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Introduction: The meta-learning methods have been widely used to solve the

problem of few-shot learning. Generally, meta-learners are trained on a variety

of tasks and then generalized to novel tasks.

Methods: However, existing meta-learning methods do not consider the

relationship between meta-tasks and novel tasks during the meta-training

period, so that initial models of the meta-learner provide less useful meta-

knowledge for the novel tasks. This leads to aweak generalization ability on novel

tasks. Meanwhile, di�erent initial models contain di�erent meta-knowledge,

which leads to certain di�erences in the learning e�ect of novel tasks during

themeta-testing period. Therefore, this article puts forward ameta-optimization

method based on situationalmeta-task construction and cooperation ofmultiple

initial models. First, during the meta-training period, a method of constructing

situational meta-task is proposed, and the selected candidate task sets provide

more e�ective meta-knowledge for novel tasks. Then, during the meta-testing

period, an ensemble model method based on meta-optimization is proposed

to minimize the loss of inter-model cooperation in prediction, so that multiple

models cooperation can realize the learning of novel tasks.

Results: The above-mentioned methods are applied to popular few-shot

character datasets and image recognition datasets. Furthermore, the experiment

results indicate that the proposed method achieves good e�ects in few-shot

classification tasks.

Discussion: In future work, we will extend our methods to provide more

generalized and useful meta-knowledge to the model during the meta-training

period when the novel few-shot tasks are completely invisible.

KEYWORDS

meta-learning, few-shot learning, situational meta-task, ensemble model, image

recognition

1 Introduction

Deep learning (LeCun et al., 2015) has achieved great success and has become

a practical method in many applications, such as computer vision (Yu et al., 2022;

Jiang et al., 2023), speech recognition (Afouras et al., 2018; Zhang et al., 2019),

and natural language processing (Shen et al., 2018). However, it heavily relies on a

large amount of labeled training data. When the available training data is drastically

reduced, traditional deep learning methods are ineffective in training. In contrast,

humans can quickly learn novel tasks (i.e., few-shot tasks) through a small amount of

supervised information, because people can fully apply their past learning experience
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to novel tasks and then can quickly adapt and learn them. We

hope that artificial intelligence models can quickly learn from novel

tasks with few-shot data similar to humans. This fast learning is a

challenge because the artificial intelligence models must combine

their previous experience with a small amount of new information

while avoiding over-fitting novel tasks (Finn et al., 2017). The

process of human learning has sparked our interest in the research

of few-shot learning (Wang et al., 2020; Lu et al., 2023; Song et al.,

2023; Zeng and Xiao, 2024) and how to fully utilize past learning

experiences to few-shot tasks.

Meta-learning (Vanschoren, 2018; Elsken et al., 2020; Li et al.,

2021; Liu et al., 2022; He et al., 2023; Vettoruzzo et al., 2024)

was put forward to solve the problem of few-shot learning. It

empowers learning systems with the ability to acquire knowledge

from multiple tasks, enabling faster adaptation and generalization

to new tasks (Vettoruzzo et al., 2024). Specifically, it is to

provide the model, especially the deep neural network, a learning

ability that allows the model to learn some meta-knowledge

automatically. Meta-knowledge refers to the knowledge that can be

learned outside of the model training process, such as the initial

parameters of the neural network, the structure and optimizer of

the neural network, and the hyperparameter of the model. In few-

shot learning, meta-learning specifically refers to learning meta-

knowledge from a large number of prior tasks and using them to

guide the model to learn faster in novel tasks.

The meta-learning method (Hospedales et al., 2021), based on

optimization, is an important branch of few-shot learning. These

algorithms attempt to obtain a better initial model or correct

gradient descent direction through meta-learning. It optimizes

initial parameters by the meta-learner so that the learner can

converge faster in novel tasks and achieve fast adaptation and

learning with few-shot data.

In few-shot learning, the pre-learned base class data before

learning few-shot novel tasks is crucial for the generalization ability

of the model. Selecting a good base class can often greatly improve

the learning efficiency of novel tasks (Zhou et al., 2020). Figure 1

shows the randomly selected meta-tasks A and B from the base

class data during the meta-training period. From the perspective of

the sample category feature, meta-task B has more meta-knowledge

related to the few-shot task. Therefore, it is crucial to select effective

meta-knowledge from the base class for few-shot tasks, which can

improve the efficiency and effect of few-shot learning.

Based on the above motivation, this article argues that existing

meta-learning methods do not take into account the relationship

between base classes used for meta-learner learning and novel

classes in few-shot tasks. During the meta-training period, this

can lead to providing more irrelevant meta-knowledge for few-

shot tasks, which will affect the efficiency and effect of few-shot

learning in the meta-testing. Therefore, it is necessary to consider

the feature relationships between base class data and few-shot data

in the meta-training.

To improve this problem, first, we should select the most

relevant set of candidate meta-tasks for novel tasks from the base

class as much as possible to construct situational meta-tasks, which

in turn provide optimal initial models for novel tasks. Then, the

diversity of features among different meta-tasks can be used to

promote better learning of novel tasks by multiple models.

In this article, we attempt to improve the problem of not

considering relationships between base class data and few-shot

novel class data by means of situational meta-task construction and

multiple ensemble models. Starting from the feature relationship

between base class data and few-shot data, we provide a new

research idea for meta-learning. First of all, a universal feature

extractor is trained in the basic learning phase to extract features

of base class data and few-shot class data. Then, during the

meta-training period, accurate meta-knowledge is provided for

novel tasks by constructing situational meta-tasks. Furthermore,

it provides good initial model parameters for novel tasks. Finally,

during the meta-testing period, few-shot tasks are learned through

the cooperation of multiple models. A large number of experiments

on popular few-shot datasets demonstrate the effectiveness of the

proposed method. Our main contributions are summarized as

follows:

• This article puts forward a construction method of situational

meta-task. It uses the class centroid of base class data to select

the candidate meta-task sets with the stronger correlation

for few-shot tasks and then sets up situational meta-tasks

similar to few-shot tasks. The situational meta-tasks are the

same as the few-shot tasks in form and similar to them in

terms of feature. This method provides accurate and available

meta-knowledge for novel tasks, which is conducive to rapid

adaptation and learning on few-shot tasks.

