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Due to the heavy burden on human drivers when remotely controlling 
hexapod robots in complex terrain environments, there is a critical need for 
robot intelligence to assist in generating control commands. Therefore, this 
study proposes a mapping process framework that generates a combination 
of human-robot commands based on decision target values, focusing on the 
task of robot intelligence assisting drivers in generating human-robot command 
combinations. Furthermore, human-robot state constraints are quantified 
as geometric constraints on robot motion and driver fatigue constraints. By 
optimizing and filtering the feasible set of human-robot commands based 
on human-robot state constraints, instruction combinations are formed and 
recommended to the driver in real-time, thereby enhancing the efficiency and 
safety of human-machine coordination. To validate the effectiveness of the 
proposed method, a remote human-robot collaborative driving control system 
based on wearable devices is designed and implemented. Experimental results 
demonstrate that drivers utilizing the human-robot command recommendation 
system exhibit significantly improved robot walking stability and reduced 
collision rates compared to individual driving.
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1 Introduction

Different from conventional terrestrial moving equipment such as wheeled or tracked 
vehicle, legged robot’s track on ground is a series of discrete footprints, and this 
non-continuous support characteristic effectively increases its adaptability to the uneven 
road. Legged robots have fully studied from the structural characteristics and movement 
patterns of legged animals and insects. For example, quadruped robots have drawn inspiration 
from the musculoskeletal structures of animals like gazelles (Li et al., 2022a), cheetahs (Lei 
et al., 2022), and mice (Bing et al., 2023), as well as the movement patterns of quadruped 
animals (Massi et al., 2019). Considering the impressive load-bearing capacity and motion 
stability of arthropod leg structures, hexapod robots have also borrowed from creatures such 
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as cockroaches (Massi et al., 2019), ants (Zhakypov et al., 2019), and 
lobsters (Shim et al., 2016). In recent years, an increasing number of 
scholars have fully recognized that hexapod robots, with 
non-continuous contact points with the ground, can adapt to terrain 
environments with geometric and physical feature variations. They 
exhibit high load-bearing capacity and stability, making them an 
ideal mobile system for outdoor environments.

Unlike conventional robots with simple structures, hexapod 
robots have as many as 18 degrees of freedom in their legs alone. 
This high level of complexity, especially when carrying out tasks 
in complex environments, can impose a heavy burden on the 
operator and significantly reduce the overall motion coordination 
of the robot. Therefore, conventional approaches to legged robot 
self-locomotion intelligence on uneven terrain have yielded 
increasingly complex self-training architectures. Many rely on 
training locomotion controller by reinforcement learning in 
simulation, then transplant the training result to real terrain. 
ETH Zurich’s ANYmal is one of the most promising legged 
systems of this kind (Wangbo et  al., 2019). They deployed 
learning agile and dynamic motor skills for their quadrupedal 
robot system. Other systems use rapid adaptation training at the 
robot motors (Choi et al., 2023), which can be successful in 70% 
of the trials when walking downstairs along a hiking trail (Kumar 
et al., 2021).

However, research on autonomous intelligent systems for robots 
in recent years has shown that the emergence and development of 
artificial intelligence technology has provided many new methods for 
robot intelligence, greatly advancing the process of robot intelligence. 
As for autonomous intelligent systems for robots, it is a highly 
complex control system that integrates various functions such as 
environmental perception, dynamic decision-making and planning, 
behavior control, and execution. Due to the lack of human drivers’ 
ability to handle unexpected and imprecise events, the overall 
intelligence level, flexibility, and adaptability of the system have been 
greatly limited. This is particularly true for legged mobile robots, as 
their walking environments are mostly characterized by unknown 
and rugged complexity, making it difficult for them to rely solely on 
autonomous intelligent systems. In fact, legged mobile robots often 
use a human-in-the-loop collaboration approach to accomplish 
mobility tasks.

Different from early human-robot collaborative methods that 
required real-time switching of control between humans and 
robots (Merat et al., 2008, 2014; Eriksson and Stanton, 2016), the 
current mainstream human-robot collaboration method is 
human-in-the-loop coordination. According to the position of 
the human operator, it can mainly be divided into two categories: 
manned shared control and driver remote participation 
coordination. Among them, the first type, manned shared 
control, has been widely applied in the fields of intelligent 
manufacturing and intelligent driving of vehicles. For example, 
Ma proposed a shared steering controller based on Nash game 
strategy, considering the differences in human-machine goal 
consistency (Ma et al., 2019). They used a non-cooperative MPC 
method to model the interaction path tracking tasks between the 
driver and the automated system, achieving the correctness of 
cooperative path tracking control between the driver and the 
vehicle’s onboard intelligent system. Huang proposed a human-
driver in-loop coordination/shared steering control framework, 

applying state space small gain theory to the driver-vehicle 
coupled system, enabling the onboard intelligent system to work 
in coordination with the driver to achieve ideal lane-keeping 
performance (Huang et al., 2019). In addition, manned shared 
control theory not only enables machine intelligence at the 
operational control layer (Zhou et al., 2022; Xu et al., 2023) but 
also starts to share human work at the motion planning layer of 
robots (Xu et al., 2023).

