al., 1962). The era of artificial intelligence algorithms based on 
neural networks was begun. But for a long time, neural networks 
could not handle multiple tasks, nor could they handle dynamic tasks 
of time series. During the 1990s, the concept and research of transfer 
learning started to develop, positively influencing the notion of 
lifelong learning. Transfer learning focused on leveraging previously 
acquired knowledge for new tasks (Pan et al., 2010). In the 2000s, 
incremental learning began to emerge in lifelong learning research, 
enabling AI systems to learn new tasks without sacrificing previously 
acquired knowledge (Zhou et  al., 2022). This approach helps in 
continuously improving the AI system’s performance, adapting to 
changes in the data distribution, and avoiding catastrophic forgetting. 
Incremental learning is particularly useful in dynamic environments 
where new data arrives regularly and the model needs to 
be continuously updated to maintain its accuracy and relevance. In 
our dynamically changing world, where new classes appear frequently, 
fresh users in the authentication system and a machine learning model 
ought to identify new classes while not forgetting the memory of 
previous ones (Zhou et al., 2022). If the dataset of old classes is no 
longer available, directly fine-tuning a deployed model with new 
classes might bring about the so-called catastrophic forgetting 
problem in which information about past classes is quickly forgotten 
(Hinton et al., 2015; Kirkpatrick et al., 2017; Shin et al., 2017). Hence, 
incremental learning, a framework that enables online learning 
without forgetting, has been actively investigated (Kang et al., 2022). 
From the 2000s to 2020s, Researchers have proposed various 
incremental learning algorithms and techniques to address the 
challenges associated with learning from evolving data. These 
algorithms focus on updating the model efficiently (Lv et al., 2019; 
Tian et al., 2019; Zhao et al., 2021; Ding et al., 2024), handling concept 
drift (Schwarzerova and Bajger, 2021), managing memory constraints 
(Smith et  al., 2021), and balancing stability and plasticity in the 
learned knowledge (Wu et al., 2021; Lin et al., 2022; Kim and Han, 
2023). Additionally, incremental learning has been explored in 
different domains, including image classification (Meng et al., 2022; 
Nguyen et al., 2022; Zhao et al., 2022), natural language processing 
(Jan Moolman Buys University College University of Oxford, 2017; 
Kahardipraja et al., 2023), recommender systems (Ouyang et al., 2021; 
Wang et al., 2021; Ahrabian et al., 2021a), and data stream mining 
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(Eisa et al., 2022). Researchers have investigated different strategies 
such as incremental decision trees (Barddal and Fabr’ıcio Enembreck., 
2020; Choyon et  al., 2020; Han et  al., 2023), online clustering 
(Bansiwala et al., 2021), ensemble methods (Lovinger and Valova, 
2020; Zhang J. et al., 2023), and deep learning approaches to tackle 
incremental learning problems (Ali et al., 2022). Incremental learning 
enables lifelong learning to constantly learn new data new data while 
leveraging prior knowledge that continues to be an active research 
topic (Figure 1).

Lifelong learning plays a crucial role in enhancing the 
performance of Artificial Intelligence Systems (AIS) due to its 
powerful capabilities. It enables AIS to continuously update their 
knowledge and skills, allowing them to effectively handle consecutive 
tasks in dynamic and evolving environments.

There are three main research methods used in lifelong learning:

 • Regularization-based Approach: This method consolidates past 
knowledge by incorporating additional loss terms that reduce the 
rate of learning for important weights used in previously learned 
tasks. By doing so, it minimizes the risk of new task information 
significantly altering the previously acquired weights (Shaheen 
et  al., 2022). An example of this approach is Elastic Weight 
Consolidation (EWC), which penalizes weight changes based on 
task importance, regularizing model parameters and preventing 
catastrophic forgetting of previous experiences (Febrinanto 
et al., 2022).

 • Rehearsal-based Approach: This method focuses on preserving 
knowledge by leveraging generative models to replay tasks 
whenever the model is modified or by storing samples from 
previously learned tasks in a memory buffer (Faber et al., 2023). 
One notable approach is Prototype Augmentation and Self-
Supervision for Incremental Learning (PASS) (Zhu et al., 2021).

