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Mining local and global
spatiotemporal features for
tactile object recognition

Xiaoliang Qian, Wei Deng, Wei Wang*, Yucui Liu and

Liying Jiang*

College of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou,

China

The tactile object recognition (TOR) is highly important for environmental

perception of robots. The previous works usually utilize single scale convolution

which cannot simultaneously extract local and global spatiotemporal features

of tactile data, which leads to low accuracy in TOR task. To address above

problem, this article proposes a local and global residual (LGR-18) network

which is mainly consisted of multiple local and global convolution (LGC)

blocks. An LGC block contains two pairs of local convolution (LC) and global

convolution (GC) modules. The LC module mainly utilizes a temporal shift

operation and a 2D convolution layer to extract local spatiotemporal features.

The GC module extracts global spatiotemporal features by fusing multiple 1D

and 2D convolutions which can expand the receptive field in temporal and

spatial dimensions. Consequently, our LGR-18 network can extract local-global

spatiotemporal features without using 3D convolutions which usually require

a large number of parameters. The e�ectiveness of LC module, GC module

and LGC block is verified by ablation studies. Quantitative comparisons with

state-of-the-art methods reveal the excellent capability of our method.

KEYWORDS

tactile object recognition, LGR-18 network, local convolution module, global

convolution module, local and global spatiotemporal features

1 Introduction

Robots perceive objects around them mainly through touch and vision. Although

vision can intuitively capture the appearance of an object, it cannot capture the basic

object properties, such as mass, hardness and texture. In addition, many limitations exist

for vision perception (Lv et al., 2023a). Consequently, the tactile object recognition (TOR)

task is proposed to predict the category of the object being grasped by robot, which can

provide support for subsequent grasping operations without being constrained by the

aforementioned conditions.

TOR has a broad range of applications in life, including descriptive analysis in the food

industry (Philippe et al., 2004), electronic skin (Liu et al., 2020) and embedded prostheses

in the biomedical field (Wu et al., 2018), and postdisaster rescue (Gao et al., 2021), etc.

The rapid development of deep learning (Lv et al., 2023c) has led to tremendous progress

in various fields (Qian et al., 2020, 2023a,b,d,e,f; Huo et al., 2023; Li et al., 2023; Xie et al.,

2024), and deep learning based TOR are the mainstreammethods (Liu et al., 2016; Ibrahim

et al., 2022; Yi et al., 2022). Currently, TORs using deep learning can be divided into two

categories: one uses a 2D CNN to extract features from each frame of tactile data and then

fuses the features of each frame to recognize the grasped object based on the fused features
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and the other uses a 3D CNN to extract spatial and temporal

features from tactile frames for recognition.

Traditional TOR methods mostly adopt the methods in the

first category, which use sensors (primarily pressure sensor arrays)

to acquire tactile information, then the tactile data are sent to a

2D CNN for feature extraction and category prediction. Gandarias

et al. (2017) used a 2D CNN to extract high-resolution tactile

features and trained a support vector machine (SVM) using these

features. The trained SVM was used to predict the object category.

Bottcher et al. (2021) collected tactile data via two different tactile

sensors and subsequently input the data into a 2D CNN to extract

features and infer results. Other related works include Sundaram

et al. (2019), Chung et al. (2020), and Carvalho et al. (2022), etc.

Recently, the another category of methods has achieved

remarkable results and has becomemainstream. Qian et al. (2023c).

used a gradient adaptive sampling (GAS) strategy to process the

acquired tactile data and subsequently fed the data into a 3D

CNN network to extract multiple scale temporal features. The

features were fused at the fully connected and outputted prediction

category. Inspired by the optical flow method (Cao et al., 2018)

used not only original tactile data but also tactile flow and intensity

differences as input data. These data underwent convolution,

weighting, and other operations on different branches and were

ultimately fused at the fully connected layer to infer the results.

Other related works include Kirby et al. (2022) and Lu et al. (2023),

etc.

The first category of methods extracts only the features of

each frame and does not use temporal information between

frames, therefore, their overall performance is limited. In the

second category, spatiotemporal features are extracted via 3D

CNNs, and the overall performance is better than that of the first

category of methods. However, existing methods utilize single scale

FIGURE 1

Framework of our method.

convolution operations to extract features in spatial and temporal

dimensions, and they cannot simultaneously extract local and

global features very well.