For the second type of human-in-the-loop collaborative 
method, namely driver remote participation coordination, it is 
mostly used for hexapod robots in underwater (Yoo et al., 2016; 
Picardi et al., 2020), planetary surface (Arm et al., 2023), resource 
extraction, and other hazardous environments. This is because 
the mobile operating environment poses risks that make it 
unsuitable for manned shared control of human-robots 
collaboration (Si et  al., 2022). Li developed a new semi-
autonomous bilateral control dual-master/single-slave tactile 
remote operation system for hexapod robots. Through this 
system, not only was the sharing of environmental haptic 
information between the robot and the operator achieved, but 
also the maneuverability and local autonomy of the robot’s 
remote operation system were improved (Li et  al., 2022b). 
Schwarz developed a control system for the rescue robot Momaro 
that can perform multi-task collaborative processing (Schwarz 
et al., 2017). By coordinating multiple operators to manipulate 
the robot, they completed the supervision and control of the 
entire operation process of the robot. However, the main issue 
faced by driver remote participation coordination at present is 
that the status information between humans and robots cannot 
be  timely exchanged, severely limiting the effectiveness of 
human-robots collaboration.

To address the issue of insufficient flow of status-constrained 
information between humans and machines, particularly the 
challenge of robots being unable to perceive drivers’ dynamically 
adjusting collaborative strategies, researchers utilize wearable 
physiological signal acquisition equipment to detect and assess 
driver states. For example, by wearing muscle electrical signal 
acquisition devices to sense and identify drivers’ motion 
intentions, facilitating interpersonal collaborative control (Zhang 
et  al., 2022; Lyu et  al., 2023). After obtaining driver status 
information, Seet determine the required assistance level based 
on the driver’s workload and performance, increasing the 
involvement of the assistance system when the driver is 
overloaded or distracted, and reducing the assistance level when 
the driver’s workload is moderate to ensure driving stability and 
safety (Seet et al., 2023). Nguyen proposed a human-machine 
collaborative steering control strategy considering driver 
behavior states (Nguyen et al., 2017). They allocate assistance 
weights based on the driver’s behavior state and use fuzzy control 
theory to address speed and assistance weight variability issues, 
reducing human-machine conflicts and enhancing collaborative 
performance between humans and vehicles. Bueno et al. analyzed 
the impact of changes in driver cognitive load on human-machine 
driving authority switching through simulating non-driving 
tasks, indicating that regardless of the cognitive load size, 
engaging in non-driving tasks negatively affects the switching of 
human-machine driving authority due to reduced concentration 
(Bueno et al., 2016). Additionally, in driver remote participation 
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collaborative control, the intelligent system interacts with the 
driver using tactile, visual, and auditory information to stimulate 
driver focus, while Ji experimentally verified that using tactile 
seats effectively enhances driver focus during driving, thereby 
improving safety and smoothness during human-machine driving 
authority switching (Ji et al., 2011). Forster use voice prompts and 
warning sounds to alert drivers about upcoming authority 
switches (Forster and Naujoks, 2017). These methods aim to 
enhance mutual perception between humans and machines, 
utilizing perceptual information to promote and assist the 
emerging trend of remote collaborative control between drivers 
and robots more effectively.

Based on the above discussion, in this paper, we consider how 
to quantitatively analyze the state constraints between humans 
and robots in remote control mode, assisting drivers in forming 
reasonable human-robot collaborative control commands. 
Especially, we  place great emphasis on the geometric motion 
constraints of hexapod robots in irregular terrains and the fatigue 
state constraints of drivers. Using these two types of human-
robot constraint conditions, we  filter the feasible set of all 
human-robot collaborative control command solutions. The 
selected human-robot commands combinations by the driver are 
then chosen and issued to the robot, greatly reducing the driver’s 
burden and enhancing the safety and efficiency of remote 
collaboration The remainder of this paper is divided into the 
following sections: Section 2 proposes the mapping process 
framework of human-robot decision target values to command 
combinations. Section 3 quantifies the geometric motion 
constraints of hexapod robots in irregular terrains and the fatigue 
state constraints of drivers. Experimental investigations are 
conducted in Section 4.

2 Method for generating command 
combinations from human-robot 
decision target values

2.1 Framework of overall process

For robots performing tasks in unstructured terrain environments, 
the complexity of behavioral decision-making and control by remote 
operators is a crucial issue that cannot be ignored. In particular, unlike 
structurally simple conventional wheeled robots, hexapod robots have 
as many as 18 degrees of freedom. If controlled one by one, it not only 
imposes a heavy driving burden on the driver but also significantly 
reduces the overall motion coordination of the robot. During the 
phase of issuing commands with high control workload, it is 
particularly necessary to utilize the intelligent system carried by the 
robot to assist in rapid and efficient command issuance, thereby 
reducing the workload of the driver.

