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In Human-Robot Interaction (HRI), accurate 3D hand pose and mesh estimation

hold critical importance. However, inferring reasonable and accurate poses in

severe self-occlusion and high self-similarity remains an inherent challenge.

In order to alleviate the ambiguity caused by invisible and similar joints

during HRI, we propose a new Topology-aware Transformer network named

HandGCNFormer with depth image as input, incorporating prior knowledge

of hand kinematic topology into the network while modeling long-range

contextual information. Specifically, we propose a novel Graphformer decoder

with an additional Node-o�set Graph Convolutional layer (No�GConv). The

Graphformer decoder optimizes the synergy between the Transformer and GCN,

capturing long-range dependencies and local topological connections between

joints. On top of that, we replace the standard MLP prediction head with a

novel Topology-aware head to better exploit local topological constraints for

more reasonable and accurate poses. Our method achieves state-of-the-art

3D hand pose estimation performance on four challenging datasets, including

Hands2017, NYU, ICVL, and MSRA. To further demonstrate the e�ectiveness

and scalability of our proposed Graphformer Decoder and Topology aware

head, we extend our framework to HandGCNFormer-Mesh for the 3D hand

mesh estimation task. The extended framework e�ciently integrates a shape

regressor with the original Graphformer Decoder and Topology aware head,

producing Mano parameters. The results on the HO-3D dataset, which contains

various and challenging occlusions, show that our HandGCNFormer-Mesh

achieves competitive results compared to previous state-of-the-art 3D hand

mesh estimation methods.

KEYWORDS

3D hand pose estimation, HandGCNFormer, 3D hand mesh estimation, Graphformer,

Transformer, GCN

1 Introduction

Robots can complete many repetitive and complex tasks for humans, and the

development of computer vision technology enables robots to perform hand pose and

mesh estimation. Accurate and robust 3D hand pose and mesh estimation is crucial in

various Human-Robot Interaction (HRI) applications, including augmented reality, virtual

reality, and third-person imitation learning.
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FIGURE 1

The illustration of the HandGCNFormer. (A, B) Respectively indicate

qualitative comparison between AWR (left) and our

HandGCNFormer (right) under self-occlusion and self-similarity.

Red pose is the ground truth. Green pose represents predicted

result. (C) Indicates the complementary feature representation of

Transformer and GCN in HandGCNFormer.

Hand pose estimation seeks to ascertain the spatial coordinates

of hand joints from either a single depth image or an RGB

image. Depth-based methods have made impressive progress as

commodity depth cameras become cheaper and more accurate

(Guo et al., 2017b; Ren et al., 2019, 2021a; Xiong et al., 2019; Chen

et al., 2020; Fang et al., 2020; Huang et al., 2020a,c). However, in

situations where there is significant self-occlusion and high self-

similarity in hand poses, it remains highly challenging, as illustrated

in Figures 1A, B.

With the deep understanding of the scene and prior solid

knowledge of hand kinematic structure, humans can accurately

predict hand poses in complex scenarios, mitigating ambiguity

caused by invisible and similar joints. Despite CNN-based hand

pose estimation approaches (Ren et al., 2019; Xiong et al., 2019;

Chen et al., 2020; Huang et al., 2020c) dominating the field,

their inability to model long-range dependencies stems from

operating on fixed-sized windows. To overcome this limitation,

recent approaches (Huang et al., 2020a,b) leverage superior global

modeling capability of the Transformer model to achieve better

performance. However, they only implicitly extract the long-

range dependencies behind the similarity of joint features while

neglecting the natural kinematic constraints of hand topology.

The kinematic topology of the hand reveals the intrinsic

connections between its joints. Previous studies (Zhao et al., 2019;

Bai et al., 2021; Tunga et al., 2021) have demonstrated the capability

of graph convolutional networks (GCNs) to represent such

topological relationships. Recently, the pose-guided hierarchical

graph convolution (PHG) method (Ren et al., 2021a) attempts to

model the long-range dependencies between hand components by

stacking multiple GCN layers. However, the cascaded GCNs can

lead to error accumulation in long-term graph elements andworsen

the problem of over-smoothing.

As depicted in Figure 1C, we believe that the global attention

of the Transformer and the local topological awareness of GCNs

construct feature representations that effectively combine and

excel in modeling both short-range and long-range dependencies.

To maximize the synergy between Transformer and GCN, we

propose a novel Topological-aware Transformer network named

HandGCNFormer. It integrates non-autoregressive Transformers

for modeling contextual information from depth images and

long-range dependencies between joints. Additionally, it employs

Graph Convolutional Networks (GCNs) to naturally incorporate

the prior knowledge of hand topology into our network

and explicitly learn the relative relationships between locally

connected joints.

Specifically, we propose aGraphformer decoder. Each decoder

block contains a novel node-offset graph convolutional layer

(NoffGConv) in the front, followed by standard components,

including self-attention and cross-attention layers. Unlike vanilla

GCN, NoffGConv decouples the node and offset feature mapping,

enhancing the guidance of its location information in the feature

aggregation process.

Another issue is that most Transformer-based methods

utilize multiple-layer perception (MLP) heads composed of fully

connected layers to independently predict the coordinates of

hand joints, which overlooks the local connections between

joints. Therefore, we introduce the Topological-aware head

based on semantic graph convolutional layers (SemGConv; Zhao

et al., 2019), which introduces topological information without

increasing model complexity. SemGConv can obtain complex

local spatial constraints between hand joints guided by hand

topology through learnable adjacency matrices, thereby enabling

the Topological-aware head to produce more reasonable and

accurate poses.