 • Model-based Approach: To prevent forgetting, models can 
be expanded to improve performance, or different models can 
be  assigned to each task. Examples of this approach include 
Packnet (Mallya and Lazebnik, 2018a) and Dynamically 

Expandable Representation for Class Incremental Learning 
(DER) (Yan et al., 2021).

These research methods offer distinct strategies for addressing 
the challenges associated with lifelong learning in the context of 
handling consecutive tasks in dynamic and evolving environments. 
The choice of the most suitable approach depends on specific 
requirements and circumstances. Ongoing research in the field of 
lifelong learning continues to explore innovative techniques and 
approaches to further enhance the performance and adaptability  
of AIS.

However, the combination of lifelong learning and autonomous 
intelligent systems poses several challenges due to perceptual 
cognitive algorithms (Nicolas, 2018; Hadsell et al., 2020), varying 
tasks (Kirkpatrick et  al., 2017; Aljundi et  al., 2021), changing 
environments (Zenke et al., 2017a), and limitations in computing 
chips (Mallya and Lazebnik, 2018b), control systems (Kober et al., 
2013; Andrei et al., 2017), and the diverse range of system types 
(Kemker and Kanan, 2017; Parisi et al., 2017). Currently, research 
on this integration is insufficient, and numerous difficulties remain 
to be addressed. Among these challenges, catastrophic forgetting is 
a prominent problem wherein previously learned tasks may 
be forgotten when AIS learns new ones. Consequently, solving this 
problem holds immense significance and remains a core objective 
of lifelong learning.

There are three main dimensions to handle catastrophic forgetting:

2.2.1 Knowledge retention
If there is only one model continuously learning different tasks, 

we naturally expect it not to forget knowledge previously learned 
when it learns new tasks. In addition, the model is supposed to 
prevent stopping learning just in order to retain what has been 
learned at the same time. There are several methods such as Elastic 
Weight Consolidation (EWC) (Aich, 2021), Synaptic Intelligence 
(SI) (Zenke et al., 2017b), Memory Aware Synapses (MAS) (Aljundi 
et al., 2018).

FIGURE 1

The history of the development of lifelong learning.
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2.2.2 Knowledge transfer
It is expected that models are able to utilize what they have learned 

to help handle new problems. Related method is Gradient Episodic 
Memory (GEM) (Lopez-Paz and Ranzato, 2022).

2.2.3 Model expansion
Sometimes, models may be  too simple to handle complicated 

tasks, so it is expected that these models could expand themselves to 
more complicated ones according to the complexity of problems. 
Some related methods are Progressive Neural Networks (Rusu et al., 
2022), Expert Gate (Aljundi et al., 2017), Net2Net (Chen et al., 2016; 
Sodhani et al., 2019).

3 Representative applications of 
lifelong learning for AIS

Nowadays, it is an increasingly popular trend to use lifelong 
learning algorithms for AIS, which could better improve the 
performance of these systems. There have been plenty of domains 
making use of lifelong learning algorithms, here we highlight some 
representative and contemporary examples below (Figure 2).

3.1 Autonomous driving

The development of autonomous vehicles has advanced quickly 
in recent years (Han et al., 2023). Modern vehicles are becoming 
more and more automated and intelligent due to advancements in 
lifelong learning algorithms, mechanical, and computing 
technologies (Su et  al., 2012). The Institute of Electrical and 
Electronics Engineers (IEEE) alone produced around 43,000 
conference papers and 8,000 journal (including magazine) articles 

on the subject of autonomous driving in the 5 years between 2016 
and 2021 (Chen et al., 2022). Many IT and automotive companies 
have been attracted to this promising field, such as Baidu Apollo, 
Google Waymo. And by 2021, Waymo’s autonomous vehicles have 
driven more than 20 million miles on the road, demonstrating the 
reliability and safety of the technology of autonomous driving. As 
a result, in the near future, different types of AVs are expected to 
be fully commercialized, with a significant impact on all aspects of 
our lives (Su et al., 2012).

The most challenging problem autonomous driving currently 
faces is to adapt to novel driving scenarios, especially in complex and 
mixed traffic environments, and react properly and rapidly in time. As 
a result, autonomous driving is particularly in need of the combination 
of lifelong learning algorithms. So in the section below, different 
frames of lifelong learning in some crucial fields of autonomous 
driving are explained.