Our team recorded and summarized the real-time decision-
making and control processes of highly experienced hexapod 
robot drivers through a large number of experiments. After 
summarizing, it was found that both drivers and robot decision 
intelligence tend to focus on the top-level decision-making of 
hexapod robot motion behavior, specifically targeting the next 
moment’s target walking distance, walking speed, and walking 
direction of the hexapod robot, forming decision goal values 

mutually recognized by humans and machines. Furthermore, the 
driver or robot intelligence system then decomposes and maps 
the decision goal values into corresponding specific control 
commands. In this process, for the driver, instructions are 
formulated in the brain based on the observed environment and 
robot state information, as well as driving experience, and 
implemented through operating external hardware devices; for 
the robot, theoretical formulas are established based on the 
robot’s kinematic characteristics to autonomously calculate 
positions and speeds at the bottom execution layer and 
generate instructions.

Specifically, as shown in Figure 1, this article outlines the main 
steps in the process from behavior decision goal values to 
recommended selectable human-robot command combinations as 
follows: (1) confirming and inputting behavior decision goal values; 
(2) mapping and calculating all human-robot commands from the 
decision goal values to form a feasible set of human-robot commands, 
including all four types of command combinations under human-
robot collaborative modes (driver control, human primary and 

FIGURE 1

Mapping process framework of generating command combinations.
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FIGURE 2

Hexapod robot physical prototype.

machine auxiliary, machine primary and human auxiliary, and robot 
autonomous mode); (3) filtering the command combinations in the 
feasible set based on command constraints, which include geometric 
motion constraints of the robot and driver fatigue constraints; (4) after 
filtering based on constraints, recommending human-robot 
commands are output to assist the driver in control.

For example, When a robot is moving in the slop terrain, a 
command combination generally includes the selection command for 
the robot’s gait type, commands for gait period, step stride, step stroke, 
and body posture adjustment. Moreover, the commands included in 
the combination correspond to specific recommended values and the 
authority for human-robot modifications. Therefore, the primary 
function of command combinations is to provide the human operator 
with the types, values, and permissions of recommended commands. 
Additionally, driver can make real-time modifications to the 
command online before the robot carries them out.

2.2 Hexapod robot motion characteristics

Unlike drivers who rely on experience to generate control 
commands, machine intelligence needs to establish a kinematic model 
based on robot motion characteristics to generate control commands. 
The physical prototype of the hexapod mobile robot is shown in 
Figure 2, which belongs to a type of insect-like electrically driven 
multi-legged robot. The robot mainly consists of a body and six legs. 
The body is hexagonal in shape, with the six legs evenly distributed on 
each side. Each leg has three degrees of freedom, composed of the 
coxa segment, thigh segment, and shank segment. The coxa segment 
is connected to the body via a base joint, the thigh segment is 
connected to the coxa segment by a hip joint, and the shank segment 
is connected to the thigh segment by knee joint. The robot’s foot is 
rigidly connected to the end of the shank segment. Each of the 
mentioned rotating joints is driven by a motor.

ΣG X Y Z− 1 1 1
, ΣB X Y Z− 2 2 2

, and ΣL X Y Z− 3 3 3
 represent the global, 

body and single-leg coordinate systems, respectively. The base joint 
angle is denoted by α , the hip joint angle is denoted by β , and the 
ankle joint angle is denoted by γ . The length of the coxa segment is 
represented by Lc The length of the thigh segment is represented by Lt
, and the length of the is represented by Ls. The vertical height from 

the body’s centroid to the ground is denoted by H. The forward 
kinematics and inverse kinematics models of a single leg of the 
hexapod mobile robot can be determined by Formula (1) and 
Formula (2):
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(2)

3 Quantitative methods for 
human-robot state constraints

3.1 Geometric motion constraints of the 
robot

In order to ensure the safety of hexapod robots walking in 
complex terrain environments, it is necessary to impose specific 
constraints on the generated commands for both the robot and 
the driver based on terrain features. This article establishes 
geometric constraint models between terrain and joint space for 
sloped terrain, obstacle terrain, and ditch terrain, thereby 
ensuring that the robot’s joint motion space remains within a safe 
range. This includes constraint equations for joint motion based 
on terrain feature values, resulting in target step stride, step 
stroke, pitch, and roll angle constraints for the robot’s body 
pose changes.

Specifically, considering that terrain geometry features can 
greatly impact the robot’s joint motion space, the control process of 
the robot requires real-time monitoring of the joint’s safe working 
space to prevent issues such as joint position exceeding limits, 
instability and overturning during movement, and body collisions. 
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In this section, we  first utilize the robot’s body perception 
characteristics to establish terrain features, such as estimating the 
slope of sloped terrain, dimensions of obstacles in obstacle terrain, 
and the width of ditches in ditch terrain. Subsequently, based on 
constraints for robot body collision safety, joint limit constraints, and 
walking safety constraints, a mathematical model for the joint 
constraints of the hexapod robot is established. Finally, the constraints 
for the target commands for the robot’s body pose changes are 
obtained based on the constraints imposed by the terrain on the 
joints. This achieves the necessary rationalization of the feasible 
command set for human-robot instructions, narrowing the range of 
recommended commands while improving their rationality. This 
enhancement ensures that both the driver and the robot intelligence 
effectively improve the efficiency and safety of controlling the robot’s 
movement using the feasible command set.