This paper proposes a local-global spatiotemporal feature

extraction scheme to solve the above problems. First, a local

convolution (LC)module is proposed, which utilizes the interaction

of adjacent temporal information and 2D convolution to extract

local spatiotemporal features. Next, the global convolution (GC)

module is proposed to extract global spatiotemporal features and

the module combines multiple 1D and 2D [(1+2)D] convolutions

which can extend the receptive field (Lv et al., 2023b) in

spatial and temporal dimensions. Finally, this article achieves

accurate TOR by comprehensively utilizing local and global

spatiotemporal features.

The main contributions are as follows:

1. This paper proposes a local convolution (LC) module which

extracts spatiotemporal features by using the interaction of adjacent

temporal information and 2D convolution operation.

2. This paper proposes a global convolution (GC) module

which extracts global spatiotemporal features by fusing multiple

1D and 2D convolutions which can expand the receptive field in

temporal and spatial dimensions.

3. Our method achieves the highest object recognition accuracy

on two public datasets by comprehensively using local-global

spatiotemporal features.

2 Related works

Gradient adaptive sampling (GAS) (Qian et al., 2023c) and

MR3D-18 network (Qian et al., 2023c) have strong relevance to this

paper, therefore, they are introduced here.
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FIGURE 2

Illustration of LC module.

FIGURE 3

Illustration of temporal shift operation.

2.1 Gradient adaptive sampling

Unlike uniform sampling and sparse sampling, GAS uses the

pressure gradient to guide the adaptive sampling. The specific

FIGURE 4

Illustration of GC module.

approach is to normalize the accumulated gradient over the T

period and then divide it intomultiple intervals, randomly selecting

one point from each interval. This process obtains multiple data

frames, which are subsequently fed into the network.

2.2 MR3D-18 network

The MR3D-18 network is proposed to address the problems

that the size of tactile frames is small and overfitting is easily occur,

which removes a pooling operation and adds a dropout layer to

the ResNet3D-18 (Hara et al., 2018) network for handling above

problems.

3 Proposed method

3.1 Overview

As shown in Figure 1, the P frames of tactile data are adaptively

selected from all frames by using GAS. Then, they are fed into local

and global residual (LGR-18) network to extract local and global

spatiotemporal features. Finally, the features are imported into a

fully connected layer and a softmax classifier to predict categories.

Our LGR-18 network is primarily composed of multiple local and

global convolution (LGC) blocks, which is proposed in this paper,

and the LGC block consists of two pairs of LC and GC modules.
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TABLE 1 Comparison between MR3D-18 and LGR-18 network, where the size of input tactile data is 32 × 32 × 32.

Layers MR3D-18 LGR-18

Filters Output size Filters Output size

Conv1 7×7×7, 64

stride 1, 22
32×162×64 7

7×7

stride 1, 22

32×162×64

Res2 





3× 3× 3, 64

3× 3× 3, 64






× 2

stride 1,12

32×162×64 LGC, 64

LGC, 64

stride 1,12

32×162×64

Dropout 0.3 32×162×64 0.3 32×162×64

Res3






3× 3× 3, 128

3× 3× 3, 128






× 2

stride 2,22

16×82×128 LGC, 64

1, 128

1×1, 128

LGC, 128

stride 2,22

16×82×128

Res4 





3× 3× 3, 256

3× 3× 3, 256






× 2

stride 2,22

8×42×256 LGC, 128

1, 256

1×1, 256

LGC, 256

stride 2,22

8×42×256

Res5 





3× 3× 3, 512

3× 3× 3, 512






× 2

stride 2,22

4×22×512 LGC, 256

1, 512

1×1, 512

LGC, 512

stride 2,22

4×22×512

Global average pooling

The LC and GC modules, LGC block and LGR-18 network will be

precisely explained in the following sections.

3.2 Local convolution module

The LC module focuses on extracting the local spatiotemporal

features of tactile data. As shown in Figure 2, the size of the input

features X is [N, T, C, H, W], where N denotes the batch size, T

and C separately denote the quantity of input frames and feature

channels, H and W denote the height and width of the features

respectively. First, the LC module utilizes the temporal shift (TS)

operation to extract local temporal features.

The TS operation is shown in Figure 3. A tensor with C

channels and T frames is also shown in Figure 3. The features of

the different time stamps are shown in different colors in each row.

