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Developmental psychologists have long-established socio-cognitive abilities as
fundamental to human intelligence and development. These abilities enable
individuals to enter, learn from, and contribute to a surrounding culture. This
drives the process of cumulative cultural evolution, which is responsible for
humanity’s most remarkable achievements. AI research on social interactive
agents mostly concerns the emergence of culture in a multi-agent setting (often
without a strong grounding in developmental psychology). We argue that AI
research should be informed by psychology and study socio-cognitive abilities
enabling to enter a culture as well. We draw inspiration from the work of Michael
Tomasello and Jerome Bruner, who studied socio-cognitive development and
emphasized the influence of a cultural environment on intelligence. We outline a
broader set of concepts than those currently studied in AI to provide a foundation
for research in artificial social intelligence. Those concepts include social
cognition (joint attention, perspective taking), communication, social learning,
formats, and sca�olding. To facilitate research in this domain, we present
The SocialAI school—a tool that o�ers a customizable parameterized suite of
procedurally generated environments. This tool simplifies experimentation with
the introduced concepts. Additionally, these environments can be used both
with multimodal RL agents, or with pure-text Large Language Models (LLMs)
as interactive agents. Through a series of case studies, we demonstrate the
versatility of the SocialAI school for studying both RL and LLM-based agents. Our
motivation is to engage the AI community around social intelligence informed
by developmental psychology, and to provide a user-friendly resource and tool
for initial investigations in this direction. Refer to the project website for code and
additional resources: https://sites.google.com/view/socialai-school.

KEYWORDS

social cognition, developmental psychology, reinforcement learning, large language

models, Michael Tomasello

1 Introduction

Our everyday life is immersed in a sociocultural world, which we navigate
using a set of sophisticated socio-cognitive abilities. Although at first it might
seem that this sociocultural world is just another downstream product of
our cognition, decades of research in developmental psychology suggest the
opposite. Our socio-cultural world, cultural knowledge, and our socio-cognitive
abilities are the foundation of our development and both our social and
asocial intelligence (Vygotsky and Cole, 1978; Bruner, 1990; Tomasello, 2019).
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For Vygotsky, a main driver for “higher-level” cognition are
socio-cultural interactions (Vygotsky and Cole, 1978). He argues
that many high-level cognitive functions first appear at the social
level and then develop at the individual level. This leap from
interpersonal processes to intrapersonal processes is referred to
as internalization. A typical example of this process is learning to
count. Children first learn to count out loud, i.e. with language
and social guidance, which is an interpersonal process. As the child
improves, it will learn to count in its head, no longer requiring
any external guidance: counting became internalized, and will be
a first step toward other more complex forms of abstract thinking.
Vygotsky’s theories influenced multiple works within cognitive
science (Clark, 1996; Hutchins, 1996), primatology (Tomasello,
1999) and the developmental robotics branch of AI (Billard and
Dautenhahn, 1998; Brooks et al., 2002; Cangelosi et al., 2010;
Mirolli and Parisi, 2011).

Another pillar of modern developmental psychology is Jerome
Bruner. He, too, emphasized the importance of culture in human
development. Bruner (1990) writes: “it is culture, not biology, that
shapes human life and the humanmind, that gives meaning to action

by situating its underlying intentional states in an interpretative

system.” Most importantly for this paper, he presents a pragmatic
view studying how referencing, requesting and finally language
develop through routinized social interactions (formats) in which
those abilities are necessary to achieve various ends. He describes
these interactions as scaffolded— the caretaker gradually helps less
and demands more of the child to achieve those goals, and this
bootstraps the child’s development (Bruner, 1985).

Finally, Michael Tomasello’s work (Tomasello, 1999, 2019,
2020) constitutes a representative and contemporary assessment
of the nature and central importance of sociality in human
cognition. He outlined core social abilities andmotivations through
theoretical and experimental studies with humans and apes. When
combined with the relevant experience, those abilities enable us
to enter, benefit from, and contribute to the human culture, i.e.
they enable the cumulative cultural evolution (a powerful form of
cultural transmission fostering the development and perpetuation
of complex culture and knowledge) (Tomasello, 1999).