3.1.1 Geometric constraint model for sloped 
terrain

When a hexapod robot walks on sloped terrain, it needs to 
adjust the pitch and roll angles of its body as well as the step 
length in real time to adapt to the changing terrain based on the 
estimated slope of the ground and joint constraints. Specifically, 
when the robot is traversing sloped terrain, constraints need to 
be established based on the joint’s extreme positions or potential 
interference between the robot’s body and the geometric terrain, 
in order to obtain constraints for the numerical values of the 
hexapod robot’s motion commands.

Specifically, during the uphill process, in order to ensure the 
stability margin of the hexapod robot, a uniformly distributed 
standing method is adopted, as shown in Figure 3. When the terrain 
slope is steep, the knee joints of the front and rear legs will reach their 
limit positions. Therefore, by establishing geometric constraints on the 
height from the body to the slope surface, the geometric relationship 
between the terrain and the robot’s body can be  mapped. The 
geometric relationships between the joints and the ground during the 
transition phase from flat ground to a slope for the hexapod robot are 
shown in Figure 3. The height of the front leg base joint position from 
the slope surface is determined by the knee joint’s limit position and 
the walking step length. The defined limit height of the base joint from 
the slope surface is denoted as hlim , with the vertical distance being 
the length of point AB. According to forward kinematic analysis, the 
limit position γ lim of the knee joint will mainly affect the value of hlim

. Based on the limit height of hlim , the limit value of the knee joint 
position can be determined by the Formula (3):
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 λ γ λ θmax limarg max= ( )( )h , ,  (4)

Since the limit position of the knee joint depends on the robot’s 
leg mechanical structure and joint motor limits, it is a fixed value. 
According to the Formula (3), it can be seen that the limit height of 
the base joint from the slope surface, the robot’s real-time step stride, 
and the slope angle will determine the real-time position of the knee 
joint. Considering that the limit height of the base joint from the 
slope surface is a predetermined value for safety reasons, and the 
slope angle is also an estimated determined value based on the 
robot’s body perception. Therefore, the real-time step length is an 
important factor determining the knee joint position in real time. To 
ensure that the knee joint’s limit position does not exceed its 
maximum set value, the real-time step length must not exceed a 
maximum limit value, as shown in Formula (4). By establishing the 
maximum real-time step length for a hexapod robot walking uphill, 
it can set practical constraints on step length. This will improve the 
effectiveness of instruction sets used by both the driver and the robot 
for controlling robot motion, enhancing human-robot interaction 
during driving.

3.1.2 Geometric constraint model for obstacle 
terrain

Obstacle terrain is the most common non-flat terrain encountered 
by hexapod robots in complex outdoor environments. According to 
the geometric dimensions of the obstacles, obstacle terrain can 
be divided into two categories: obstacles that can be crossed (obstacle 
width is less than the leg support width, and obstacle height is lower 
than the robot’s standing height), as shown in Figure 4; obstacles that 
can be climbed (slope greater than the leg support width, and obstacle 
height is lower than the robot’s standing height), as shown in Figure 5. 
For obstacles that can be crossed, due to the long lengths of the robot’s 
thigh and shank joints, the robot’s standing height can be raised above 
the height of the obstacle terrain, and a normal walking gait can 
be used to pass through the obstacle terrain smoothly. For obstacles 
that can be crossed, when the robot’s standing height is greater than 
the height of the obstacle, the leg posture can be adjusted to achieve a 
new body standing height. The constraints that need to be satisfied in 
this state as shown in Formula (5).
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FIGURE 3

Robot in slope terrain.
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Where Lcrepresents the length of the hexapod robot’s leg base joint; 
Lt represents the length of the hexapod robot’s leg tibia joint; Ls 
represents the length of the hexapod robot’s leg femur joint; LB  
represents the width of the hexapod robot’s body, w1 represents the width 
of a local obstacle in the terrain environment, hrepresents the height of 
a local obstacle in the terrain environment, andhs represents the safety 
distance between the hexapod robot’s leg base joint and the obstacle.

For obstacles in a climbable form, where the obstacle width is greater 
than the leg’s support width and the body height is lower than the 
maximum standing height, the legs can step on the obstacle and perform 
climbing actions. By setting a limit value hs for the distance between the 
leg base and the obstacle surface, we can determine the limit value ηrobot 
for the body’s pitch angle and establish a geometric constraint model 
between joint space and obstacle terrain. When the robot’s front legs 
land on the obstacle surface, the joint motion space of the front legs is 
limited, requiring adjustment of the body’s pitch angle to adapt to the 
terrain changes. The constraints that need to be satisfied in this state as 
shown in Formula (6):
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(6)

Therefore, for climbable obstacles, the motion instructions of the 
hexapod robot adhere to the above constraints, effectively achieving 

reasonable and effective constraints on the pitch angle for both the driver 
and the robot intelligence when utilizing feasible instruction sets for robot 
motion control. This enhances the effectiveness of the feasible instruction 
set in assisting human-machine interaction during driving and control.