Furthermore, 3D hand mesh estimation is also a current hot

topic in research. Although extensive research has focused on 3D

pose estimation of hands and objects using depth cameras (Moon

et al., 2018; Li et al., 2020) or RGB-D sensors (Garcia-Hernando

et al., 2018) in controlled environments within computer vision,

recent research has shown promising results in pose estimation

solely from a single RGB image. Our Graphformer decoder can

generate shape Queries and Pose Queries, which can be processed

by the proposed Topology-aware head and the MANO layer,

respectively, and output the final 3D hand mesh. We adapted the

original HandGCNFormer to the new HandGCNFormer-Mesh for

3D hand mesh estimation. Our HandGCNFormer-Mesh performs

well in 3D hand mesh estimation when given a single RGB image

as input, which demonstrates the effectiveness and scalability of

our proposed Graphformer decoder and Topology-aware head

in addressing not only 3D hand pose estimation from a single

depth image, but also 3D hand mesh estimation from a single

RGB image.

In a word, the main contributions of this paper are summarized

as 3-fold:
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FIGURE 2

The overview of the HandGCNFormer. Our method introduces the prior knowledge of hand kinematic topology by No�GConv and SemGConv

layers, as well as models global understanding with self-attention mechanism, providing rich disambiguation evidence. ResNet and Transformer

encoder form the image encoder module, capturing the global-local context of the image (Section 3.3). Graphformer decoder incorporates

No�GConv and attention modules capturing joint interaction globally without ignoring topological connections of joints (Section 3.4). Finally, the

final pose is regressed by Topology-aware head while the final mesh is regressed by Topology-aware head and Shape Regressor. The

Topology-aware head constructs e�ective topology constraints during regressing (Section 3.5). (A) An overall structure of the HandGCNFormer for

3D hand pose estimation. (B) An overall structure of the HandGCNFormer-Mesh for 3D hand mesh estimation.

• We propose a novel HandGCNFormer network for 3D hand

pose estimation from a single depth image. Transformer

and GCN layers are deeply integrated to model both global

understanding of the scene and local topology connections of

hand joints. We also adjust the proposed network and obtain

HandGCNFormer-Mesh for 3D hand mesh estimation from

a single RGB image, showing that the proposed structure can

achieve good results not only when the input is a depth image

but also an RGB image.

• We propose a novel NoffGConv layer to decouple the

node feature mapping and the offset feature mapping.

Experimental results demonstrate that proposed NoffGConv

layer outperforms popular GCNs on 3D hand pose

estimation tasks. On top of that, a Topology-aware head

module is designed to adaptively establish the spatial

topology constraints, which outperforms the standard MLP

prediction head.

• Our method achieves excellent performance on five

challenging datasets. In particular, it is superior to the

top-performing approach by a margin of 3.2 with 7.6%

fewer parameters for unseen subjects hand in Hands2017,

revealing its excellent generalization ability. Moreover,

HandGCNFormer-Mesh can also perform well on the 3D

hand mesh estimation task on HO-3D by inputting a single

RGB image.

Compared with the conference version (Wang et al., 2023), we

mainly expand the following contents for the present work:
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• We extend our framework as HandGCNFormer-Mesh for

the task of 3D hand mesh estimation, to demonstrate the

effectiveness and scalability of our proposed Graphformer

Decoder and Topology Aware Head on not only 3D hand

pose estimation task from depth input but also 3D hand mesh

estimation with RGB input modality.

• We further explored the structural design of the framework,

in which we integrate a Shape Regressor with original

Graphformer Decoder and Topology aware head, producing

Mano parameters to obtain the final 3D hand mesh.

• We also add more abundant implementation details

and analyses based on the conference paper, including

tensor feature dimension description and network

implementation details.

• Extensive experiments have been conducted on challenging

HO-3D dataset which contains various and severe occlusions

under RGB scenarios. And the results demonstrate that

our HandGCNFormer-Mesh achieves competitive results

compared to previous state-of-the-art 3D hand mesh

estimation methods.

2 Related work

2.1 3D hand pose estimation

Deep neural networks have shown remarkable performance

in 3D hand pose estimation, with methods typically categorized

as regression-based, detection-based, or hybrid approaches based

on the nature of their model output. Regression-based models

(Oberweger et al., 2015; Guo et al., 2017a,b; Oberweger and

Lepetit, 2017; Xiong et al., 2019; Chen et al., 2020; Caramalau

et al., 2021; Hampali et al., 2022; Madadi et al., 2022) directly

learn the mapping from input images to output joint coordinates

or angles. For instance, DeepPrior (Oberweger et al., 2015) and

DeepPrior++ (Oberweger and Lepetit, 2017) utilize a bottleneck

layer to learn pose priors and then regress poses using fully-

connected layers. To enhance the utilization of fine-grained

features, Pose-REN (Chen et al., 2020) adopts multilevel cascade

regression to refine predictions iteratively. Meanwhile, other

approaches (Guo et al., 2017a,b; Xiong et al., 2019; Madadi et al.,

2022) utilize feature-level local ensembles. Despite their high

performance, these methods often need more model complexity.

Detection-based approaches (Moon et al., 2017, 2018; Ge et al.,

2018b; Ren et al., 2019, 2021b) typically generate dense probability

maps for each joint from input sources such as depth images,

point sets, or voxel sets. For instance, DenseReg (Wan et al.,

2018) employs an encoder-decoder module to produce 3D

heatmaps and unit vector fields, preserving richer spatial context.

However, because the post-processing step of extracting joint

coordinates from heatmaps is similar across these methods,

they often cannot be trained end-to-end. Subsequently, hybrid

approaches (Sun et al., 2018; Huang et al., 2020c; Malik et al.,

2020; Ren et al., 2021a) emerged, combining the strengths

of both regression-based and detection-based methods. For

example, AWR (Huang et al., 2020c) transforms 3D hand

joint coordinates into a 3D heatmap and unit vector field,

providing direct supervision for joint position. Nevertheless,

pure CNN-based methods require adjustments to capture global

context effectively, given their restricted receptive field. This

limitation poses challenges in addressing severe self-occlusion

and self-similarity issues, which are prevalent in 3D hand pose

estimation tasks.