• An ensemble model method based on meta-optimization is

proposed in this article. The meta-model of situational meta-

task training during meta-training is used to cooperate to

complete the learning of few-shot tasks. The cooperation of

multiple models improves the predictive performance and

stability of a single model in the full-phase meta-learning

process.

• Moreover, we extensively validate the proposed method by

applying it to popular few-shot character dataset and image

recognition datasets and then implementing and training

through CNNs, Vgg16, and ResNet50 networks. The results

indicate that the construction method of situational meta-task

provides effective and available meta-knowledge for few-shot

novel tasks, and the method of ensemble multiple models

outperform previous state-of-the-art baselines.

2 Related work

The core idea of the meta-learning method is to use the past

prior knowledge to guide the model to learn novel tasks. Meta-

learning, as a standard approach to solving the problem of few-shot

learning, which attempts to learn (Li et al., 2017). The goal of meta-

learning is to enable models, especially deep neural networks, to

learn how to undertake novel tasks from few-shot data. Among

them, the meta-learning method based on optimization is an

important branch of few-shot learning.

2.1 Meta-learning based on optimization

The idea of this kind of algorithm is to attempt to

obtain a better initial model or correct gradient descent
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FIGURE 1

The relationship between meta-tasks selected from base class dataset and few-shot dataset.

direction through meta-learning. Then, the initial parameters

are optimized by the meta-learner. This enables the learner to

converge faster in novel tasks and learn rapidly in the case of

few-shot learning.

Finn et al. (2017) proposed a model agnostic meta-learning

(MAML) method. First, the network is trained with the ability

to extract universal features, and then further trained to adapt to

novel tasks rapidly on this basis. This approach is consideredmodel

agnostic since it can be applied directly to any learning model

trained by a gradient descent process.

Based on the idea of MAML, Li et al. (2017) put forward a

meta-stochastic gradient descent method called meta-SGD based

on LSTM. By meta-learning the initialization parameters, learning

rate and updating direction, the trained model can be easily fine-

tuned to adapt to novel tasks. This algorithm is significantly less

difficult to train compared to LSTM. Compared with the MAML

method, it improves the model capacity.

The reptile (Nichol et al., 2018)methodwas proposed byNichol

et.al., which updates fewer parameters at a time and saves a lot of

time and memory costs. However, the algorithm cannot directly

adapt to the fast learning performed by MAML.

Rajeswaran et al. (2019) proposed a meta-learning method

of implicit gradient. In this method, a new loss function and a

corresponding method for computing the gradient are designed,

so that the gradient of the parameter can be obtained only by

computing the result of the loss function without considering its

specific optimization method.

The meta-learning method based on optimization is to find

a better initialization model or gradient descent direction for

few-shot data. However, existing methods learn directly on the

base class dataset and rarely consider relationships between

few-shot data and base class data. This will lead to the learning

of irrelevant meta-knowledge on the base class, which is not

conducive to few-shot learning. Therefore, this article first fully

considers the feature relationships between base class data and

few-shot data and uses it as prior knowledge to construct

strongly relevant situational meta-tasks for meta-learners. Then,

meta-learners use situational meta-tasks to carry out meta-learning

based on optimization, thereby improving the effect of few-shot

learning.

2.2 Ensemble learning

To overcome the problem of unreliable and unstable results

from single model, ensemble learning aims to utilize the diversity

among multiple models to improve the learning ability of multiple

weak learners. It can produce a strong ensemble learner for better

prediction performance (Ganaie et al., 2022).

Traditional ensemble learning methods include Bagging,

Boosting, Stacking, decision tree-based, and random forest-based.

The Bagging algorithm (Breiman, 1996) (such as bootstrap

aggregation) is one of the earliest ensemble learning methods.

Although it has a simple structure, it has excellent performance.

The algorithm generates different training subsets by randomly

changing the distribution of the training dataset, then trains

individual learners with different training subsets, and finally

integrates them as a whole.

The Boosting algorithm (Freund and Schapire, 1996) is an

iteration method that transforms weak learners into a strong

learner. It generates a strong learner that behaves almost perfectly

by increasing the number of iterations. Stacking, also known as

Stacked Generalization (Wolpert, 1992), refers to training a model

that is used to integrate all individual learners. The model is trained

with the output of these individual learners as input to obtain a final

output.

Recently, the deep neural network has been integrated into

the ensemble strategies. Deep neural decision forest (Kontschieder

et al., 2015) is a learning method that combines convolutional

neural networks (CNNs) and decision forest techniques. It

introduces stochastic backpropagation of decision trees, which

is then combined into a decision forest, resulting in a final
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model with better generalization performance. gcForest (Zhou

and Feng, 2017) is a new method that combines the ensemble

method with the deep neural network. Unlike the above method,

it replaces the neurons with random forest models, using the

output vector of each random forest as the input to the

next layer.