3.1.3 Geometric constraint model for ditch 
terrain

Based on the different geometric dimensions of the ditch terrain, 
the ditch terrain can be divided into two categories: ditches that can 
be crossed in a single step where the width of the channel is less than 
the robot’s single support width; and ridges that can be crossed in 
multiple steps where the width of the channel is greater than the 
robot’s single support width. For ridges that can be crossed in a single 
step, where the width of the channel is less than the robot’s single 
support width, the robot can increase its step length to autonomously 
cross the channel, as shown in Figure 6. The constraints that need to 
be satisfied in this state as shown in Formula (7):

 λmin > w (7)

Where λmin represents the real-time minimum step length of the 
hexapod robot, and w represents the width of the channel.

For ditches that can be crossed in multiple steps, where the width 
of the channel is greater than the robot’s single support width, it is not 
possible to cross the ridge with a single adjustment. However, the robot 
can achieve the crossing by making multiple adjustments with its legs. 
In this case, the supporting legs need to take larger steps, which may 
lead to situations where the joint reaches its limit position, as shown in 
Figure 7. The constraints that need to be satisfied in this state as shown 
in Formula (8):
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Where γ lim represents the knee joint limit value, λD represents the 
real-time dynamic step length of the hexapod robot, and w represents 
the width of the channel.

Through the above equation, the robot’s real-time dynamic 
maximum step stride can be calculated. When a single leg reaches its 
maximum step stride and cannot cross the channel, it is necessary to 

FIGURE 5

Obstacle that can be climbed.

FIGURE 6

Ditch that can be crossed in a single step.

FIGURE 4

Obstacle that can be crossed.
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readjust the positions of each leg and the body, and then retry the 
crossing. Based on the geometric constraints model of the channel 
terrain mentioned above, autonomous step adjustment for the robot 
to cross the channel within the range of leg joint limit positions is 
achieved, enabling the robot to perform the crossing action. Moreover, 
when encountering obstacles that cannot be overcome or when the 
landing area is complex and requires finding a suitable landing point, 
external visual perception of the robot can be  used to model the 
terrain and detect landing points. By modeling the terrain using 
external visual sensors and equivalent the robot’s envelope range to a 
virtual body model, obstacle detection and avoidance are carried out 
based on artificial potential field methods. Furthermore, analyzing the 
ruggedness of the terrain, terrain height, and the area of safe landing 
zones based on visual information, an evaluation function for the 
terrain is established to select landing points, avoiding instability of 
the robot caused by walking on special terrain.

Therefore, for ditches that can be crossed in multiple steps, the 
motion command s for hexapod robots should prioritize the 
constraints mentioned above. This will effectively realize the 
collaboration between the driver and the machine intelligence when 
using a feasible command set for robot motion control, providing 
reasonable and effective constraints on dynamic step length. It 
enhances the effectiveness of the feasible command set in assisting 
human-machine collaboration in driving and control tasks.

3.2 Driver fatigue constraint

Due to its inherent stability under high load and its ability to 
maneuver in extreme environments, hexapod robots are more likely 
to perform tasks in complex environments compared to other types 
of mobile robots. In order to ensure the passability and safety of 
hexapod robots in complex and unknown environments, remote 
operation and control of the robot’s motion behavior are often carried 
out through human-robot collaboration. However, the redundancy of 
the robot’s control degrees of freedom and the complexity of 
environmental tasks will impose a significant burden on the remote 
operators. This not only significantly affects the comfort of the 
operators but also has a detrimental impact on the safety and efficiency 
of the hexapod robot’s movement.

Therefore, it is necessary to assess the driver’s fatigue status in 
real-time to determine the optimal human-robot collaborative control 
mode, which can then be used to optimize the combined form of 

control commands for humans and robots. For example, when the 
driver is not fatigued or only mildly fatigued, the control system can 
switch to manual control mode, allowing the driver to participate in 
the position control of the hexapod robot’s single leg, foot end, and 
joints. When the driver is moderately fatigued, the control system can 
switch to human primary and machine auxiliary mode, enabling the 
driver to participate in the control of the hexapod robot’s body posture 
and gait parameters while disabling manual control mode. In cases of 
severe fatigue, the control system can switch to machine primary and 
human auxiliary mode, where the driver is only required to monitor 
and intervene in emergency situations concerning the hexapod robot.

As shown in Figure 8, for the quantitative analysis of driver arm 
fatigue, this paper designs a framework for quantifying upper limb 
fatigue. The main process includes: real-time collection of the driver’s 
raw electromyography signals from the upper limbs using a 
myoelectric armband; preprocessing the raw electromyography 
signals of the upper limbs using data processing methods to extract 
feature signals; training a BP neural network using the feature signals 
and the driver’s subjective fatigue values as training samples, thereby 
ultimately establishing and utilizing a neural network model for real-
time assessment of driver arm fatigue.