2.2 3D hand mesh estimation

After the release of hand-object interaction benchmark datasets

such as HO-3D (Hampali et al., 2020), several studies have been

conducted on these datasets (Hasson et al., 2019, 2020; Hampali

et al., 2020). Hasson et al. (2019) introduced innovative loss

functions incorporating physical constraints for interacting hands

and objects. HOnnotate (Hampali et al., 2020) identified 2D

joint positions and adjusted hand model parameters [such as

MANO (Romero et al., 2022)] by minimizing their loss function.

Hasson et al. (2020) utilized photometric consistency across

sequential frames differently, and they inferred meshes for both

hands and objects, generating a warping flow through rendering.

Subsequently, they applied a pixel-level loss to ensure photometric

consistency between a reference frame and the frame warped using

the inferred flow.Most of the abovemethods focus onmodeling the

interaction between hands and objects while ignoring the modeling

of global contextual information.

2.3 Transformer in computer vision

Recently, the Transformer architecture (Vaswani et al., 2017)

has seen applications in various domains, including image

classification (Dosovitskiy et al., 2020; Liu et al., 2021), object

detection (Carion et al., 2020; Zhu et al., 2020), and pose

estimation (Yang et al., 2020; Lin et al., 2021; Mao et al.,

2021; Hampali et al., 2022; Li et al., 2022). Notably, PRTR (Li

et al., 2021a) and TFPose (Mao et al., 2021) visualize the

dynamic decoding process within the Transformer decoder,

showcasing the Transformer’s potential for human pose modeling.

In a closely related study, Hand-Transformer (Huang et al.,

2020a) employs a non-autoregressive Transformer decoding

mechanism to concurrently localize each joint. Unlike the

autoregressive method, the non-autoregressive decoding enables

real-time processing by removing the constraint of sequence

dependence. However, detecting joints independently disregards

the inherent adjacency relationship among joints, resulting in

subpar performance, particularly for invisible and similar joints.

2.4 Graph convolutional network

GCN has gained increasing popularity in skeleton-based action

recognition (Yan et al., 2018; Martínez-González et al., 2021; Tunga

et al., 2021) and 2D-to-3D pose estimation tasks (Kong et al., 2020;

Qiu et al., 2020), owing to its effectiveness in representing arbitrary

topological data. SemGCN (Zhao et al., 2019) is introduced to

capture intricate semantic relationships among neighboring joints

of the human body. HOPE-Net (Doosti et al., 2020) proposes an

adaptive GraphU-Net for inferring joint locations in 3D space from
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2D keypoints. These approaches for 2D-to-3D lifting underscore

the significance of topology information in mitigating depth

ambiguity. PHG (Ren et al., 2021a) endeavors to establish long-

range dependencies among hand joints by leveraging a cascaded

GCN module, achieving state-of-the-art performance. However,

the cascaded GCN module tends to introduce noisy information

from extended neighbor nodes exponentially while constructing

global relationships, resulting in over-smoothing of the model.

In this study, we harness the Transformer architecture to model

global contextual information directly, thereby circumventing

the limitations imposed by receptive field constraints.

Concurrently, we integrate GCN to capture the hand kinematic

topology, significantly enhancing the representation of spatial

structural features.

3 Methodology

Figure 2A depicts the schematic of our proposed

HandGCNFormer. It takes a depth image as input and predicts a

set of 3D joint coordinates. The framework comprises an image

encoder, formed by a ResNet and a Transformer encoder, a

Graphformer decoder, and a Topology-aware head. Furthermore,

we explore the performance of HandGCNFormer on the 3D hand

mesh estimation task, introducing HandGCNFormer-Mesh, as

illustrated in Figure 2B.

3.1 Preliminary

3.1.1 Transformer
It follows an encoder-decoder architecture and is designed

completely depending on the self-attention mechanism. In the

self-attention module, the dependencies of the input sequence are

extracted by calculating the feature similarity. The input sequence

X ∈ R
N×D is mapped to queries Q ∈ R

N×D, keys K ∈
R
N×D, and values V ∈ R

N×D. N and D denote sequence length

and dimensions, respectively. The scaled dot-product attention is

computed as Equation 1:

Attention(Q,K,V) = softmax

(

QKT

√
D

)

V (1)

Further, to jointly extract semantic information from different

representation subspaces, Transformer introduces a multi-head

self-attention (MHSA) module. The MHSA projects Q, K, and V

into h subspaces as well as computing all attention heads in parallel.

After that, the attention heads are concatenated and projected to the

output of MHSA, which can be expressed as Equation 2:

MHSA(Q,K,V) = Concat (Att1, . . .Atth)W
O (2)

3.2 Vanilla GCN

The graph G = {V,E} consists of a series of nodes V and

edges E. Assume that the input of the l-th layers of GCN is

Xl ∈ R
J∗Dl , J represents the number of nodes and Dl denotes

input dimensions. To capture the relationship between node and

associated neighboring nodes, GCN transforms the input feature

Xl by a learnable matrix W ∈ R
Dl+1×Dl , and then aggregates

the transformed information with a symmetric normalized matrix

Ã. The convolution operation at the l-th layers is formulated as

Equation 3:

X(l+1) = σ

(

W(l)X(l)Ã
)

(3)

where σ is the activation function and Ã is computed by Ã =
D̃− 1

2 (A + I)D̃− 1
2 . D̃ is a diagonal degree matrix. A is an adjacency

matrix covering internal connections of G.

3.3 Image encoder

The image encoder is responsible for extracting both local and

global features from the input depth image. Inspired by DETR

(Carion et al., 2020), our image encoder comprises a ResNet (He

et al., 2016) followed by a Transformer encoder. Given a cropped

hand depth image I ∈ R
H×W , where H and W denote the

image height and width respectively, a ResNet is employed to

extract downsampled features F ∈ R
H
32×

W
32×2048. These features are

then channel-wise reduced using a 1 × 1 convolutional layer and

spatially flattened to produce the sequence feature T ∈ R
HW
1024×256,

which is subsequently fed into the standard Transformer encoder.

To preserve spatial positional information, sinusoidal positional

embedding is incorporated into the input sequence. Finally, the

context features of the input sequence are captured through a series

of self-attentions and feed-forward networks (FFN).