3 Method

In this section, first, we explain the relevant definitions and

concepts proposed for meta-task construction and meta-model

ensemble (Section 3.1). Then, the motivation and idea of our

proposed method are generally introduced (Section 3.2). Finally,

in order to improve the problem of feature correlation between

few-shot and base class, the construction method of situational

meta-task (CSMT) proposed in meta-training (Section 3.3) is

introduced and the full-phase meta-learning process of multiple

initial model cooperation (FMPMIMC) is described, which

includes the basic learning phase and the meta-optimization phase

(Section 3.4).

3.1 Problem definition and description

3.1.1 Basic class dataset and novel class
dataset(few-shot dataset)

The base class dataset is Dbase =
{(

xi
base

, yi
base

)

, i = 1, 2, ...,Nb

}

,

and the novel class dataset is Dnovel =
{(

xi
novel

, yi
novel

)

, i = 1, 2, ...,Nn

}

, where Dbase∩Dnovel = ∅.

Few-shot tasks Tnovel are randomly sampled from Dnovel. Each

few-shot task includes support set and query set. The support set

is S =
{(

xisupport , y
i
support

)

, i = 1, 2, ..., n× k
}

, where S ⊂ Tnovel.

The query set is Q =
{(

xiquery, y
i
query

)

, i = 1, 2, ..., n× q
}

, where

Q ⊂ Tnovel. Especially, S ∩ Q = ∅ and S
⋃

Q = Tnovel.

3.1.2 Situational meta-task
Situational meta-task is a collection of tasks that have the same

form (N-way K-shot) and related features to few-shot tasks. It is

constructed from the data in the base class and is used in the

meta-training. From the perspective of feature, it has a strong

correlation with few-shot tasks. In form, it is the same as Nway-

Kshot for few-shot tasks. Suppose that the base class dataset is

represented as Dbase = {D1,D2,D3, ...,Dn} by category, and a

5way-1shot support set denotes S =
{

x1, x2, x3, x4, and x5
}

. By

using the situational meta-task construction method, the most

relevant candidate meta-task set (such as the candidate meta-task

set for few-shot x1 is Dmeta_task
x1

=
{

Dc,Dk,Dp,Dq, and Dm

}

,

where Dc,Dk,Dp,Dq, and Dm ∈ Dbase) is selected from

the base class dataset for each category of few-shot dataset

(taking few-shot x1 as an example), and then the situational

meta-tasks are constructed by extracting a sample from each

category of few-shot own related candidate meta-task set (such

as Dmeta_task
x1

,Dmeta_task
x2

,Dmeta_task
x3

, Dmeta_task
x4

, and Dmeta_task
x5

, where

Dmeta_task
xi

⋂

i6=j

Dmeta_task
xj

= ∅).

3.1.3 Multiple initial models
During the meta-training period, the set of different meta-

models is trained using different situational meta-tasks, which can

be described as M = {M1,M2,M3, ...,Mn}. They are used as the

basis for cooperative learning in the meta-testing.

3.1.4 Full-phase meta-learning process
It includes the basic learning phase and the meta-optimization

phase. The basic learning phase provides a universal feature

extractor for the meta-optimization phase, which is used for

constructing situational meta-tasks. The meta-optimization phase

includes meta-training and meta-testing. During the meta-training

period, the multiple initial models are trained using situational

meta-tasks. They are used to adapt and learn few-shot tasks

cooperatively in the meta-testing period.

3.2 Overview

The full-phase meta-learning method based on situational

meta-task construction and multiple initial model cooperation is

shown in Figure 2. It consists of the basic learning phase and the

meta-optimization phase. The base class data and few-shot data do

not have the same category, which means that few-shot data are

novel tasks for models. The general idea of our proposed method is

introduced below from the process of the full-phase meta-learning.

First, in the basic learning phase, a universal feature extractor

is trained for constructing situational meta-tasks in the meta-

optimization phase. The purpose of constructing situational meta-

tasks is to provide more effective meta-knowledge for few-shot

tasks, enabling the model to rapidly adapt to few-shot tasks. Then,

situational meta-tasks are used to train multiple initial models in

the meta-training of the meta-optimization phase. Finally, in the

meta-testing of the meta-optimization phase, the few-shot dataset

is used to optimize multiple initial models, promoting cooperation

among models, and more fully utilizing meta-knowledge to learn

few-shot classification model.

3.3 A construction method of situational
meta-task

The meta-learning methods based on optimization find better

initial models or gradient descent directions for few-shot tasks

through base class dataset. This allows models to adapt and learn

quickly for few-shot tasks. However, existing methods directly

learn on the base class dataset, rarely considering the feature

relationships between few-shot data and base class data. This will

result in learning more irrelevant meta-knowledge on the base

class, which is not conducive to few-shot learning. Therefore, our

research motivation is to provide relevant and effective meta-

knowledge for few-shot tasks from the base class. Furthermore,

it provides better initial model parameters for few-shot learning,

which enables fast learning and adaptation on few-shot data.

In order to solve the above problem, this article proposes a

construction method of situational meta-task (CSMT), which is
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FIGURE 2

Schematic diagram of a full-phase meta-learning method based on construction of situational meta-task and cooperation with multiple initial

models.

shown in Figure 3. The main idea of this method is to select the

categories related to few-shot tasks from the base class dataset as

candidate meta-task sets, and then use candidate meta-task sets to

construct situational meta-tasks. Specifically, first, few-shot tasks

Tnovel (Figure 3E) are randomly sampled from the few-shot dataset

Dnovel (Figure 3D). Each few-shot task consists of a support set

(S1, S2, ...) and a query set (Q1,Q2, ...). Then, the support set S1
(shown in the above Figure 3E) of 5-way 1-shot task 1 is used as

an example to construct its situational meta-tasks. The relevant

categories from the base class dataset Dbase (Figure 3A) is selected

as a candidate meta-task set using the feature relationships between

the centroid Ci
base

of each category of the base class dataset and the

centroid C
j

novel
of each category of the support set S1. The relevant

categories from the base class dataset are selected as the candidate

meta-task setMeta_taskS1 (Figure 3B). Finally, the candidate meta-

task set is used to construct some situational meta-tasks Dmeta_task
S1

(Figure 3C) for the 5-way 1-shot task 1. The situational meta-task A

has the same form(5-way 1-shot) and related features to the support

set S1 of the 5-way 1-shot task 1. The situational meta-tasks are

used during meta-training and the few-shot tasks are used during

meta-testing.