Along the temporal dimension, the TS operation shifts one channel

in forward direction and one channel in backward direction. We

utilize the abandoning and zero-padding operation to address the

problems of excessive and missing features. It is worth noting that

replacing the zero padding features by the abandoning features is

infeasible because it will destroy the temporal sequence. After the

TS operation, a 2D convolution layer is utilized to extract the local

spatial features. Next, we utilize a global average pooling (GAP)

and a sigmoid function to extract the local spatiotemporal weights

of each channel. Finally, we utilize a simple method to extract

local spatiotemporal features by performing channel-wise product

between the input feature X and the local spatiotemporal weight

S. A residual connection is employed to prevent the loss of crucial

information in the original features. Finally, the LC module, which

relies on TS operations and traditional 2D convolutions as its core,

extracts local features.

3.3 Global convolution module

Inspired by the conventional depthwise separable convolution,

multiple (1+2)D convolutions are utilized to extract global

spatiotemporal features from tactile data, where the 1D and 2D

convolutions are used to extract temporal and spatial features,

respectively. However, the innovation of GC module does not lie

in the depthwise separable convolution. As shown in Figure 4, the

core idea of GC module is that the receptive field of convolution

kernels is continuously enlarged to extract global spatiotemporal

features via iterative residual connections and convolutions. The

detailed procedure can be seen in Equations 1, 2 and Figure 4.



















Y1 = Y

Y2 = conv(1+2)D(Y)

Y3 = conv(1+2)D(Y + Y2)

Y4 = conv(1+2)D(Y + Y3)

Y1,Y2,Y3,Y4 ∈ RN,T,C,H,W (1)

In Equation 1, Y1 is the output of the first branch and is

identical to the input of the first branch. Y2, Y3 and Y4 represent the

outputs of the 2nd, 3rd and 4th branches, respectively, in the GC

module. The conv(1+2)D is the same as (1+2)D convolutions. The
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TABLE 2 Ablation study of LGC block on the MIT-STAG dataset.

Architecture Illustration of architecture Top 1 score

A(baseline) 84.98

B 85.32

C 88.07

D 89.05

E 91.07

parameters for conv(1+2)D are 3 and 3–3. As shown in Equation 2,

the final output of GC module, denoted as Z, is obtained by fusing

the outputs of four branches:

Z =

4
∑

i=1

Yi Z ∈ RN,T,C,H,W (2)

3.4 Architecture of the LGR-18 network

As shown in Table 1, our LGR-18 network is modified from

the MR3D-18 network. First, in the LGR-18 network, the (1+2)D

convolutions replaced the 7 × 7 × 7 convolution layer in the

MR3D-18 network. Second, in the LGR-18 network, multiple 3

× 3 × 3 3D convolution layers are replaced with LGC blocks,

which is proposed in this paper, and two 3D convolution layers

are approximately equivalent to an LGC block. Third, the LGR-

18 network adds (1+2)D convolutions with size of 1 in the

Res3, Res4, and Res5 layers to change the number of channels.

Finally, the LGC block consists of two pairs of LC and GC

modules connected by residual connections. Table 1 shows that

the LGR-18 network has two advantages over the MR3D-18

network.

1. The LGR-18 network abandons all 3D convolution layers,

reducing computational complexity.

2. The LGR-18 network can extract local and global

spatiotemporal features through the LGC blocks.

3.5 Training scheme

To enhance the performance of the LGR-18 network, we utilize

the large-scale Kinetics-400 dataset (Carreira and Zisserman, 2017),

which consists of 400 human action categories and at least 400

video clips in each category, to pre-train our method. Subsequently,

we utilized the UCF101 (Soomro et al., 2012) and target datasets to

pretrain the LGR-18 network.

To address the problem of large dataset sizes, the size of input

data is adjusted to 32 × 32 when the LGR-18 network pre-trained

on the Kinetics-400 and UCF101 datasets. The traditional cross-

entropy loss, denoted as L, is employed to optimize the LGR-18

network, which is formulated Equation 3:

L = −

K
∑

k=1

vk log v
′

k (3)

where K denotes the number of categories, v′
k

denotes the

prediction score of category k, and vk denotes the label of

category k.

4 Experiment

4.1 Experiment setup

4.1.1 Datasets
The LGR-18 network is verified on the MIT-STAG (Sundaram

et al., 2019) and iCub datasets (Soh et al., 2012). The MIT-STAG

dataset includes 26 categories of common objects and empty hands,
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TABLE 3 Ablation study of LGC block on the MIT-STAG dataset.