3.4 Graphformer decoder

The conventional Transformer decoder comprises self-

attention layers, cross-attention layers, and feed-forward networks,

which lack awareness of the inherent connections among joints

described by hand kinematic topology (as shown in the lower

left part of Figure 2A). To address this limitation, we introduce a

Graphformer decoder that emphasizes the integration of attention

mechanisms and GCN techniques, leveraging both the long-range

dependencies and local topology connections among joints.

Specifically, we construct a graph G = {V,E} consisting of nodes V
and edges E. Each node in the graph represents a hand joint. We

incorporate prior knowledge of hand kinematic topology into the

model through the adjacency matrix of G. An edge between node

i and j exists if the corresponding two joints are connected in the

hand kinematic topology.

In 3D hand pose estimation, node features carry abundant

location information, while neighboring nodes contribute valuable

features for estimating relative offsets, particularly beneficial

for handling occluded or similar joints. Motivated by this

insight, we introduce a node-offset graph convolutional layer

(NoffGConv). Figure 3 illustrates how NoffGConv separates node

and offset feature mapping: the former relies solely on node

features, while the latter integrates refinement information from

neighboring nodes and itself toward the central node. To better

complement subsequent self-attention layers and expedite model
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FIGURE 3

Illustration of No�GConv. No�GConv decouples the node feature mapping and the o�set feature mapping during aggregating information. The gray

lines indicate the connections between nodes, and the colored lines represent feature transfer.

convergence, NoffGConv employs a fixed adjacency matrix.

Formally, considering the input of the l-th layer in NoffGConv

as X(l) ∈ R
J×Dl , where J denotes the number of nodes and Dl

represents input dimensions, the NoffGConv at the l-th layer can

be formulated as follows:

X(l+1) = σ

(

W1X
(l) +W2X

(l)Ã
)

(4)

where σ is the activation function and Ã is the normalized

adjacency matrix which is computed by Ã = D̃− 1
2 (A + I)D̃− 1

2 .

D̃ is a diagonal degree matrix. A is an adjacency matrix covering

internal connections of G. I is the identity matrix. With different

weights W1 and W2, NoffGConv decouples the mapping of the

node features and the offset features. Note that the vanilla GCN

only has the second term in Equation (4), which assigns attention

to the current node and its neighbors based on the degree matrix,

weakening the guidance of its location information.

The Graphformer decoder consists of N decoder blocks,

with each block comprising a NoffGConv layer followed by

a standard self-attention layer and cross-attention layer. Our

decoder takes learned joint queries as input, representing

the positional embedding of joints. Given the one-to-one

correspondence between joint queries and hand joints, the

Hungarianmatching (Carion et al., 2020) is unnecessary.Moreover,

as NoffGConv already implements the nonlinear mapping of

joint queries, we can eliminate the feed-forward network typically

following the attention module.

3.5 Topology-aware head

In scenarios with heavy self-occlusion and self-similarity, the

inherent spatial structure of hand joints plays a crucial role

in accurately predicting hand pose. To address the limitations

of existing MLP heads in capturing spatial structure cues, we

propose a Topology-aware head incorporating GCN techniques. As

mentioned earlier, GCN naturally leverages the prior knowledge

of hand kinematic topology by aggregating information from

nodes and their neighboring nodes under the guidance of

topology. However, vanilla GCN assigns fixed attention to the

connections between joints, overlooking the complex semantic

relationships among neighboring nodes. Our Topology-aware

head is configured with three semantic graph convolution layers

(SemGConv) followed by a 1× 1 convolutional projection layer to

address this. Unlike vanilla GCN, SemGConv introduces a learned

weighting matrix M ∈ R
J×J to adaptively model the connection

strength between joints, expressed as Equation 5:

X(l+1) = σ

(

WX(l)ρi(M⊙ (A+ I))
)

(5)

where W represents a transformation matrix; ρi is the Softmax

nonlinearity, which normalizes the weight of connections between

a node i and its neighboring nodes j ∈ N (i); ⊙ denotes element-

wise multiplication.

In line with prior research (Zhao et al., 2019), we employ

residual connections to mitigate the issue of over-smoothing when

stacking multiple SemGConv layers. Additionally, we concatenate

the output embeddings from all Graphformer decoder layers

and feed them collectively into our head module, promoting

the network to implicitly extract semantic information across

various decoder layers. Leveraging the advantageous properties of

SemGConv, our regression head guides the pose to a more accurate

space constrained by hand topology.

3.6 HandGCNFormer-Mesh

To further demonstrate the robustness and effectiveness of our

proposed Topology aware head and Graphformer Decoder, we

extend our framework as HandGCNFormer-Mesh for the task of

3D hand mesh estimation, as shown in the Figure 2B.

The input of the network is an RGB image, which is still

processed through ResNet and directly input into the Transformer

network. At the same time, we adjusted the design of the input

learnable token of Graphformer Decoder, including Shape Query
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S, which is composed of one learnable token, and Pose Queries

P, which is composed of multiple learnable tokens. After being

processed by Graphformer Decoder, they will be input to Shape

Regressor and Topology-aware head, respectively.

3.6.1 Shape Regressor
We propose Shape Regressor in order to process Shape

Query S. Shape Regressor consists of a 3-layer neural network,

each comprising a Linear layer and a RELU activation function.

The Shape Regressor and Topology-aware head will continue

processing the output from the Graphformer Decoder.

Shape Regressor and Topology-aware head will output shape

parameters β ∈ R
10 and pose parameters θ ∈ R

48, respectively.

We multiplied the joint regression matrix to a 3D mesh in rest

pose, applied the forward kinematics to get the final 3D hand joints

coordinates, and obtained the final 3D hand mesh V ∈ R
778×3.