3.1.1 Lane changing
Lane changing is one of the largest challenges in the high-level 

decision-making of autonomous vehicles (AVs), especially in mixed 
and dynamic traffic scenarios, where lane changing has a significant 
impact on traffic safety and efficiency. In recent years, the application 
of lifelong learning to lane-changing decision-making in AVs has been 
widely explored with encouraging results. However, most of these 
studies have focused on single-vehicle environments, and lane-
changing in situations where multiple AVs coexist with human-driven 
vehicles has received little attention (Zhou et al., 2022), which should 
be paid more attention. In this regard, Ref. (Zhou et al., 2022) proposes 
a multi-agent advantage actor-critic method which uses a novel local 
reward design and parameter sharing scheme to formulate the lane 
changing decision of multiple AVs in a mixed traffic highway 
environment as a multi-agent lifelong learning problem using a 
lifetime learning algorithm.

FIGURE 2

The taxonomy of technologies related to applications of lifelong learning algorithms for AIS.
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3.1.2 Automated valet parking
Automated valet parking (AVP) allows human drivers to park 

their cars in a drop-off zone (e.g., a parking garage entrance). These 
cars can independently perform autonomous driving tasks from the 
parking area to a designated parking space. AVP can greatly improve 
driver convenience, and is seen as an entry point for the promotion of 
AVs. And high-precision indoor positioning service is unavoidable in 
AVP. However, existing wireless indoor positioning technologies, 
including Wi-Fi, Bluetooth, and ultra-wideband (UWB), have a 
tendency to degrade significantly with the increase of working time 
and the change of building environments (Zhao et  al., 2023). To 
handle this problem, a data-driven and map-assisted indoor 
positioning correction model has been proposed to improve the 
positioning accuracy for the infrastructure-enabled AVP system 
recently by a research team from Tongji University, Shanghai, China 
(for details refer to Ref. (Zhao et al., 2023)). In order to sustain the 
lifelong performance, the model is updated in an adversarial manner 
using crowdsourced data from the on-board sensors of fully 
instrumented autonomous vehicles (Zhao et al., 2023).

3.1.3 Trajectory prediction
Accurate trajectory prediction of vehicles is the key to reliable 

autonomous driving. Adapting to changing traffic environments and 
implementing lifelong trajectory prediction models are crucial in 
order to maintain consistent vehicle performance across different 
cities. In real applications, intelligent vehicles equipped with 
autonomous driving systems should travel on different roadways, 
cities and even countries. The system needs to properly forecast the 
future trajectories of the surrounding vehicles and adapt to the diverse 
distribution of their motion and interaction pattern in order to safely 
guide the vehicle. In order to achieve this, the system must constantly 
acquire new information about developing traffic conditions while 
retaining its previous understanding. Furthermore, the system cannot 
afford to store a significant amount of trajectory data due to its 
restricted storage resources (Bao et al., 2021). So, in order to perform 
well on all processed tasks, it is necessary to keep lifelong learning 
with restricted storage resource. As a consequence, in a bid to achieve 
lifelong trajectory prediction, a new framework based on conditional 
generative replay is proposed by the research team from the University 
of Science and Technology of China (USTC), which handles the 
problem of catastrophic forgetting due to different types of traffic 
environments and improve the precision and efficiency of vehicle 
trajectory prediction (Bao et al., 2021).

At the moment, autonomous vehicles are not perfect in their 
operation (Chen et al., 2022), as evidenced by some accidents caused 
by autonomous driving vehicles in recent years, in which safety drivers 
were unable to prevent the accidents from occurring, resulting in the 
loss of multiple lives, thus bringing about these mournful aftermaths 
which could have been prevented. Obviously, in terms of performance, 
autonomous vehicle systems are still far from the visual systems of 
humans or animals (Chen et al., 2020). It is necessary to find novel 
solutions, such as bio-inspired visual sensing, multi-agent 
collaborative perception, and control capabilities that emulate 
biological systems’ operational principles (Tang et  al., 2021). It is 
predicted that after reaching increasing degrees of robotic autonomy 
and vehicle intelligence, autonomous driving will become sufficiently 
safe and dependable by 2030 to replace the majority of human driving 
(Litman, 2021).