Spatial
pooling
operation

Top 1 score KC

Max pooling 90.8 89.7

Global average

pooling

91.1 90.7

FIGURE 5

The top 1 score (%) of di�erent number of shifting channels on the

MIT-STAG dataset.

FIGURE 6

The top 1 score (%) of di�erent dropout rate on the MIT-STAG

dataset.

i.e., allen key set, ball, battery, board eraser, bracket, stress toy, cat,

chain, clip, coin, gel, kiwano, lotion, mug, multimeter, pen, safety

glasses, scissors, screwdriver, spoon, spray can, stapley, tape, tea

box, full cola can, and empty cola can. A total of 88,269 valid frames

are collected, each with a size of 32 × 32. To achieve accurate

prediction results under fair conditions, 1,353 frames (totaling

TABLE 4 Comparisons with 5 methods in terms of the top 1 score (%) and

KC (%) on the MIT-STAG dataset.

Method Top 1 score KC

STAG (Sundaram

et al., 2019)

72.4 71.4

Smart-hand (Wang

et al., 2021)

72.0 71.0

ResNet10-v1

(Zhang et al., 2021)

80.1 79.3

Tactile-ViewGCN

(Sharma et al.,

2022)

81.8 81.1

GAS-MR3D (Qian

et al., 2023c)

88.8 88.5

Ours 91.1 90.7

36,531 frames) are selected from each category as the training

set, and 597 frames (totaling 16,119 frames) are selected as the

testing set. The MIT-STAG dataset includes too many categories

with similar appearance characteristics, making accurate object

recognition highly challenging on this dataset.

The iCub dataset is acquired by two anthropomorphic

dexterous hands of the iCub humanoid robot platform. Each

anthropomorphic hand is equipped with five fingers, each with 20

movable joints. Additionally, each finger is equipped with pressure

sensors to acquire tactile data. The iCub dataset includes 2,200

frames with 10 categories, i.e., monkey toy, med vitamin water, med

coke, lotion, vitamin water, full cola, empty vitamin water, empty

coke, book and blue bear (toy), and the size of each frame is 5× 12.

For each category in the iCub dataset, 132 frames (totaling 1,320

frames) are selected as the training set, and 88 frames are selected

(totaling 880 frames) as the testing set.

4.1.2 Implementation details
This paper uses the top 1 score, kappa coefficient (KC) and

confusion matrix for evaluation. The stochastic gradient descent is

used to optimize our module. The momentum and decay rate are

0.9 and 0.0001, respectively. The initial learning rate is 0.002 and

the quantity of epochs is 50. The learning rate decreases to 10% of

the previous stage after every 10 epochs. The batch sizes are 32 and

8 for the MIT-STAG and iCub datasets, respectively.

The experiments were all performed on the PyTorch

framework and run on a workstation with two NVIDIA GeForce

RTX 2080 Ti (2× 11 GB).

4.2 Ablation study

4.2.1 Ablation study of LGC block
As Table 2 shows, the LGC block is compared with the other

four convolution blocks to verify its effectiveness. Architecture A

is used as a baseline and is composed of two 3D convolution

layers connected by residual connection. Architecture B replaces

one of the 3D convolutions layers in architecture A with

an LC module, and architecture C uses the GC module to
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FIGURE 7

Comparisons with 5 methods in terms of confusion matrix on the MIT-STAG dataset. (A) STAG (Sundaram et al., 2019), (B) Smart-hand (Wang et al.,

2021), (C) ResNet10-v1 (Zhang et al., 2021), (D) Tactile-ViewGCN (Sharma et al., 2022), (E) GAS-MR3D (Qian et al., 2023c), (F) Ours.
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replace one of the 3D convolutions layers in architecture A.

In architecture D, a pair of LC and GC modules are utilized

to replace one of two 3D convolution layers in architecture

A. Architecture E is our method, and it uses two pairs of LC

and GC modules to replace all the 3D convolution layers in

architecture A.

Ablation studies reveal the effectiveness of the LC module, GC

module, and combination of the LC and GC modules to compare

architectures B, C, and D with A. By comparing architecture E with

A, ablation studies strongly demonstrate that the best performance

can be achieved by using a combination of LC and GC modules.