3.7 Overall loss function

3.7.1 3D hand pose estimation task
The pose estimation task often yields a relatively sparse

distribution of prediction results. Given that the Laplace

distribution is more suitable for sparse data, the model is trained

using a smooth L1 loss (Huang et al., 2020c) to minimize the error

between the estimated and ground truth poses, considering both

2D and 3D poses. Let y2D ∈ R
J×2 and y3D ∈ R

J×3 denote the

ground truth poses. The regression loss is formulated as follows in

Equation 6:

Lreg =
N
∑

n=1

smoothL1
(

ŷn2D, y2D
)

+ smoothL1
(

ŷn3D, y3D
)

(6)

where ŷn3D denotes the predicted 3D pose from the output of

the n-th decoder layer. ŷn2D is calculated by projecting ŷn3D with

camera intrinsics.

Moreover, we employ a multilayer perceptron (MLP) on the

ResNet backbone to predict an initial 3D pose consisting of three

fully connected layers. An auxiliary loss is utilized to reinforce

feature learning in the backbone and enhance overall performance,

computed as follows in Equation 7:

Laux = smoothL1
(

p̂2D, y2D
)

+ smoothL1
(

p̂3D, y3D
)

(7)

where p̂2D and p̂3D represent the 2D/3D coordinates corresponding

to the initial pose, respectively.

Finally, the overall loss is the summation of the regression loss

and auxiliary loss in Equation 8:

Loverall = Lreg + Laux (8)

3.7.2 3D hand mesh estimation task
To train the HandGCNFormer-Mesh, we minimize a loss

function, defined as a combination of L2 distances between the

predicted and ground truths as follows in Equations 9–13:

Lpose =
∥

∥

∥
θ − θ̂

∥

∥

∥

2
(9)

Lshape =
∥

∥

∥
β − β̂

∥

∥

∥

2
(10)

Lmesh =
∥

∥

∥
V − V̂

∥

∥

∥

2
(11)

Ljoint =
∥

∥

∥
J3D − ˆJ3D

∥

∥

∥

2
(12)

Loverall = Lpose + Lshape + Lmesh + Ljoint (13)

where J3D denotes a 3D hand joint coordinates, obtained by

multiplying a joint regression matrix to 3D hand mesh V , where

the matrix is defined in MANO.

4 Experiments

4.1 Datasets

Hands2017 dataset (Yuan et al., 2017) contains 957 K training and

295 K testing images. Twenty-one hand joints are annotated.

NYU dataset (Tompson et al., 2014) contains 72 K training and

8.2 K testing images labeled with 36 joint locations. Following the

common convention (Moon et al., 2018; Ren et al., 2021a), we pick

a subset of 14 joints from the frontal view for evaluation.

ICVL dataset (Tang et al., 2014) contains 22 K training images

and 1.6 K testing images. The training data is augmented to 330 K

samples by leveraging in-plane rotation operations. The annotation

of the pose contains 16 joints.

MSRA dataset (Sun et al., 2015) contains 76.5 K images with

17 gestures. The ground truth pose annotates 21 joints. We

evaluate this dataset with the common leave-one-subject-out cross-

validation strategy (Chen et al., 2020; Huang et al., 2020c).

HO-3D dataset (Hampali et al., 2020) is a hand-object interaction

dataset that contains challenging occlusions. This dataset provides

RGB images with MANO-based hand joints and meshes, and

camera parameters. The dataset contains more than 65 sequences

captured with 10 different subjects and 10 objects with both 3D

pose annotations of hand and object. It has 66,034 and 11,524 hand-

object interaction images from a third-person view for training and

testing. The results on the test set can be evaluated via an online

submission system.

4.2 Experimental settings

4.2.1 Implementation details
We train our model end-to-end on a single NVIDIA 40GB

A100 Tensor Core GPU. PyTorch framework is utilized for

implementation, with the AdamW optimizer (Loshchilov and

Hutter, 2017) and an initial learning rate of 0.0001. The batch size

is set to 64. The training procedure spans 40 epochs, employing a

multi-step learning rate schedule that decreases the learning rate

by a factor of 0.1 at the 30th and 37th epochs, respectively. Our

backbone architecture is ResNet-50, pretrained on ImageNet, with

the remaining weights initialized using Xavier initialization (Glorot

and Bengio, 2010). We employ eight heads for self-attention, and

both the Transformer encoder and Graphformer decoder consist
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TABLE 1 Ablation study for the e�ectiveness of di�erent modules in HandGCNFormer.

Method AVG SEEN UNSEEN Params (flops)

Baseline 7.35 5.09 9.24 37.37M (5.81G)

+ Graphformer Decoder 6.94 4.77 8.74 33.18M (5.72G)

+ Topology-aware Head 6.90 4.67 8.77 37.24M (5.80G)

HandGCNFormer (+ both) 6.80 4.64 8.59 33.04M (5.71G)

of four layers. During inference, we use the predictions from

the final decoder layer as the final results. To determine the

center coordinates of the hand region in 3D space, we adopt the

localization network proposed in V2V-poseNet (Moon et al., 2018).

Cropped images are resized to 256 × 256, and depth values are

normalized to the range [−1, 1]. Data augmentation is performed

in the world coordinate system, including random scaling, rotation,

and translation. As per standard practice, a separate model is

trained for each benchmark using its respective training set. In

particular, for HandGCNFormer-Mesh, Shape Query contains one

learnable token, while Pose Queries P contains 16 learnable tokens,

and the token dimensions are 512.

4.3 Evaluation metrics

We assess our model using the same evaluation metrics as

previous studies: (1) the mean 3D distance error and (2) the

percentage of successful frames. The former calculates the average

Euclidean distance error per joint between ground truth and

predictions across the entire test set. The latter indicates the

proportion of successful frames, where all joint errors are below a

specified threshold relative to the total number of test frames.

4.4 Baseline

Our baseline follows the DETR (Carion et al., 2020) framework

without the Hungarian matching algorithm. The input queries of

decoder correspond one by one to the hand joints. In addition, the

baseline applies the same loss function as our method.

4.5 Ablation study

In this section, we conduct thorough ablation experiments

to assess the performance of HandGCNFormer on the

Hands2017 dataset.