Specifically, in the process of collecting the driver’s raw 
electromyography signals from the upper limbs, considering that 
electromyography signals are the electrophysiological signals generated 
when muscle tissue contracts, this paper collects 8-channel 
electromyography signal data using the gForcePro+ myoelectric 
acquisition armband. In the preprocessing stage of the raw signals, to 
improve the accuracy and anti-interference ability of the data, the 
sampling frequency of the signals is set to 1,000 Hz, and methods such 
as linear noise elimination, low-pass filtering, and moving average 
filtering are used to preprocess the original sEMG signals. This stage 
involves roughly five sub-processes: first, linear noise elimination for 
DC; second, square rectification of the obtained signals; third, further 
filtering of the rectified signals using filters; fourth, normalization of 
the processed signals; and fifth, moving average envelope processing of 

FIGURE 7

Ditch that can be crossed in multiple steps.
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FIGURE 8

The remote human-machine collaborative driving control system.
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the normalized signals using a 50-sample moving window. The main 
formulas and their meanings involved in each process are as follows.

Sub-process 1: Denoising of the original signal by subtracting the 
mean amplitude of the signal from the signal amplitude within the 
window, as shown in Formula (9):
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Where S i1 ( ) represents the sEMG value with linear noise 
removed; S i0 ( ) represents the value of the original sEMG signal; N  
represents the sampling window size; i represents the instantaneous 
moment of processing the sEMG signal.

Sub-process 2: Full-wave rectification of the signal obtained from 
process 1, as shown in the formula, as shown in Formula (10):
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Where S i2 ( ) represents the amplitude of the sEMG signal after 
full-wave rectification, ensuring that the amplitude of the abs signal 
is entirely non-negative; N represents the sampling window size; i 
represents the instantaneous moment of processing the 
sEMG signal.

Sub-process 3: Using a 4th-order Butterworth bandpass filter to limit 
the frequency to the range of 30-100 Hz, the signal is processed to remove 
high-frequency noise through filtering. This mainly involves processing 
the amplitude of the denoised signal, as shown in the Formula (11):

 S i filter S i fcut3 2( ) = ( )( ),  (11)

Sub-process 4: Normalizing the sEMG signal obtained from 
process 3, as shown in the Formula (12):

 
S i S i MVC S i

i

N
4

0

1

3 31( ) = ( ) ( )( )
=

−

∑ / ,

 
(12)

Where S i4 ( ) represents the signal amplitude, and MVC represents 
the maximum voluntary contraction strength of the muscle.

Sub-process 5: Smoothing the signal after normalization, as shown 
in the Formula (13):
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Where S i5 ( ) represents the amplitude of the signal after 
processing, and t ti i− −1 represents the time difference value.

The sEMG signal obtained through the above five processing steps 
can directly reflect the changing characteristics of the sEMG signal, 
including the linear variation pattern of the sEMG signal amplitude.

After the original electromyographic (EMG) signals are 
collected, it is necessary to preprocess the EMG signals and extract 
features based on the processed signals. The purpose is to extract 

components of the EMG signals that can reflect the degree of fatigue. 
Different degrees of fatigue have their own characteristics, and the 
more representative the feature selection, the more accurate the 
pattern recognition. Based on the common time-domain and 
frequency-domain features of EMG signals and their clinical 
significance, this study selects four main features—mean power 
frequency (MPF), median frequency (MF), root mean square (RMS), 
and integrated electromyogram (IEMG)—to reflect the muscle’s 
fatigue state.

The time-domain features of muscle fatigue can be  used to 
describe the amplitude changes in electromyographic (EMG) signals 
during the process of muscle fatigue. Calculating the integrated 
electromyogram (IEMG) and root mean square (RMS) can visually 
reflect this change. Let y t( ) represent the preprocessed original EMG 
signal, the calculation formulas are shown in Formula (14) and 
Formula (15):
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The frequency-domain features of electromyographic (EMG) 
signals are obtained by transforming their time-domain signals into 
frequency-domain signals using Fourier transform, and then 
analyzing the signal’s power spectrum or frequency spectrum. The 
selected features in this study are median frequency (MF) and mean 
power frequency (MPF). Let P f( )represent the power spectral 
density and d f( )represent the signal’s frequency resolution, the 
calculation formulas are as shown in Formula (16) and 
Formula (17):
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The similarity between the two lies in that the types of sEMG 
features covered are all included in the four features listed in this 
paper. The difference lies in the fact that general sports movements 
have larger amplitude and intensity but are relatively singular. This 
results in sports-related sEMG features showing large numerical 
values but being singular in type, usually consisting of 1–2 of the 
four features. However, during the driving operation of a hexapod 
robot driver, although the amplitude of movements is not large, the 
driver’s movements are more diverse and of longer duration, 
generally encompassing all four listed features. It is necessary to 
comprehensively analyze all four features to determine the driver’s 
fatigue state.
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In order to establish and utilize a neural network model for 
real-time assessment of driver upper limb fatigue, this study 
recorded the electromyographic (EMG) signal data of several 
hexapod robot drivers while operating the hexapod robot, along 
with their subjective perception data of upper limb fatigue. A BP 
neural network was used to correlate the EMG feature data with 
the upper limb fatigue data. The subjective perception data of 
upper limb fatigue come from the drivers’ self-rated mental 
fatigue scores, where higher scores indicate higher levels of 
current mental fatigue. The feature data of the EMG signals, 
which include various information such as EMG integral value, 
median frequency, root mean square value, change when the 
muscles are fatigued, were used as inputs. Participants’ 
comprehensive fatigue values were provided as outputs for model 
training. The training model includes input layer, output layer, 
and intermediate layers. A total of 500 sets of data were collected 
from different participants, with 400 sets chosen for training and 
100 sets for testing. The training set includes EMG feature data 
and drivers’ subjective fatigue levels. An intermediate layer was 
set up, and during the training process, the connection weights 
and thresholds of each layer were calculated to obtain the 
network model for predicting driver arm fatigue (DAF).