The construction process of situational meta-task is given as

follows:

Step 1: Computing the central support point (centroid) of

each class

Themean vector is computed for all feature vectors of each class

in the base class dataset as the central support point Ci
base

for that

class. It can be represented as Equation (1):

Ci
base =

1
∣

∣Di
base

∣

∣

∑

(

xs
base

,ys
base

)

∈Di
base

fϕ
(

xsbase
)

, (1)
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FIGURE 3

A schematic diagram of the situational meta-task construction process. (A) Base class dataset (Dbase). (B) Candidate meta-task set (Meta_taskS1 ). (C)

Situational meta-task (Dmeta_task
S1

). (D) Few-shot database (Dnovel). (E) Few-shot task (Tnovel).

where Di
base

is the sample set of the ith class in the base class

dataset and xs
base

is the feature vector that belongs to Di
base

. fϕ(·) is

an embedding function.

Similarly, when the form of the few-shot dataset is N-way K-

shot, the mean vector of all feature vectors in each category in the

few-shot data set is calculated as the central support point C
j

novel
of the class. When the form of the few-shot dataset is N-way 1-

shot, the central support point C
j

novel
of each category is the sample

feature. It can be represented as Equation (2):

C
j

novel
=

1

|K|

∑

(

xs
novel

,ys
novel

)

∈Di
novel

fϕ
(

xsnovel
)

. (2)

Step 2: Selecting few-shot candidate meta-task sets from the

base class dataset

The feature distance (Disj_i) between the central support point

C
j

novel
of each category in the few-shot dataset and the central

support point Ci
base

of each category in the base class dataset are

calculated, and the distance using cosine similarity is calculated. It

can be represented as Equation (3):

Disj−i = cos
(

C
j

novel
,Ci

base

)

. (3)

The calculated data are sorted in the descending order, and the

top K class is selected as the candidate meta-task set for each few-

shot class and is denoted as Meta_taskj. It can be represented as

Equation (4):

Meta_taskj ← sort
(

Disj_i ,K
)

. (4)

Step 3: Handling the conflict of candidate meta-task sets

When two or more candidate meta-task sets contain the same

category in the base class (assuming that the candidate meta-task

sets corresponding to classes p and q of the few-shot dataset both

contain class m of the base class dataset), select the few-shot class

with the minimum centroid error as the optimal construction

method to ensure that different few-shot classes select different

candidate meta-task sets. The centroid error is the sum of the

distance between all samples of a certain class in the few-shot

dataset and the centroid of that class in the base class dataset. It

can be represented as Equation (5):

Lc =

k
∑

i=1
xi
novel
∈D

p

novel

fϕ
(

xinovel
)

− Cm
base. (5)

Among them, Lc represents the centroid error between the

samples D
p

novel
of the class p in the few-shot dataset and the class

m in the base class dataset. xi
novel

represents the sample in the few-

shot dataset D
p

novel
and Cm

base
is the centroid of the class m in the

base class dataset.

Step 4: Constructing situational meta-tasks

The tasks from candidate meta-task sets for each class of few-

shot data are extracted and combined into situational meta-tasks in

the form of Nway-Kshot which is the same as few-shot tasks. They

are the training dataset in the meta-training period.

The construction method of situational meta-task is shown in

Algorithm 1.

Through the situational meta-task construction method, the

training dataset related to the feature of few-shot is provided for

the meta-model in the meta-training. First, for each few-shot class,

strongly related candidate meta-task sets are selected from the base

class dataset in order to better provide useful meta-knowledge

for few-shot data. Then, the candidate meta-task sets are used to

construct situational meta-tasks, whose form and features are more

similar to few-shot tasks, which is beneficial for the model to adapt

quickly and learn novel tasks.
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Require: Base dataset Dbase =
{(

xibase , yibase
)}S

i=1
,

Number of base dataset class M,

Few shot dataset Dnovel =
{(

xinovel , yinovel
)}N×K

i=1
,

Form of few shot dataset Nway-Kshot,

SAMPLE(D,k) denotes dividing the dataset D by

label k,

fϕ (·)means the feature extractor provided in

the basic training phase,

d (·, ·) is cos distance function,

Select(Q,D)indicates that extracting and

constructing situational meta-task from

dataset D according to candidate meta-task set Q.

Ensure: Dmetatask

1: for i = 0 to M − 1 do

2: Di
base ← SAMPLE (Dbase , i)

3: Ci
base ←

1
∣

∣Di
base

∣

∣

∑

(xsbase ysbase)∈D
i
base

fϕ
(

xsbase
)

4: C← C ∪ Ci
base

5: end for

6: for j = 0 to N − 1 do

7: D
j
novel ← SAMPLE

(

Dnovel, j
)

8: C
j
novel ←

1
∣

∣

∣
D
j
novel

∣

∣

∣

∑

(xtnovely
t
novel)∈D

i
novel

fϕ
(

xtnovel
)

9: Qj ← sort
(

d
(

C,C
j
novel

))

10: end for

11: for i = 0 to N − 1 do

12: for j = i+ 1 to N − 1 do

13: Qi ← Compare
(

Qi, Qj

)

14: end for

15: Dmetatask_i ← Select
(

Dbase,Qi

)

16: end for

Algorithm 1. The CSMT method.