4.5.1 HandGCNFormer modules
Table 1 presents the results of experiments conducted to assess

the impact of our proposed modules, namely the Graphformer

decoder and Topology-aware head. Our baseline model achieves a

mean error of 7.35 mm on the "AVG" test item, representing the

mean 3D distance error across all test frames. This performance is

only marginally inferior to PHG, indicating that the Transformer

framework effectively captures long-range context information

TABLE 2 Ablation study for the e�ectiveness of di�erent GCNmothods in

Graphformer decoder.

Method AVG SEEN UNSEEN

Vanilla

GCN (Welling and

Kipf, 2016)

6.95 4.83 8.73

ChebGConv (K =

1; Defferrard et al.,

2016)

6.96 4.77 8.87

ChebGConv (K =

2; Defferrard et al.,

2016)

6.94 4.83 8.69

SemGConv (Zhao

et al., 2019)

6.93 4.78 8.72

NoffGConv (ours) 6.80 4.64 8.59

K represents the order of convolution kernel in ChebGConv.

TABLE 3 Ablation study for the e�ectiveness of di�erent connection

orders between three components in the Graphformer decoder.

Method AVG SEEN UNSEEN

N-S-C 6.80 4.64 8.59

S-N-C 6.86 4.67 8.69

S-C-N 6.86 4.68 8.68

N, S, and C denote NoffGConv, self-attention, and cross-attention, respectively. Bold values

represent the best results.

for hand pose estimation. Subsequently, replacing the baseline

decoder with our Graphformer decoder yields promising results.

Leveraging the synergy between NoffGConv and the self-attention

mechanism, the model equipped with the Graphformer decoder

reduces the mean joint error by 0.41 mm and demonstrates a 5.4%

improvement in accuracy for unseen subjects’ hands. Furthermore,

integrating only the Topology-aware head into the baseline

model leads to significant performance gains, underscoring the

importance of spatial structure perception for accurate and

robust pose regression. Notably, our head achieves impressive

performance without increasing the model parameters. Finally,

combining our decoder and regression head in HandGCNFormer

yields the best performance with the smallest model size.

Particularly, HandGCNFormer surpasses the baseline by 0.69 mm

in terms ofmean joint error for unseen subjects’ hands, highlighting

its advantages in generalization.
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4.5.2 No�GConv
We compare NoffGConv with other GCN variations,

namely vanilla GCN (Welling and Kipf, 2016), ChebGConv

(Defferrard et al., 2016), and SemGConv (Zhao et al., 2019).

Table 2 presents the comparison results, where K denotes the

order of the convolution kernel in ChebGConv. Our method

outperforms other methods, highlighting the effectiveness of our

NoffGConv when combined with self-attention. Furthermore,

we investigate three different connection orders among the

three components in the Graphformer decoder and report the

results in Table 3. Here, N, S, and C represent NoffGConv, self-

attention, and cross-attention, respectively. "N-S-C" corresponds

to the structure of our decoder depicted in Figure 2A. "S-N-C"

indicates NoffGConv is placed in the middle, while "S-C-N"

signifies NoffGConv follows cross-attention. The experimental

findings indicate that "N-S-C" is the optimal order for integrating

NoffGConv and attention modules.

4.6 Comparison with the state-of-the-art

4.6.1 Results of 3D hand pose estimation
We compare HandGCNFormer with various existing methods

(Ge et al., 2018a,b; Moon et al., 2018; Wan et al., 2018; Du et al.,

2019; Ren et al., 2019, 2021a; Xiong et al., 2019; Chen et al., 2020;

Huang et al., 2020c) across standard NYU, ICVL, MSRA, and

Hands2017 benchmarks. Table 4 presents the comparison results

using the mean 3D distance error metric. For a fair comparison,

the results of previous works can be categorized into two groups.

The top group results utilize the center coordinates provided by

V2V-PoseNet as the hand region center for image cropping. The

bottom group reports results using the average of the ground truth

joints as the hand region center, denoted by "*." Figure 4 illustrates

the per-joint mean error and the percentage of successful frames

across different thresholds on the NYU, ICVL, and MSRA datasets.

The experimental findings demonstrate that HandGCNFormer

achieves comparable or superior performance compared to other

methods while maintaining real-time speed on a single GPU at

72.8 FPS. It is worth noting that the number of parameters in

our model is reduced by 7.6% compared to PHG, which has

35.71 M parameters.

Specifically, on Hands2017 dataset, our method outperforms

other methods with the mean joint error of 6.80 mm. For unseen

subjects hand, our method achieves the minimummean joint error

of 8.59 mm, essentially demonstrating the excellent generalization

ability of our method. In addition, HandGCNFormer∗ improves

1.27 mm compared with HandGCNFormer in the "AVG" test

case, reflecting the fact that the accuracy of hand region center

coordinates limits the performance of model. On NYU dataset,

the results of our method are comparable to PHG. This is mainly

because the annotations of the NYU dataset are noisy, which

limits the performance of our method in terms of all-joint mean

error. Even though, our method still obtains the best performance

in terms of the percentage of successful frames as shown in

lower left of Figure 4. On ICVL dataset, HandGCNFormer and

HandGCNFormer∗ outperform the previous best results by a

margin of 8.2 and 20.5%. In fact, HandGCNFormer achieves better

accuracy than PHG∗. For the per-joint error and the percentage

of successful frames, our method significantly surpasses other

methods under all the joints and thresholds. On MSRA dataset,

our method is superior to PHG and PHG∗ by a margin of 3.0

and 4.3%, respectively. Our method reduces the per-joint error

and achieves the optimal percentage of successful frames under 15

mm threshold. Overall, HandGCNFormer is inherently superior

to state-of-the-art methods, with a suitable trade-off between

effectiveness and efficiency.

4.6.2 Results of 3D hand mesh estimation
Table 5 shows that our HandGCNFormer-Mesh achieves

competitive results on HO-3D dataset, which contain diverse

hand-object occlusions. The results show that our method

achieves the best results in all indicators except SC-AUC,

surpassing the 3D skeleton prediction performance and 3D

mesh reconstruction performance of the current state-of-the-

art methods. Specifically, for SC-MPJPE and PA-MPJPE, our

method leads the Keypoint Transformer method by a significant

advantage of 2 and 8%, respectively, which directly proves that

our proposed HandGCNFormer-Mesh has an excellent ability

to predict the 3D coordinate representation of hand joints.