3.2 Anomaly detection

Anomaly detection is the task of finding anomalous data 
instances, which therefore represents deviations from the normal 
conditions of a process (Aggarwal, 2017). In many fields and real-
world applications, such as network traffic invasions (Faber et al., 
2021), aberrant behavior in cyber-physical systems like smart grids 
(Corizzo et al., 2021), or flaws in manufacturing processes (Alfeo 
et al., 2020), the ability to identify abnormal behavior is crucial.

Examples of relevant techniques for detecting anomalies in 
one-class learning are: (i) Autoencoder, a model based on neural 
network reconstruction; (ii) One-Class Support Vector Machine, 
which provides anomaly scores by contrasting new data with the 
decision boundary based on hyperplanes.; (iii) Local Outlier Factor, 
which provides an anomaly score that is derived from the ratio of the 
new data samples’ local density to the average local density of its 
closest neighbors; (iv) Isolation Forest, which offers tree ensembles 
and calculates the new samples’ anomaly score by measuring the 
distance from the root to the leaf; (v) Copula-based anomaly 
detection, which draws conclusions about the level of “extremeness” 
of data samples by using tail probabilities (Goldstein and Uchida, 
2016; Li et al., 2020; Lesouple et al., 2021).

However, although these methods have been established and 
perform well in many scenarios, due to the catastrophic forgetting, the 
performance of the anomaly detection system is affected negatively 
when previous circumstances reoccur. For this reason, lifelong 
anomaly detection is supposed to be  applied to balance between 
knowledge transferring and knowledge retention. Since many real-
world domains are characterized by both recurrent conditions and 
dynamic, rapidly evolving situations, lifelong anomaly detection may 
out to be quite advantageous in these kinds of environments. This 
feature necessitates model characteristics that promote concurrent 
learning and adaptability (Faber et  al., 2023). And several recent 
research efforts have begun to address the problem of lifelong anomaly 
detection. Examples include using meta-learning to estimate 
parameters for numerous tasks in one-class image classification 
(Frikha et al., 2021), transfer learning for anomaly detection in videos 
(Doshi and Yilmaz, 2020), and change-point detection in conjunction 
with memory arrangement (Corizzo et al., 2022). Particularly, in the 
field of autonomous driving, an effective collaborative anomaly 
detection methodology known as ADS-Lead was proposed to 
safeguard the lane-following mechanism of ADSs. It has a unique 
transformer-based one-class classification algorithm to detect 
adversarial image examples (traffic sign and lane identification threats) 
as well as time series anomalies (GPS spoofing threat) (Han et al., 
2023). In addition, to enhance the anomaly detection performance of 
models, an active lifetime anomaly detection framework was provided 
for class-incremental scenarios that supports any memory-based 
experience replay mechanism, any query strategy, and any anomaly 
detection model (Faber et al., 2022).

Figure 3 illustrates a typical scenario comparing conventional 
anomaly detection with model updating with lifelong anomaly 
detection. In contrast to conventional anomaly detection, which 
continuously updates the model and causes detection delays, or false 
predictions, until the new task is incorporated into the model, lifetime 
anomaly detection in the second iteration does not require model 
updates following a recurrence of each work. Furthermore, in a 
100-iteration scenario, only 4 model updates would be needed for 
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lifetime anomaly detection, as opposed to 400 model updates for 
traditional anomaly detection, which results in detection delays. It 
could be used to map a wide range of recurring real-world scenarios, 
such as human activity sequences, geophysical phenomena like 
weather patterns, and cyber-physical system operating conditions 
(Faber et al., 2023; Figure 3).

The core process of lifelong anomaly detection involves several 
key steps, as depicted in Figure 4. These steps include data collection, 
initial anomaly detection, lifelong learning, model adaptation, 
continuous monitoring, model update, and the repetition of the 
process. The first step is data collection, wherein data is gathered from 
multiple sources, such as network traffic, smart grids, and 
manufacturing processes. Following data collection, initial anomaly 
detection techniques, such as Autoencoders, Support Vector 
Machines, Local Outlier Factor, and Isolation Forests, are employed 
to conduct preliminary anomaly detection. Subsequently, lifelong 
learning takes place, whereby new data is integrated into the model 
while existing knowledge is updated and retained. Model adaptation 
is then performed based on the new data, which may involve applying 
techniques like meta-learning, transfer learning, or change point 
detection with memory organization. Continuous monitoring of the 
data for anomalies is carried out to ensure timely detection. To 
maintain the model’s effectiveness, periodic model updates are 
performed by refreshing it with new data and employing advanced 
techniques. This entire process is repeated cyclically, encompassing 
both data collection and model updating stages.