4.2.2 Ablation study of spatial pooling operation
in LC module

As shown in Figure 2, the spatial pooling operation is involved

in the LC module, therefore, the max pooling and GAP are

compared with each other to determine who is more appropriate

for LCmodule. As shown in Table 3, the top 1 score and KC of GAP

are higher than the ones of max pooling, consequently, the GAP is

adopted by LC module.

4.3 Parameter analysis

4.3.1 Parameter analysis for the number of
shifting channels

As shown in Figure 3, the number of shifting channels is

an important hyperparameter for the LC module, therefore, it is

quantitatively analyzed in this section. It is worth noting that the

number of shifting channels must be even because the shifting

operation is bidirectional. As shown in Figure 5, the top 1 score

achieves the highest value when the number of shifting channels

is set to 2, which means that shifting many channels is not

suitable for the LC module because it can induce the information

reduction.

4.3.2 Parameter analysis for dropout rate
As shown in Table 1, the dropout layer is used to prevent the

overfitting problem, therefore, the dropout rate is quantitatively

analyzed in this section. As shown in Figure 6, the top 1

score achieves the highest value when the dropout rate is

set to 0.3.

4.4 Comparisons with state-of-the-art
methods

To demonstrate the overall effectiveness of our model, we

conducted a comprehensive quantitative comparison with 5

methods on the MIT-STAG dataset (Sundaram et al., 2019), i.e.,

STAG (Sundaram et al., 2019), Smart-hand (Wang et al., 2021),

ResNet10-v1 (Zhang et al., 2021), Tactile-ViewGCN (Sharma et al.,

2022), and GAS-MR3D (Qian et al., 2023c), and 5 methods on

the iCub dataset (Soh et al., 2012), i.e., DS (Soh and Demiris,

2014), GS (Soh and Demiris, 2014), STORK-GP (Soh et al., 2012),

TABLE 5 Comparisons with 5 methods in terms of the top 1 score (%) and

KC (%) on the iCub dataset.

Method Top 1 score KC

DS (Soh and

Demiris, 2014)

98.5 98.4

GS (Soh and

Demiris, 2014)

98.9 98.8

STORK-GP (Soh

et al., 2012)

99.3 99.2

STAG (Sundaram

et al., 2019)

99.5 99.4

GAS-MR3D (Qian

et al., 2023c)

100 1

Ours 100 1

STAG (Sundaram et al., 2019), and GAS-MR3D (Qian et al.,

2023c).

As shown in Table 4, our method achieved the highest

top 1 score and KC. This demonstrates that our model

has the best prediction accuracy and the lowest level of

confusion on the MIT-STAG dataset. A comparison of the

confusion matrices in Figure 7 further supports the conclusions

above. As Table 5 and Figure 8 show, both our method and

Qian et al. achieved a recognition accuracy of 100%. Our

method and that of Qian et al. yield the highest detection

accuracy and the lowest level of confusion on the iCub

dataset.

In summary, our method is superior to 5 advanced methods.

5 Conclusion

A novel LGR-18 network is proposed to address the problem

that the current TOR models cannot simultaneously extract

local and global features very well. The LGR-18 network

consists primarily of multiple traditional 1D and 2D convolution

kernels and LGC blocks, which is proposed in this paper.

The LGC block is formed by combining LC and GC modules

through residual connections. The LC module mainly utilizes

a temporal shift operation and a 2D convolution to extract

local spatiotemporal features. The GC module extracts global

spatiotemporal features by fusing multiple 1D and 2D convolutions

which can expand the receptive field in temporal and spatial

dimensions. In this paper, we utilize the LGR-18 network to

extract local and global spatiotemporal features while mitigating

the issue of large parameter in existing 3D CNN models.

Ablation studies verify the validity of the LC module, GC

module, and LGC block. A comprehensive quantitative comparison

between our method and 5 advanced methods on the MIT-

STAG and iCub datasets reveal the excellent capability of our

method.

The future work of our team includes two parts. The first

part is combining our method with video based object detection

method, and the another part is deploying our method on more

robots.
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FIGURE 8

Comparisons with 5 methods in terms of confusion matrix on the iCub dataset. (A) DS (Soh and Demiris, 2014), (B) GS (Soh and Demiris, 2014), (C)

STORK-GP (Soh et al., 2012), (D) STAG (Sundaram et al., 2019), (E) GAS-MR3D (Qian et al., 2023c), (F) Ours.
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