In this subsection, different situational meta-tasks provide

models containing different meta-knowledge for few-shot tasks.

Overall, this process also makes full preparation for the efficient

learning of few-shot tasks in the next subsection.

3.4 Full-phase meta-learning process
based on multiple initial model cooperation

As shown in Figure 4, the full-phase meta-learning process

based on multiple initial model cooperation (FMPMIMC)

includes two phases: basic learning and meta-optimization. The

basic learning phase provides a universal feature extractor for

constructing situational meta-tasks in the meta-optimization

phase.

3.4.1 The basic learning phase
The model is trained by the base class data, and it can be

described as Equation (6):

Lbase_cls
(

f ◦w, xbase, ybase
)

= E
[

l
(

w
(

f (xbase)
)

, ybase
)]

, (6)

where Lbase_cls is the classification loss, f (·) is a feature

extractor of themodel,w(·) is a classifier, and l(·, ·) is a cross entropy

loss function.

The basic learning phase can be analogized to the extensive

human learning process, and the model gets a universal feature

extractor through extensive learning. It is better to extract features

in the meta-optimization phase.

3.4.2 The meta-optimization phase
The meta-optimization phase includes two interactive

processes: meta-training and meta-testing. First, during the meta-

training period, some situational meta-tasks are constructed for

few-shot tasks using the feature extractor from the base learning

process (each situational meta-task contains the corresponding

support set and query set).

Then, they are used to train several independent networks

(each network includes components such as feature extractor,

meta-learner, and classifier). The loss of each network utilizes the

classified cross entropy loss of situational meta-tasks, which can be

represented as Equation (7):

Lmeta_train

(

f ◦m◦w, xmeta_task, ymeta_task

)

= E
[

l
(

w
(

m
(

f
(

xmeta_task

)))

, ymeta_task

)]

, (7)

where Lmeta_train is the meta-training loss of situational meta-

tasks and f (·) is the feature extractor of the network. m(·) is the

meta-learner and w(·) is the classifier. l(·, ·) is the cross entropy loss

function of situational meta-task.

During the meta-training period, models containing diverse

meta-knowledge are trained and learned on some different

situational meta-tasks. During the meta-testing period, multiple

initial model cooperation is used to learn novel few-shot tasks. The

single model utilizes traditional cross entropy function to calculate

the classification loss of the support sets in novel tasks. It can be

represented as Equation (8):

Lcls_imeta_test

(

fi
◦mi
◦wi, x

support

novel_task
, y

support

novel_task

)

(x
support

novel_task
,y
support

novel_task
)∈D

support

novel_task

= E

[

l
(

wi

(

mi

(

fi

(

x
support

novel_task

)))

, y
support

novel_task

)]

,

(8)

where Lcls_imeta_test is the classification loss of a single model

learning novel few-shot tasks, x
support

novel_task
is the support set sample

of few-shot task, and y
support

novel_task
is the label of the support set sample

of few-shot task.

In order to cooperate with multiple initial models to complete

the learning of few-shot novel tasks, KL divergence is used between

the models to calculate the difference loss in model predictions. By

strengthening cooperation amongmodels, efficient learning of few-

shot novel tasks can be realized. The cooperation loss of multiple

initial models can be described as Equation (9):

L
dif _i
meta_test =

1

2

n
∑

j=1

(

KL
(

p̂i
∣

∣

∣

∣p̂j
)

+ KL
(

p̂j
∣

∣

∣

∣p̂i
))

, (9)
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FIGURE 4

A schematic diagram of the learning process of a full-phase meta-learning method based on situational meta-task construction and cooperation

with multiple initial models. In the basic training phase (above), the model learns a universal feature extractor from the base class data for situational

meta-task construction. In the meta-optimization phase (below), multiple independent models are trained by situational meta-tasks in the

meta-training. Then, multiple models utilize classification loss and cooperative loss to learn few-shot novel tasks in the meta-testing.

where L
dif _i
meta_test is the difference loss predicted between the ith

model and other models, and p̂i is the output of the softmax layer

of the ith network.

During the meta-testing period, the total loss of the ith model

is as follows

Limeta_test = Lcls_imeta_test + L
dif _i
meta_test , (10)

where Limeta_test is the total loss when the ith model learns few-

shot tasks. Lcls_imeta_test is the classification loss, and L
dif _i
meta_test is the

cooperation loss between models.

The full-phase meta-learning process based on multiple initial

model cooperation is shown in Algorithm 2.

In this section, a situational meta-task construction method is

used to provide more relevant and effective meta-knowledge for

few-shot novel tasks. During the meta-training period, different

situational meta-tasks provide diverse meta-knowledge, resulting

in certain differences in the meta-knowledge learned by models.

During the meta-testing period, the diversity of models is used

for cooperative learning few-shot novel tasks. By reducing the

prediction differences among models, the prediction quality and

stability of the whole model are further improved.

4 Experiments

In this section, first, we introduce several benchmark few-shot

datasets (Omniglot, CIFAR-100 and MiniImageNet) used in our

experiments (Section 4.1). Then, we conduct three experiments,

namely, the situational meta-task construction experiment (Section

4.2), the classification experiment of the full-phase meta-learning
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Require: Base dataset Dbase,Few shot dataset Dnovel

1: while not done do

2: Sample few-shot tasks Ti from Dnovel

3: Constructing some situational meta-tasks TS
i

corresponding to few-shot task Ti by Dbase and CSMT

method

4: for all TS
i do

5: In meta-training period,the models Mk are,

respectively, trained using different TS
i and

Equation(7)

6: end for

In meta-testing period, ensemble all models

Mk are trained using support set of Ti and

Equation(10)

7: end while

Algorithm 2. The FMPMIMCmethod.

multiple initial model cooperation (Section 4.3), and the related

parameter setting experiment (Section 4.4). These experiments are

used to evaluate CSMT and FMPMIMC methods.