Given the key role social cognition plays in human cognition
and cultural evolution, it is natural that the field of AI aims tomodel
social intelligence. A socially competent AI could learn our culture

and participate in its cultural evolution, i.e. improve our concepts,
theories, inventions, and create new ones. A system capable of out-

of-the-box thinking creative solutions and discovering new relevant

problems must learn our values and how we see and understand

the world (it must learn our culture). We do not claim that The
SocialAI is sufficient to reach that far and complex goal. We only

propose that being informed by the concepts discussed in this paper

is useful, and we present SocialAI as a tool which could be used
to start investigating such questions in more details. Enriching
AI with those skills also has numerous practical implications.
Socially competent robots, capable of social learning, would be
much easier to deploy and adapt to novel tasks and tools. For
example, performing collaborative tasks with a robotic learner able
to detect, learn and reuse context-dependent sets of communicative
gestures/utterances could be easily integrated into human teams,
without requiring humans to adopt new conventions. Furthermore,

FIGURE 1

The SocialAI School contains technical and conceptual tools
simplifying research of socially proficient AI agents. Developmental
sciences give inspiration to the SocialAI School in the form of
terminology and research goals, based on which we created a
parametric environment generator. The user defines the parameters
defining the sampling of environments (∼). This enables the analysis
and experiments in the form of training, giving insight into for
building better AI (+) and even for developmental sciences (+).

robots capable of learning human values and moral norms will
be capable of performing tasks in the constraints defined by
those values.

To further clarify the motivation of this work, we present
an analogy with the skill of multiple object tracking (MOT).
The MOT ability is an object of study under the umbrella
of perception in developmental psychology. This ability enables
humans, for instance, to drive a car. In AI, the ability of MOT
was adopted as a research goal. An algorithm with this ability
could at one point be used in applications involving high-level
perception such as autonomous driving. However, it remains
possible that autonomous driving could be solved without MOT
as an intermediary step. Furthermore, the implementetion of a
MOT capable system does not need to be similar to a human
MOT system. Similarly, socially recursive inferences are an object
of study under the umbrella of social cognition in developmental
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psychology. This ability enables humans, for instance, to play
pictionary.We therefore arge that it should be adopted as a research
goal, even though it remains possible that a pictionary playing
system could be created without this intermediary step. Like for
MOT, the implementation of such a system does not need to be
similar to a human system for social inferences.

AI research on interactive agents is often focused on navigation
and object manipulation problems, excised of any social dimension
(Mnih et al., 2015; Lillicrap et al., 2015). The study of sociality is
mostly studied in Multi-Agent settings, where the main focus is
often on the emergence of culture (often with only a weak grounding
in developmental psychology) (Jaques et al., 2019; Baker et al.,
2019). While we believe that those directions are both interesting
and important, in this work we focus on entering an already existing
complex culture. And we argue that it can be beneficial to be
informed by developmental psychology theories.

Cognitive science has inspired many works in social cognition
in AI both in disembodied and embodied settings. In a disembodied
setting, Machine learning models have been evaluated on their
capacity to predict agent actions in theory of mind experiments.
Rabinowitz et al. (2018) and more general social perception
assessments (Netanyahu et al., 2021). In a virtual embodied setting,
Jaques et al. (2019) implemented a model of social influence to
foster coordination of MARL agents. Wu et al. (2021) study theory
of mind in the context of collaboration and present the Bayesian
Delegation algorithm to infer the intentions of others. Finally, in
the real-world embodied setting, Cangelosi and Schlesinger (2014)
discuss how to leverage knowledge from the cognitive development
of human babies into embodied robots. Vollmer et al. (2016)
argue that restricted predefined (not learned) interaction protocols
(pragmatic frames) are usually used in the field of Human-Robot
Interaction, and suggest studying a broader set of social situations.
Our work following this rich tradition of levering insight from
cognitive science and developmental psychology with focus on
virtual embodied agents.

In the rapidly emerging field of Large Language models,
social cognition research consists of proof-of-concept simulations
(Park et al., 2023) and systematic benchmarks. Two most notable
benchmarks are SiQA (Sap et al., 2019), which evaluates social
common sense reasoning (without grounding in psychology), and
ToMi (Le et al., 2019) which presents false-belief querries (false-
belief representing only a small subset of social-intelligence in
general). We believe this relevant and interesting work can be
further enriched by an overview of different aspects of social
intelligence and interactive settings presented in this work.