On top of that, HandGCNFormer-Mesh has more advantages

in the PA-AUC but is slightly worse than the Keypoint

Transformer in the SC-AUC, and we believe that the reason

is that Keypoint Transformer estimates the object pose and

gesture pose at the same time. Under the constraints of the

object pose, the number of successfully predicted joints accounts

for a larger proportion under smaller thresholds. In addition,

regarding MPVPE, our method surpasses the best mesh estimation

method (Hampali et al., 2020) with an advantage of 8%, indicating

the effectiveness of our proposed Topology-aware head and

Graphformer Decoder structure in performing 3D hand mesh

estimation tasks. On top of that, we also provide visualize results

in Section 4.7.

4.7 Visualization

We visualize the weight matrices of self-attention in the

decoder, NoffGConv, and SemGConv during information

aggregation. As depicted in Figure 5, the self-attention mechanism

dynamically captures long-range dependencies between joints

but overlooks the inherent topology information of the hand.

On the other hand, NoffGConv and SemGConv focus on

the local connection relations of hand kinematic topology.

While self-attention learns the degree of dependencies between

joints dynamically and flexibly, our NoffGConv assigns fixed

attention to neighboring joints through a normalized adjacency

matrix. In contrast, SemGConv utilizes a learned weight

matrix to adaptively extract complex relationships among

neighboring joints, thereby providing richer spatial constraints for

pose regression.
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TABLE 4 Comparisons with state-of-the-art methods on NYU, ICVL, MSRA, and Hands2017 using the mean of 3D distance error in millimeter.

Method NYU ICVL MSRA Hands2017 FPS

AVG SEEN UNSEEN

DenseReg (Wan et al., 2018) 10.21 7.24 7.23∗ - - - 27.8

Pose-REN (Chen et al., 2020) 11.81 6.79 8.65 - - - -

HandPointNet (Ge et al.,

2018a)

10.54 6.94 8.51 - - - 48

Point-to-Point (Ge et al.,

2018b)

9.05 6.33 7.71 - - - 41.8

V2V-PoseNet (Moon et al.,

2018)

8.41 6.28 7.59 9.95 6.97 12.43 3.5

CrossInfoNet (Du et al., 2019) 10.08 6.73 7.86 9.68 7.30 11.67 124.5

A2J (Xiong et al., 2019) 8.61 6.46 - 8.57 6.92 9.95 105.6

SRN (Ren et al., 2019) 7.79 6.27 7.17 8.39 6.06 10.33 263.1

AWR (Huang et al., 2020c) 7.48 5.98 7.20 7.48 5.21 9.36 -

PHG (Ren et al., 2021a) 7.39 5.97 6.94 7.14 5.06 8.87 58.8

HandGCNFormer 7.43 5.48 6.73 6.80 4.64 8.59 72.8

PHG∗ (Ren et al., 2021a) 6.75 5.94 5.82 - - - 58.8

HandGCNFormer∗ 6.74 4.72 5.57 5.53 3.74 7.02 72.8

The "∗" represents that the method adopts the average of the ground truth joints as hand region center for cropping images. "SEEN" and "UNSEEN" indicate the cases whether the test subjects

are involved in training set. "AVG" denotes the mean of 3D distance error over all test frames. Best in bold.

FIGURE 4

Comparison of our framework with the state-of-the-art works on NYU (left column), ICVL (middle column), and MSRA (right column) datasets.

(Top) The mean of 3D distance error for each joint. (Bottom) The percentage of successful frames over di�erent thresholds.

Figure 6 presents qualitative results of samples exhibiting self-

occlusion and self-similarity from the Hands2017 dataset. To

ensure a fair comparison, the results of AWR are reported at

the same input size and hand region center as our method. It

is evident that HandGCNFormer achieves more accurate and

plausible poses compared to both AWR (Huang et al., 2020c)

and our strong baseline. In particular, AWR fails in extreme

self-occlusion cases, while HandGCNFormer successfully identifies

joint locations and produces more plausible poses guided by

a global understanding of input data and prior knowledge of

hand topology.

Figure 7 depicts the visualization of results on the HO-3D

dataset. Even in challenging occlusion scenarios, our method

consistently generates meshes that conform to the human hand
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TABLE 5 Comparison with state-of-the-art methods on HO-3D.

Method SC-MPJPE
(cm)

PA-MPJPE
(cm)

SC-AUC PA-AUC MPVPE
(cm)

F-score
@5 mm

F-score
@15 mm

I2L-MeshNet (Moon and

Lee, 2020)

2.60 1.12 0.529 0.775 1.39 0.409 0.932

Pose2Mesh (Choi et al.,

2020)

3.33 1.25 0.480 0.754 1.27 0.441 0.909

Hampali et al. (2020)

3.04 1.07 0.494 0.788 1.06 0.506 0.942

Hasson et al. (2019)

3.69 1.14 0.369 0.773 1.14 0.428 0.932

ArtiBoost (Li et al.,

2021b)

2.53 1.14 0.532 0.773 1.09 0.488 0.944

METRO (Lin et al., 2021) 2.89 1.04 0.504 0.792 1.11 0.484 0.946

Keypoint

Transformer (Hampali

et al., 2022)

2.57 1.08 0.553 0.786 - - -

HandGCNFormer-Mesh

(ours)

2.52 0.99 0.533 0.802 0.98 0.523 0.950

Bold values represent the best results.

FIGURE 5

(A) The attention map of self-attention in decoder, dynamically models the global dependencies of joints. (B) Normalized adjacency matrix of

NofGConv, focus on local topology perception with fixed connection strength between joints. (C) Learned weight matrix of SemGConv, adaptively

models complex dependencies among neighboring joints.

topology. Furthermore, in cases of self-occlusion and self-

similarity, the mesh results for individual fingers remain accurate.