4.1 Setup

In this study, the performance of the proposed method is

evaluated on three few-shot image classification datasets, including

the simple character dataset Omniglot (Lake et al., 2011), the

complex image datasets CIFAR-100 (Boris et al., 2018), and

MiniImageNet (Vinyals et al., 2016). Figure 5 shows typical images

for each dataset.

4.1.1 Omniglot dataset
It consists of 1,623 handwritten characters (equivalent to 1,623

classes) from 50 different languages. Each class has 20 different

handwritings (equivalent to 20 samples in each class). The size of

each sample is 28 × 28 pixels. In each few-shot experiment, we

randomly selected 100 classes as the few-shot dataset (five classes

were selected multiple times as few-shot tasks), and the remaining

classes were used as the base class dataset.

4.1.2 CIFAR-100 dataset
It contains 100 classes, each with 600 color images of size 32

× 32 pixels. In total, 500 samples from each class are used as the

training dataset, and the remaining 100 samples are used as the

testing dataset. In each few-shot experiment, we randomly selected

20 classes as the few-shot dataset(5 classes were selected multiple

times as few-shot tasks), and the remaining 80 classes were used as

the base class dataset.

4.1.3 MiniImageNet dataset
It consists of 100 classes selected from ImageNet, and each

category has 600 color images with the size of 84 × 84 pixels.

Among them, the training dataset, the validation dataset, and

the testing dataset contain 64 classes, 16 classes and 20 classes,

respectively. In each few-shot experiment, we randomly selected

five classes from the testing dataset multiple times as few-shot

learning tasks, and the remaining 80 classes from the training and

validation datasets as the base class dataset.

4.2 The experiment of situational
meta-task construction

For the construction of situational meta-task in the experiment,

first, we randomly selected 1 or 5 samples from five classes as

few-shot tasks (5way-1shot/5way-5shot) from the few-shot dataset

for each experiment. Then, during the meta-training period, the

construction method of situational meta-task is used to select

candidate meta-task sets for few-shot novel tasks. Using the

experiment results from the Omniglot dataset as an illustration,

Figure 6 shows an example of candidate meta-task sets selected

according to the 5way-1shot task. The following are the analysis of

the experimental results.

(1) The candidate meta-task set selected for the 5way-1shot

task in the Omniglot dataset is visualized in Figure 6. The

features and shapes of sample classes in the candidate meta-

task set are similar to those of few-shot task, and its samples

can provide more useful and effective meta-knowledge for the

few-shot task. Then samples are extracted corresponding to

the few-shot task form (5way-1shot) to construct situational

meta-tasks.

(2) The average accuracy of the 5way-1shot and 5way-5shot

experiments using a single model on the Omniglot dataset by

CSMT is reported in Table 1. In the 5way-1shot experiment of

the Omniglot dataset, the experimental result is 0.23% higher

than that of the advanced SNAIL method. This shows that the

CSMT method provides more effective meta-knowledge for

few-shot tasks, which is helpful for few-shot learning.

(3) Table 2 shows the average accuracy of 5way-1shot and 5way-

5shot experiments of a single model on the CIFAR-100 dataset

by the CSMT method. Compared with the advanced Dual

TriNet method, it improves the performance by 6.16% and

1.1%. The experimental results demonstrate the effectiveness

of the meta-knowledge provided for few-shot tasks during the

meta-training period. The performance is outstanding in the

experiment of 5-way 1-shot, which shows that the model can

rapidly adapt to the learning of few-shot tasks through the

training of situational meta-tasks.

(4) Figure 7 shows the ablation experiment of the CSMT

method. The three cases of providing situational meta-tasks,

selecting random meta-tasks, and providing irrelevant meta-

tasks for the meta-model are compared. It shows the learning

effect of the model on the novel task as the number of

iterations increases in the meta-testing. As can be seen from

Figure 7, it is important to provide effective meta-knowledge

for few-shot tasks. The CSMT method enables the model to

adapt to few-shot tasks more quickly.

Through the construction method of situational meta-task,

useful meta-knowledge is provided for the learning of novel tasks in

the meta-testing. However, different situational meta-tasks provide
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FIGURE 5

The samples of the standard dataset used in the experiments.

FIGURE 6

The samples of candidate meta-task set selected for the few-shot task in the Omniglot dataset.
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TABLE 1 The 5-way 1-shot /5-shot CSMT classification accuracy (%) on

the Omniglot dataset.

Method 5-way
1-shot

5-way
5-shot

MAML (Finn et al., 2017) 98.7± 0.4 99.9± 0.1

TCML (Mishra et al., 2017) 98.96± 0.2 99.75± 0.11

Gaussian PN (Fort, 2017) 99.07± 0.03 99.73± 0.02

Reptile (Nichol et al., 2018) 97.68± 0.04 99.48± 0.06

SNAIL (Nikhil et al., 2018) 99.07± 0.16 99.78± 0.09

R2-D2 (Bertinetto et al., 2019) 98.91± 0.05 99.74± 0.02

CSMT (ours) 99.3± 0.18 99.6± 0.12

The bold values are the best experimental results.

TABLE 2 The 5-way 1-shot /5-shot CSMT classification accuracy (%) on

the CIFAR-100 dataset.