Since drivers may still persist in operating the vehicle with mental 
strength when experiencing muscular fatigue, sEMG features may not 
reflect the driver’s mental fatigue at this time. Considering that the 
driver’s mental fatigue can be reflected by operational error rate and 
trajectory deviation, this paper utilizes the Driver Manipulation Error 
Rate (DMER) and Trajectory Offset Rate (TOR) to assist sEMG 
features in determining the driver’s fatigue state together.

Specifically, the Driver Manipulation Error Rate (DMER) is used 
to describe the rate of inappropriate manipulation by the driver when 
issuing control commands to the hexapod robot. Let I k0

( ) represent the 
set of instructions given by the driver in a non-fatigued driving state 
for a particular terrain, and let Ii

k( ) represent the control instructions 
given in different fatigue states on the same terrain, where k = 1, 2… 
N and i = 1, 2… n. N represents the number of instruction sets, and n 
represents the number of different fatigue states. The MER can 
be expressed as Formula (18):
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Specifically, the Trajectory Offset (TO) can be described as the 
deviation of the actual path traveled by the hexapod robot from the 
average trajectory while being driven by the driver. Assuming the 
sampling interval for the distance traveled by the hexapod robot is T, 
the average speed of the hexapod robot within this interval is v, and 
the number of samples is N, with the actual position traveled denoted 
as S, the trajectory offset TO can be expressed as Formula (19):
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4 Experiment

In order to enable drivers to remotely control hexapod robots in a 
human-machine collaborative manner and validate the effectiveness of 
the proposed method, this study has built a remote human-machine 
collaborative driving control system based on wearable VR glasses, 
EMG armbands, and other human-machine interaction devices. Using 
wireless network signals, drivers can control the robot from an operating 
platform 20 meters away. Specifically, considering that the perception 
and feedback loops between humans and machines constrain the 
efficiency of human-machine collaborative decision-making, to 
effectively enhance the depth of human-machine integration, this study 
processes robot visual camera data and transmits it to virtual reality 
devices, allowing drivers to experience immersive driving from a first-
person perspective. Additionally, drivers wear EMG armbands on both 
arms to monitor upper limb fatigue in real time. The system has 
successfully integrated various control hardware such as multifunctional 
joysticks, throttle levers, touchscreens, etc., greatly enhancing the 
driver’s sense of presence during remote driving control and enabling 
better collaborative decision-making tasks with the robot. The remote 
human-machine collaborative driving control system described above 
is shown in the Figure 9.

Based on the remote human-machine collaborative driving 
control system described above, this study conducted physical 
experiments on integrated terrains with obstacles, gullies, and slopes. 
As shown in Figure 10, the speed of the robot’s center of mass when 
driven alone through integrated terrains is recorded (green dashed 
line). In addition, with the assistance of the auxiliary system proposed 
in this study, the driver navigates through integrated terrains and 
records the speed of the robot’s center of mass (blue dashed line). The 
auxiliary system can generate a feasible set of instructions in real-time 
during the robot’s travel based on decision-making target values, and, 
after filtering through constraint conditions, provide real-time 
recommended human-machine instructions to improve the efficiency 
of driver instruction issuance. The red solid line in the figure 
represents the maximum limit value of the center of mass speed 
prompted by the auxiliary system. It can be observed that from 0 to 
18  s, the robot walks on flat terrain, during which the maximum 
prompted speed limit for the center of mass by the auxiliary system is 
0.25 m/s. From 18–60s, the robot moves through obstacle terrain, 
during which the prompted maximum speed limit for the center of 
mass by the auxiliary system decreases to 0.15 m/s. From 60 to 78 s, 
the robot once again walks on flat terrain, during which the prompted 
maximum speed limit for the center of mass by the auxiliary system 
returns to 0.25 m/s. From 78 to 106 s, the robot walks through gully 
terrain, during which the prompted maximum speed limit for the 
center of mass by the auxiliary system decreases to 0.09 m/s. From 106 
to 122 s, the robot walks on flat terrain, during which the prompted 
maximum speed limit for the center of mass by the auxiliary system 
is 0.25 m/s. From 122 to 170  s, the robot walks on uphill terrain, 
during which the prompted maximum speed limit for the center of 
mass by the auxiliary system decreases to 0.09 m/s. From 170 to 185 s, 
the robot walks on flat terrain, during which the prompted maximum 
speed limit for the center of mass by the auxiliary system returns to 
0.25 m/s. In summary, when the driver navigates alone through 
integrated terrains, there is a slight lag in speed control during 
transitional phases of terrain changes. However, after adopting the 
auxiliary system for maximum speed prompts, the driver can promptly 
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adjust the speed before the terrain changes and, knowing the 
maximum speed limit, can also raise the speed in real-time in a 
reasonable manner, ensuring travel safety and efficiency.