3.3 Service robots

Depending on the continuous learning mechanism for a variety 
of various robotic tasks, lifelong machine learning has drawn 

FIGURE 3

A scenario with four recurring tasks (Comparisons between conventional and lifelong anomaly detection).

FIGURE 4

The core process of lifelong anomaly detection.
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intriguing academic interests in the field of robotics (Dong et al., 
2022). And past research has identified lifelong learning as a critical 
capability for service robots. Creating an artificial “lifelong learning” 
agent that can construct a cultivated understanding of the world from 
the current scene and their prior knowledge through an autonomous 
lifelong system is one of the big ambitions of robotics (She et al., 
2020). According to a report by Allied Market Research, the global 
service robot market is valued at $21.084 billion in 2020 and is 
expected to reach $293.087 billion by 2032, with a CAGR of 24.3% 
from 2023 to 2032. Moreover, the number of new startups named 
after service robots accounts for 29% of all U.S. robotics companies. 
Those data, among other similar figures, remark the development in 
the service robots area (Gonzalez-Aguirre et al., 2021). Service robots 
are mostly tasked with helping humans in the home environment, 
and they must handle a wide variety of objects. These objects are 
dependent on the particular environment (e.g., bedroom, toilet, 
balcony), the human being supported (e.g., kids, elderly people, 
disabled people). It is practically impossible to prepare all possible 
objects at the time of or prior to the deployment of the robot. 
Therefore, the robots will need to adjust to new objects and different 
ways of perceiving things throughout their lives (Niemueller, 2013). 
Despite these challenges, we want these robots to notice us and show 
adaptive behavior when they are on a mission. When a robot is given 
negative feedback when vacuuming while someone is watching TV, 
it should be able to recognize this as a new context and adjust its 
behavior accordingly in similar spatial or social contexts. For 
example, when people are reading books, the robot should be able to 
connect this scenario to the one it has previously encountered and 
cease vacuuming (Irfan et al., 2021). Another example is when service 
robots engage in language teaching, they may encounter variations in 
language environments and user learning needs. In such cases, it is 
imperative for service robots to achieve self-learning and 
improvement by monitoring user feedback, autonomously exploring 
language environments, and utilizing natural language processing 
techniques. Only through these means can they better provide 
personalized language learning support and practical opportunities 
for users, thus enhancing teaching proficiency and efficiency (Kanero 
et al., 2022).

Another aspect of lifelong learning applied to robots is the ability 
to function independently for lengthy periods of time in dynamic, 
constantly-changing surroundings. For example, in a domestic scene, 
where most objects are likely to be movable and interchangeable, the 
visual character of the same place may differ markedly over successive 
days. To deal with this situation, a term lifelong SLAM has been in use 
to address SLAM problems in environments that have been changing 
over time, improving the robustness and accuracy of pose estimation 
of robots (Shi et al., 2020). Lifelong SLAM takes into account a robot’s 
long-term operations, which involve repeatedly visiting previously 
mapped places in dynamic surroundings. In lifetime SLAM, we make 
the assumption that a region is constantly mapped over an extended 
period of time, rather than only once (Kurz et al., 2021). Compared to 
classical SLAM methods, however, there exist a lot of challenges (Shi 
et al., 2020):

 • Changed viewpoints - the robot may look at the same scene or 
items from several angles.

 • Changed things  - the objects may have been changed when 
reentering a place that was previously observed by the robot.

 • Changed illumination  - there could be  a significant change 
in illumination.

 • Dynamic objects - There could be objects in the scene that are 
moving or changing.

 • Degraded sensors - unpredictable sensor noises and calibration 
errors could result from a variety of factors, including mechanical 
strain, temperature changes, dirty or damp lenses, etc.