Method 5-way
1-shot

5-way
5-shot

TADAM (Boris et al., 2018) 40.10± 0.40 56.10± 0.40

MetaOptNet (Lee et al., 2019) 41.10± 0.60 55.50± 0.60

ProtoNet (Snell et al., 2017) 41.54± 0.76 57.08± 0.76

DC (Lifchitz et al., 2019) 42.04± 0.17 57.05± 0.16

Matching Nets (Vinyals et al., 2016) 43.88± 0.75 57.05± 0.71

MTL (Sun et al., 2019) 45.10± 1.80 57.60± 0.90

DeepEMD (Zhang et al., 2022) 46.47± 0.78 63.22± 0.71

DEML+Meta-SGD (Zhou et al., 2018) 61.62± 1.01 77.94± 0.74

Dual TriNet (Chen et al., 2019) 63.41± 0.64 78.43± 0.62

CSMT (ours) 69.57± 1.20 79.53± 0.93

The bold values are the best experimental results.

different meta-knowledge for few-shot tasks. In order to make full

use of the meta-knowledge of different situational meta-tasks, a

full-phase meta-learning experiment with multiple initial model

cooperation is carried out in the next section.

4.3 The experiment of the full-phase
meta-learning process based on multiple
initial model cooperation

In the previous subsection, the CSMT method was used to

provide multiple initial models for learning few-shot novel tasks

in the meta-testing. There are differences in the meta-knowledge

provided by different initial models, resulting in different learning

effects on novel tasks. In this subsection, the FMPMIMCmethod is

used to reduce the differences between models and realize the rapid

adaptation and efficient learning of few-shot novel tasks.

First, the CSMT method is used to provide n initial meta-

models (n = 2, 3, 5, 10, and 20) for few-shot novel tasks. Then,

during the meta-training period, each of the n initial meta-models

uses its own situational meta-tasks training. During the meta-

testing period, these n initial meta-models are trained together on

corresponding few-shot tasks by the FMPMIMC method. Finally,

we conduct 5way-1shot and 5way-5shot experiments on CIFAR-

100 andMiniImageNet datasets, respectively. The average results of

the experiments are reported as shown in Tables 3, 4. The following

are the analysis of the experimental results.

As shown in Table 3, the FMPMIMC method achieves

the highest average classification accuracy compared with the

advanced baseline methods in the 5way-1shot and 5way-5shot

experiments of the CIFAR-100 dataset, with an increase of 9.74

and 4.63%. This method has improved by 1.76 and 0.97%

compared to advanced Meta-BNNet methods in experiments

on the MiniImageNet dataset. Meanwhile, compared with the

multiple model cooperation strategy of the FMPMIMC method

and the single model CSMT method, the experimental results

are improved, and the model is more stable, which shows the

stability and effectiveness of the FMPMIMC method. For the

KL divergence term in the FMPMIMC method, we conducted

ablation experiments, and the experimental results in Tables 3,

4 show the effectiveness of the KL divergence term in the loss

function. The experimental results of 5way-1shot on the two

datasets are more prominent, which reflects the feature of the

FMPMIMC method that enables the model to rapidly adapt to

few-shot tasks.

4.4 The parameter setting experiment

In this subsection, we first analyze the relationship between

the number of ensemble models and the effect of few-shot

learning and the influence of interaction frequency of meta-

training and meta-testing in the meta-optimization phase.

Then, the relationship between the number of tasks in the

candidate meta-task set and the few-shot learning effect

is explored.

4.4.1 The experiment on the number of
ensemble model

In the 5way-1shot experiment of the CIFAR-100 dataset,

we set the number of ensemble model to 1, 2, 3, 5, 10,

and 20. Meanwhile, we set the interaction frequency of

meta-training and meta-testing to 100, 200, 500, and 1,000

epochs. In Figure 8, we compared the prediction accuracy

using model cooperation strategy (existing KL divergence)

and the average performance of multiple models(without

KL divergence). The following are the analysis of the experimental

results.

As shown in Figure 8, when a cooperative strategy is adopted

for prediction, the accuracy of prediction improves with the

increase in the number of cooperative models. When the number

of models is 10, the prediction effect is the best, and the

memory of multiple model ensemble is about 26 GB. When the

number of models increases to 20, the performance of multiple

model cooperation prediction is decreased. The performance of

multiple model cooperation prediction is always better than its
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FIGURE 7

A comparison of the training process of ablation experiments for the CSMT method based on CIFAR-100.

TABLE 3 The 5-way 1-shot /5-shot FMPMIMC classification accuracy (%)

on the CIFAR-100 dataset.

Method 5-way
1-shot

5-way
5-shot

TADAM (Boris et al., 2018) 40.10± 0.40 56.10± 0.40

MetaOptNet (Lee et al., 2019) 41.10± 0.60 55.50± 0.60

ProtoNet (Snell et al., 2017) 41.54± 0.76 57.08± 0.76

DC (Lifchitz et al., 2019) 42.04± 0.17 57.05± 0.16

Matching Nets (Vinyals et al., 2016) 43.88± 0.75 57.05± 0.71

MTL (Sun et al., 2019) 45.10± 1.80 57.60± 0.90

DeepEMD (Zhang et al., 2022) 46.47± 0.78 63.22± 0.71

DEML+Meta-SGD (Zhou et al., 2018) 61.62± 1.01 77.94± 0.74

Dual TriNet (Chen et al., 2019) 63.41± 0.64 78.43± 0.62

CSMT 69.57± 1.20 79.53± 0.93

FMPMIMC (without KL divergence) 70.40± 0.65 80.82± 0.70

FMPMIMC (ours) 73.15± 0.53 83.06± 0.60

The bold values are the best experimental results.

average performance, and its fluctuation is small, which reflects

the effectiveness of the model cooperation strategy (existing

KL divergence). Similarly, under the same number of ensemble

models, the influence of different interaction frequencies between

meta-training and meta-testing on model prediction results is

explored. In many cases, the model gives the best prediction

results when the interaction frequency is 500 epochs. The frequent

interaction between meta-training and meta-testing will lead to

overfitting of the model to few-shot data. Too little interaction

frequency will lead to poor generalization of the model for

few-shot tasks.