As shown in Figure 11, the robot’s stride when driven alone through 
integrated terrains is recorded (green dashed line). Additionally, with the 
assistance of the auxiliary system proposed in this study, the driver 
navigates through integrated terrains and records the robot’s stride (blue 
dashed line). The red solid line represents the maximum and minimum 
limit values prompted by the auxiliary system. It can be observed that 
from 18–60s, the robot walks on obstacle terrain, during which the 
maximum stride limit prompted by the auxiliary system is 0.1 m and the 
minimum limit is 0.5 m; from 78 to 106 s, the robot walks on gully terrain, 
during which the maximum stride limit prompted by the auxiliary system 
is 0.14 m and the minimum limit is 0.1 m; from 122 to 170 s, the robot 
walks on uphill terrain, during which the maximum stride limit prompted 
by the auxiliary system is 0.09 m. In summary, when the driver navigates 
alone through integrated terrains, there is a slight lag in controlling the 

robot’s stride during transitional phases of terrain changes. However, after 
using the auxiliary system for maximum stride prompts, the driver can 
promptly adjust the stride before the terrain changes and, knowing the 
real-time limits of the stride, can increase it in a reasonable manner in real 
time, further ensuring travel safety and efficiency.

As shown in Figure 12, the robot’s step height when driven 
alone through integrated terrains is recorded (green dotted line). 
Additionally, with the assistance of the auxiliary system proposed 
in this study, the driver navigates through integrated terrains and 
records the robot’s step height (blue dashed line). The red solid line 
represents the maximum and minimum limit values prompted by 
the auxiliary system. It can be observed that from 18 to 60 s, the 
robot walks on obstacle terrain, during which the minimum step 
height limit prompted by the auxiliary system is 0.05 m; from 78 to 
106 s, the robot walks on gully terrain, during which the minimum 
step height limit prompted by the auxiliary system is 0.01 m; from 
122 to 170 s, the robot walks on uphill terrain, during which the 

FIGURE 10

The velocity of robot in terrain.

FIGURE 11

The leg stride of robot in terrain.

FIGURE 9

The remote human-machine collaborative driving control system.
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maximum step height limit prompted by the auxiliary system is 
0.06 m. In conclusion, compared to driving alone through 
integrated terrains, using the auxiliary system for maximum step 
height prompts allows for real-time reasonable reduction in step 
height based on the known real-time limit values, further ensuring 
travel safety and efficiency.

To further compare the impact of driving alone versus using a 
driving assistance system on the performance of the hexapod robot, 
this study utilized two driving evaluation indicators: static stability 
margin and collision coefficient. The stability was quantitatively 
evaluated during the robot’s travel process using established static 
stability margin evaluation standards, while the collision count was 
determined and defined by detecting the pausing of swinging legs. As 
shown in Figure 13, it can be observed that when the driver utilizes 
the driving assistance system to remotely control the robot, the 
average stability is higher than the average stability when driving 
alone. This is particularly evident when traversing obstacle and uphill 
terrains, where the robot’s stability is significantly higher than when 
driven alone, as depicted in Figure 14. When the driver utilizes the 

driving assistance system for remote control, the collision count 
between the robot and the environment is noticeably lower than when 
driving alone, especially when traversing obstacle and gully terrains. 
Further analysis indicates that, compared to human driving alone, a 
hexapod driver with the assistance of auxiliary systems improves robot 
stability by 12.5% and reduces the number of collisions between the 
robot and the surrounding environment by 50%.

Based on the analysis of the experimental results, it can be seen 
that the assistance of auxiliary systems provides command 
combinations, shifting the driver’s task from making decisions to 
making choices, effectively reducing the driver’s decision-making 
burden. At the same time, by providing the extreme values of each 
command, not only can it enhance the safety of robot locomotion, but 
it also to some extent improves the robot’s moving speed and traffic 
efficiency in complex environments.

5 Conclusion

The most important achievement in this paper is the development 
of a novel neural human-robot command combination method for 
improving the hexapod robot’s walking performance and reducing the 
burden on drivers’ control. This article first proposes a mapping 
process that generates human-robot command combinations from 
decision target values, focusing the robot intelligence on assisting 
drivers by generating human-robot instruction combinations. In 
addition, this article quantifies robot motion geometric constraints 
and driver fatigue constraints. By using constraints to optimize and 
filter the feasible set of human-robot commands, a small number of 
human-machine command combinations are formed. A human-robot 
command assistance recommendation system is developed to provide 
real-time recommendations of human-robot command combinations 
to drivers. The results of the designed experimental platform 
demonstrate the validity of the human-robot command assistance 
recommendation system. In the future, considering the situation 
where both humans and machines have operational authority over the 
same command combination, we will continue to research human-
robot command fusion based on the game theory.
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The collision numbers of robot in terrain.
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