To address these challenges, the operational flow of the lifetime 
service robot is shown in Figure 5.

3.4 Emergency management

In recent years, machine learning algorithms have made great 
strides in enabling autonomous agents to learn through observation 
and sensor feedback how to carry out tasks in complex online 
environments. In particular, recent developments in deep neural 
network-based lifelong learning have demonstrated encouraging 
outcomes in the creation of autonomous agents that can interact with 
their surroundings in a variety of application domains (Arulkumaran 
et al., 2017), including learning to play games (Brown and Sandholm, 
2017; Xiang et al., 2021), generating optimal control policies for robots 
(Jin et al., 2017; Pan et al., 2017), natural language processing and 
speech recognition (Bengio et al., 2015), body emotion understanding 
(Sun and Wu, 2023), as well as choosing the best trades in light of the 
shifting market conditions (Deng et al., 2017). The agent gradually 
learns the best course of action for the assigned task by seeing how its 
actions result in rewards from these encounters.

These methods are effective when it can be presumed that every 
event that occurs during deployment is a result of the same 
distribution that the agent was trained on. However, agents that must 
operate for extended periods of time in complex, real-world 
environments may be subject to unforeseen circumstances beyond the 
distribution for which they were designed or trained, due to changes 
in the environment. For instance, a construction site worker may 
unintentionally place a foreign object—like their hand–inside the 
workspace of a vision-guided robot arm, which must then react to 
prevent harm or damage. Similarly, an autonomous driving car may 
come across significantly distorted lane markings that it has never 
encountered before and must decide how to continue driving safely. 
In such unexpected and novel situations, the agent’s strategy will not 
apply, leading to the possibility of the agent taking unsafe actions. And 
that is what makes emergency management crucial.

The purpose of emergency management is to provide autonomous 
agents with the ability to respond to unforeseen situations that are 
different from what they are trained or designed to handle. Therefore, 
a lifelong data-driven response-generation system must be developed 
to tackle this problem. It enables an agent to handle new scenarios 
without depending on the reliability of pre-existing models, safe states, 
and recovery strategies created offline or from prior experiences, or 
on their accuracy. The main finding is that, when needed, uncertainty 
in environmental observations may be used to inform the creation of 
quick, online reactions that effectively avoid threats and allow the 
agent to carry on operating and learning in its surroundings (Maguire 
et al., 2022). As is shown in Figure 6, the core process of emergency 
management has a close relationship with lifelong learning algorithms, 
it keeps learning and adapting.
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FIGURE 5

The operational flow of the lifetime service robot.

FIGURE 6

The emergency management process based on lifelong learning.
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4 Outlook

Lifelong learning with AIS has made significant progress in recent 
decades. And graph lifelong learning is emerging as an important area 
in AI research and applications. Graph lifelong learning involves 
applying lifelong learning principles to graph-based data structures 
and algorithms. This approach aims to enable systems to continuously 
learn and adapt from a stream of graph data over time. There are many 
kinds of graph lifelong learning algorithms, and there exist several 
differences between these methods, which suit different situations. 
Each method may have its own approach and principle to cope with 
problems, as can be seen in Table 1.

The key challenge in graph lifelong learning is to efficiently update 
and refine the model as new data arrives, without forgetting previously 
learned information (Galke et al., 2023). In addition, dynamic nature 
of graphs also brings problems for the reasons that graph data is often 
dynamic, such as social networks or knowledge graphs. Models need 
to adapt to these changes while maintaining the validity of past 
learning (Galke et  al., 2023). Graph lifelong learning is a rapidly 
growing field that proposes new solutions for how intelligent systems 
can continuously learn and adapt to changing environments. With 
further research, this field is expected to solve existing challenges and 
provide strong support for the continued development and application 
of intelligent systems.