Following the theories of Michael Tomasello and Jerome
Bruner, this work identifies a richer set of socio-cognitive skills
than those currently considered in most of the AI research.
More precisely, we focus on three key aspects of social cognition
as identified by Tomasello: (1) social cognition: the ability
to infer what others see and to engage in joint attention, (2)
communication: the development of referential communication
through pointing and the beginning of conventionalized
communication through language, and (3) cultural learning:
the use of imitation and role reversal imitation in social learning.
We also outline two concepts from Jerome Bruner’s work:
formats and scaffolding. Formats refer to the way in which social

interactions are structured, and scaffolding refers to the temporary
support provided by a caretaker to help a learner achieve a task
that would be otherwise too difficult.

Based on this set of target abilities, we construct the SocialAI
school (shown in Figure 1), a tool [based on MiniGrid (Chevalier-
Boisvert et al., 2018)] which enables the construction of social
environments whose diverse grid-world scenarios affords rich
yet tractable research around social competence acquisition.
Considered social scenarios are organized according to the key
cognitive science experiments used to study the social cognition in
children by highlighting core developmental steps.

We do not claim that the SocialAI school is sufficient to
construct a socially competent agent as this is a very far-reaching
and complex goal. However, we believe that in aiming for this goal,
concepts from developmental psychology can serve as signposts
for AI—give directions and enable us to define short term goals.
Given that the outlined skills are at the very core of human social
and cognitive competences, artificial agents aimed at participating
in and learning from social interactions with humans are likely to
require the same core competences. We present the SocialAI school
merely as a first step toward this goal. The SocialAI school can
be easily modified and extended. The code is open-sourced and
accompanied by additional resources (see Figure 2).

In our experiments, we aim to show the versatility of
the experiments which could be conducted with the SocialAI
school. We present experiments regarding the following questions:
generalization of social inferences (the pointing gesture) to new
contexts, recreating an experiment from cognitive science (to
study the knowledge transfer during role reversal), and the impact
of a scaffolded environment on the agent’s learning. To show
the diversity of agents which can be used, we conduct those
experiments with RL agents, and present an additional case study
with LLMs as interactive agents. In the Supplementary material,
we explore many more questions such as linguistic inferences,
joint attention, and imitation. We hope to encourage future work
extending and building on these first experiments to study various
questions regarding social competence. For example, new socio-
cultural scenarios, architectures, training regimes, and so on.

We outline the following main contributions of this work:

• An introduction to Michael Tomasello’s and Jerome Bruner’s
theories on child development and core socio-cognitive
abilities.

• An outline of a set of core socio-cognitive abilities important
for current AI research (abilities that enable to enter a culture).

• The SocialAI school: a tool including a customizable
procedural generation suite of social environments aiming to
simplify studies of socio-cognitive abilities of AI agents.

• Examples of case studies demonstrating how SocialAI can
be used to study various questions regarding socio-cognitive
abilities in AI.

2 Cognitive science background

This section introduces Michael Tomasello’s and Jerome
Bruner’s theories and concepts.
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FIGURE 2

The SocialAI school is accompanied by additional resources available at the project’s website.

2.1 The shared intentionality theory
(Michael Tomasello)

Humans are born into a culture filled with cultural artifacts,
symbols and institutions like language, social norms, tool
industries, or even governments (Richerson and Boyd, 2006;
Tomasello, 2019). These artifacts are a product of a series
of modifications over many generations. Tomasello calls this
cumulative cultural evolution, and argues that it is behind our most
impressive achievements (Tomasello, 1999).

Cumulative cultural evolution is grounded in our socio-
cognitive abilities (e.g. social cognition, cultural learning,
communication), which enable us to learn, improve, and teach our
culture (Tomasello, 2019), i.e. enter a culture. Cultural artifacts
inherited through this process become the core of our cognition.
An example of this is language, which influences our cognition
in many ways. For example, it defines how we categorize and
construe the world, and enables a powerful form of social learning :
instructed learning (Tomasello, 1999). This makes socio-cognitive
abilities crucial, as their early development bootstraps both our
social and asocial cognition (Herrmann et al., 2007).

Tomasello’s Shared intentionality theory argues that human
socio-cognitive abilities, such as communication and social
learning, are transformed by two developmental steps : the
emergence of Joint intentionality at around 9 months of age (the 9-
month revolution), and the emergence of Collective intentionality
at around 3 years of age (the objective/normative turn) (Tomasello,
2019).