TABLE 4 The 5-way 1-shot /5-shot FMPMIMC classification accuracy (%)

on MiniImagenet dataset.

Method 5-way
1-shot

5-way
5-shot

Matching Nets (Vinyals et al., 2016) 43.56± 0.84 55.31± 0.73

ProtoNet (Snell et al., 2017) 49.42± 0.78 68.20± 0.66

Dual TriNet (Chen et al., 2019) 58.12± 1.37 76.92± 0.69

DEML+Meta-SGD (Zhou et al., 2018) 58.49± 0.91 71.28± 0.69

TADAM (Boris et al., 2018) 58.50± 0.30 76.70± 0.30

MTL (Sun et al., 2019) 61.20± 1.80 75.50± 0.80

DC (Lifchitz et al., 2019) 62.53± 0.19 78.95± 0.13

MetaOptNet (Lee et al., 2019) 64.09± 0.62 80.00± 0.45

DeepEMD (Zhang et al., 2022) 65.91± 0.82 82.41± 0.56

SIB (Hu et al., 2020) 70.00± 0.40 79.20± 0.40

BD-CSPN (Liu et al., 2020) 70.31± 0.93 81.89± 0.60

EPNet (Rodríguez et al., 2020) 70.74± 0.85 79.20± 0.40

Meta-BNNet (Gao et al., 2023) 71.73± 0.23 82.58± 0.17

CSMT 71.65± 1.05 78.32± 0.93

FMPMIMC (without KL divergence) 72.05± 0.67 81.20± 0.80

FMPMIMC (ours) 73.49± 0.40 83.55± 0.75

The bold values are the best experimental results.

4.4.2 The experiment on the number of tasks in
the candidate meta-task sets

In the 5way-1shot and 5way-5shot experiments of the CIFAR-

100 dataset, we set the number of tasks in the candidate meta-

task set to 2, 5, 10, and 15. In Figure 9, we compare the influence

of different numbers of tasks in the candidate meta-task set on
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FIGURE 8

The classification accuracy of various numbers ensemble models. The solid line gives the classification accuracy after collaborative prediction of

multiple models, and the average performance of a single model is plotted with a dashed line.

FIGURE 9

In the 5way-1shot experiment of the CIFAR-100 dataset, the e�ect of di�erent numbers of tasks in the candidate meta-task set on the model

classification accuracy.

classification accuracy and training process. The following are the

analysis of the experimental results.

As shown in Figure 9, the learning effect of the model is best

when each class in the candidate meta-task sets corresponding to

few-shot tasks contain 5 or 10 base class categories. When the

number of tasks in the candidate meta-task sets is too few or too

many, it will affect the learning effect of the model. When there

are too few candidate meta-tasks, it will cause the model to overfit

on few-shot tasks. When there are too many candidate meta-tasks,

irrelevant meta-knowledge will be included, which will affect the

learning effect of the model on few-shot tasks. Experiments show

that the appropriate selection of meta-tasks from the base class is

beneficial to few-shot learning.

As shown in Figure 10, when the candidate meta-task set

corresponding to each few-shot class is set to five base class

categories, the training effect is the best. The model can

adapt rapidly the few-shot classification tasks, and its average

performance is higher than that of other cases.
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FIGURE 10

The e�ect of di�erent numbers of tasks in the candidate meta-task set on the model training process in the 5way-5shot experiment of the

CIFAR-100 dataset.

4.5 Implementation details

We implement the FMPMIMC method based on PyTorch,

which uses CNNs, Vgg16, and ResNet50 network architectures for

different datasets. The network parameters are optimized by Adam

optimizer. In the experiments conducted on the Omniglot dataset,

setting the learning rate of the meta-learner to 10−2 yields the

best effect, while setting the learning rate of meta-learner to 10−3

in experiments of the other two datasets produces the best effect.

In the ensemble experiment of 20 models, the running memory

exceeded 32 GB. We alleviate the problem of insufficient GPU

running memory by reducing the size of the input batch of the

network. All experiments are conducted on the NVIDIA Tesla

V100 GPU to complete the training procedure.

5 Conclusion

Meta-learning methods based on optimization are widely used

to improve the performance of few-shot learning. In this article, we

provide a new idea for few-shot learning and study new methods

for meta-task construction and multiple initial model cooperation.

Considering the challenges discussed in our previous work, this

article puts forward a full-phase meta-learning method based on

situational meta-task construction for multiple model cooperation,

which achieves few-shot learning and attempts to improve this

problem. Experiments with both 5way-1shot and 5way-5shot tasks

are conducted on several datasets, and the analyses prove the

effectiveness of our proposed CSMT and FMPMIMC methods.

Visualization experiments are more intuitive and vivid, which

verifies that we provide useful meta-knowledge for few-shot tasks.

The parameter setting experiments explore the influence of the

iteration frequency between meta-training and meta-testing in the

meta-optimization phase, the number of ensemble models, and the

number of candidate meta-task set categories on training results.

Our proposed methods are more suitable for providing relevant

meta-knowledge to themodel during themeta-training phase using

novel few-shot tasks, which helps the model to learn and adapt.

In future work, we will extend our methods to provide more

generalized and useful meta-knowledge to the model during the

meta-training period when the novel few-shot tasks are completely

invisible.
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