Besides the development of graph lifelong learning, several trends 
and directions can be observed in the relationship between lifelong 
learning algorithms and AIS. Firstly, multi-modal learning will play a 
crucial role as autonomous systems learn from diverse sensors and 
data sources, including visual, auditory, textual, and sensor data. This 
integration will greatly enhance the system’s perception and 
understanding capabilities. Secondly, an important aspect is self-
improvement learning, where the system autonomously assesses its 
performance, identifies weaknesses, and automatically adjusts and 
improves its algorithms and models to enhance efficiency and 
accuracy. Furthermore, cross-domain transfer of knowledge and 
experience becomes a possibility. The system will be able to transfer 

learned knowledge from one domain to another, thereby enhancing 
its problem-solving abilities across different domains. What is more, 
lifelong learning with AIS can also be developed and applied in the 
area of education, especially in English teaching and learning. 
According to Grand View Research, the AI market in education is 
expected to reach $13.3 billion by 2025. Its diversity is able to change 
the form of language education to a certain extent, making it 
continuously transform from the original, traditional, and 
monotonous form to a dimensional, dynamic, and multi-spatial form, 
providing a personalized learning experience based on individual 
needs and preferences (Hwang et al., 2020). Although there has been 
little research on how lifelong learning can enhance English teaching 
and learning through AIS so far, it can benefit this area without doubt 
(Gao, 2021; Pikhart, 2021; Klimova et al., 2022).

Concerning lifelong learning algorithms themselves, incremental 
learning should receive more attention. Improving the efficiency and 
stability of incremental learning becomes crucial, enabling the system 
to retain previous knowledge while learning new tasks. Additionally, 
self-supervised learning methods will gain prominence. These 
techniques allow systems to learn from unlabeled data, reducing 
reliance on extensive labeled data and opening up opportunities for 
continuous learning. Overall, these trends and directions highlight the 
importance of multi-modal learning, self-improvement learning, 
cross-domain transfer, efficient incremental learning, and self-
supervised learning in advancing the field of lifelong learning 
algorithms for AIS.

5 Conclusion

In this paper, we  have extensively discussed the relationship 
between lifelong learning algorithms and autonomous intelligent 
systems. We have demonstrated the specific applications of lifelong 
learning algorithms in various domains such as autonomous driving, 
anomaly detection, service robotics, and emergency management. It 
is found that current research has made certain progress in addressing 

TABLE 1 Graph lifelong learning method comparison.

Methods Approach

Architectural Rehearsal Regularization Reference

Feature Graph Networks Yes No No Sarlin et al. (2020) and Zhou et al. (2022)

Hierarchical Prototype Networks Yes No No Li et al. (2023) and Zhang et al. (2023a)

Experience Replay GNN Frame work No Yes No
Ahrabian et al. (2021a) and Zhou and Cao 

(2021b)

Lifelong Open-world Node Classification No Yes No Galke et al. (2021) and Zhang et al. (2022)

Disentangle-based Continual Graph 

Representation Learning
No No Yes Kou et al. (2020) and Zhang et al. (2023b)

Graph Pseudo Incremental Learning No No Yes Tan et al. (2022) and Su et al. (2023)

Topology-aware Weight Preserving No No Yes Natali et al. (2020) and Liu et al. (2021)

Translation-based Knowledge Graph 

Embedding
No No Yes Yoon et al. (2016) and Li et al. (2023)

Continual GNN No Yes Yes Han et al. (2020) and Wang et al. (2020)

Lifelong Dynamic Attributed Network 

Embedding
Yes Yes Yes

Li et al., 2017, Yoon et al. (2017), and Liu 

et al. (2021)

https://doi.org/10.3389/fnbot.2024.1385778
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Zhu et al. 10.3389/fnbot.2024.1385778

Frontiers in Neurorobotics 12 frontiersin.org

the catastrophic forgetting problem of complex scenarios and 
multitasking under long time sequences. However, challenges such as 
activation drift, inter-task confusion, and excessive neural resources 
still persist. In light of this, we particularly emphasize the significance 
and potential of advancing lifelong learning through graphical 
approaches, while pointing out that multimodal learning and methods 
like cross-domain transfer are pivotal references for future 
advancements in AIS lifelong learning algorithms. Among these, the 
integration of robot vision and tactile perception is recognized as a key 
challenge to enhance robot performance and efficiency. To conclude, 
lifelong learning proves to be  a reliable and efficient method for 
advancing autonomous intelligent systems. Future research efforts 
should focus on developing fully autonomous and secure learning 
frameworks that offer superior performance while reducing the need 
for excessive supervision, training time, and resources.
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