These observations indicate that HandGCNFormer-Mesh yields

excellent results on the HO-3D dataset.

4.8 Comparative analysis in challenging
scenarios

In the domain of 3D hand pose and mesh estimation, scenarios

characterized by severe occlusions, close interactions with

objects, and rapid motions present substantial challenges. These

conditions often obscure critical visual information and disrupt the

continuity of observable features, making accurate pose and mesh

reconstruction particularly difficult. In this section, we present a

comparative analysis of our proposed models, HandGCNFormer

and HandGCNFormer-Mesh, against state-of-the-art

methods, specifically focusing on their performance in these

demanding scenarios.

4.8.1 Severe occlusions
Occlusions significantly impact the visibility of hand joints,

a crucial aspect for accurate pose estimation. In our evaluation

on the HO-3D dataset, which includes diverse hand-object

interaction scenes, HandGCNFormer-Mesh demonstrated robust

performance, achieving a competitive edge over methods like

Keypoint Transformer (Hampali et al., 2022). This can be attributed

to the model’s effective integration of kinematic topology, which

aids in inferring occluded joints’ positions based on the visible

parts of the hand. However, in extreme cases where the majority

of the hand is occluded, our model faced difficulties, suggesting

room for improvement in leveraging contextual and prior

shape information.
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FIGURE 6

Qualitative comparison among AWR, our baseline, and our HandGCNFormer on Hands2017 dataset. (Left) Qualitative results of images with

self-occlusion. (Right) Qualitative results of images with self-similarity. Red pose represents the ground truth. Green pose is predicted result.

FIGURE 7

Visualization of the results on HO-3D. As the results show, our HandGCNFormer-Mesh can also complete 3D hand mesh estimation well in severe

self-occlusion and self-similarity situations.
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4.8.2 Complex hand-object interactions
Scenarios involving intricate hand-object interactions pose

challenges due to the close proximity of hand joints to

objects, often leading to confusion between the object and

hand features. HandGCNFormer-Mesh’s topology-aware approach

enables it to better distinguish between hand and object features,

outperforming baseline models by inserting Shape Regressor. This

success underscores the importance of incorporating structural

and relational priors into the model. Future improvements

could explore more sophisticated mechanisms for differentiating

hand and object features, possibly through enhanced attention

mechanisms or deeper integration of object recognition pathways.

4.8.3 Static images implying rapid motions
While our method primarily focuses on static images, rapid

hand motions can result in motion blur, which introduces

additional challenges for accurate joint localization and pose

estimation. Although HandGCNFormer is designed without

temporal data from video sequences, its architecture demonstrates

resilience against motion blur by leveraging global and local context

effectively. Enhancements in handling blur through improved

image processing techniques or by simulatingmotion effects during

training could further strengthen the model’s performance in

these scenarios.

4.8.4 Comparison with state-of-the-art methods
When comparing HandGCNFormer and HandGCNFormer-

Mesh to current leading methods, our models’ topology-aware

nature particularly stands out in handling severe occlusions and

intricate hand-object interactions, surpassing those based solely

on visual feature extraction. However, as motion blur presents

a distinct challenge in the absence of temporal data, there is an

opportunity to explore innovations in image preprocessing or

training methodologies to mitigate its impact.

4.8.5 Conclusion
The comparative analysis highlights HandGCNFormer

and HandGCNFormer-Mesh’s effective handling of challenging

scenarios through a novel topology-aware framework. While

the models excel in scenarios with occlusions and hand-object

interactions, addressing the effects of motion blur in static

images presents an avenue for future improvements. Continued

advancements in these areas will contribute to the models’

robustness and accuracy in 3D hand pose and mesh estimation

across a wider array of challenging conditions.

5 Conclusion and future research
directions

This paper introduces a new Topology-aware Transformer

network named HandGCNFormer, designed to accurately infer

plausible 3D hand poses, particularly in scenarios involving

self-occlusion and self-similarity. Within HandGCNFormer, we

devised a Graphformer decoder and a Topology-aware head

to optimize the collaboration between Transformer and GCN

components. HandGCNFormer thoroughly captures both the

global context of images and joints, along with the inherent

kinematic topology of the hand, effectively mitigating uncertainties

arising from obscured or closely resembling joints. Extensive

experiments validate that HandGCNFormer attains state-of-

the-art performance across four publicly available datasets,

notably diminishing prediction errors, particularly in intricate

scenarios. Furthermore, we proposed HandGCNFormer-Mesh

for the 3D hand mesh estimation task on HO-3D, and the

results further highlight the effectiveness and scalability of

our proposed Topology-aware head and Graphformer Decoder

structures on the task of 3D hand mesh estimation under different

modality input.

The advancements made with HandGCNFormer

and HandGCNFormer-Mesh pave the way for several

promising avenues of research. While our current

models show significant improvements in 3D hand pose

and mesh estimation from static images, exploring the

following directions could further enhance their utility

and applicability:

• Improved handling of motion blur: although our work

primarily addresses static images, motion blur—a common

artifact in images of moving hands—presents an opportunity

for future research. Developing techniques that can infer

motion direction and intensity from static images to predict

more accurate poses under motion blur conditions could be

highly beneficial.

• Integration of semantic context: our models could benefit

from incorporating broader scene context and semantic

information, enabling them to better understand hand

interactions within complex environments. Research

into combining our topology-aware approach with

semantic segmentation and object recognition could

lead to more nuanced and accurate hand pose and

mesh estimations.

• Cross-modal learning: exploring cross-modal learning

strategies to leverage complementary information from

depth, RGB, and possibly infrared data could enhance

the models’ robustness to varying lighting conditions and

backgrounds. This approach could also help in better

distinguishing between hands and objects in closely

interacting scenarios.

By pursuing these directions, we aim to build

upon the foundation laid by HandGCNFormer and

HandGCNFormer-Mesh, pushing the boundaries of what

is currently achievable in the field of 3D hand pose and

mesh estimation.
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