Joint intentionality emerges at around 9 months of age
(Tomasello, 2019). It enables children to form a joint agent (a
dyadic “we”)—they understand that they work with a partner
toward the same joint goal. Children begin to view dyadic social
interactions through a “dual-level structure”: a joint agent “we” on
one level, and a personal “I” on another, i.e. we both understand
that we both have separate roles (“I”), and that we work together
toward the same joint goal (“we”). This enables human children to
take the perspective of others, which can also be done recursively
(they are not only both attending to the same goal, they are also
both attending to the partner’s attention to the goal, and they both
know that they both are doing so).

Collective intentionality emerges at around 3 years of
age (Tomasello, 2019). It enables children to form a cultural
group-minded “we,” which in comparison with a dyadic “we”
represents an identity for a group. For example, a child
might enforce a social norm because “this is how we, in this
culture, do things.” Consequently, children begin to participate
in conventions and norms, and to view things from the
“objective” perspective.

These two developmental steps transform countless
abilities, motivations, and behaviors. For the purpose of
this paper, we focus on the following three developmental
pathways: social cognition (Section 2.1.1), communication
(Section 2.1.2), and social learning (Section 2.1.3),
as we consider them the most relevant for AI at
the moment.

2.1.1 Social cognition
In this section, we discuss the development of the ability

to coordinate perspectives and view things from the objective

perspective (a perspective independent from any individual)
(Tomasello, 2019). The starting point is the ability to infer what

another sees or knows. The earliest example of this is gaze
following of six-month-olds (D’Entremont et al., 1997). Here,
only one perspective is processed at the time. Joint attention

(JA) emerges at around 9 months of age. Tomasello (2019)
defines JA as consisting of two elements: triangulation (two
participants attending to the same referent) and recursiveness

(both participants being recursively aware that they are both
sharing attention). JA is characterized by the dual-level structure
of shared attention (on one level) and individual perspectives (on
another level). Consequently, children start to align and exchange
perspectives. Once children reach a sufficient level of linguistic
competence, they start sharing attention to mental content in
the form of linguistic discourse (at two to three years of age).
The presence of conflicting perspectives in linguistic discourse
(e.g. a disagreement about where some object is located) pushes
children to resolve those conflicts, which they do by forming
the “objective” perspective, and coordinating other perspectives

with it.
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2.1.2 Communication
Communication starts with imperative gestures for self-

serving purposes. An example of such a gesture is the child
pulling the adult’s hand, requesting them to pick them up. This
gesture always has the same imperative meaning, and it never
refers to an external object. The 9-month revolution brings
forth referential communication—children start to communicate
triadically to external referents through pointing and pantomiming.
The pointing gesture is a powerful way of communicating, as the
same gesture can be used to express different meanings in different
contexts (provided that the observer can infer that meaning). The
ability to infer this meaning is based on the emerging abilities of
joint intentionality. Those of joint attention and, most notably,
of socially recursive inferences—to interpret a pointing gesture,
we make a recursive inference of what “you intend for me to
think.” For example, if we are looking for a ball together, and
you point to a cupboard behind me. I should infer that you
are drawing my attention to the cupboard to communicate that
I should look for the ball in the cupboard. The next step is
the appearance of conventionalized linguistic communication.
The underlying principle stays the same: reference to an external
entity combined with inferring the meaning through recursive
inferences. The difference is that, now, the meaning depends on
the conventional means (e.g. words and phrases) as well as the
context. Tomasello argues that, at first, children don’t understand
language as conventional, and they use it as any other tool. The
understanding of language as conventional follows the emergence
of collective intentionality after the third birthday. This enables a
myriad of different language uses, such as discourse or pedagogy.

2.1.3 Cultural learning
Human culture is characterized by a powerful form of cultural

transmission called cumulative cultural evolution—inventions
quickly spread and are improved by following generations
(Tomasello, 1999). These inventions spread at such a pace that
they are rarely forgotten or lost. This is referred to as the
ratchet effect (Tomasello et al., 1993)—inventions are iteratively
improved without slippage back. This effect is enabled by human
social learning abilities (ex. imitation, instructed learning), and
motivations (to learn from others, but also to affiliate and conform).
The earliest form of cultural learning is the mimicking of facial

expressions [observed even in neonates (Meltzoff and Moore,
1997)]. Over the course of the first year, children begin to
imitate other’s actions and goals, and then, they begin doing
so in ways which demonstrate their understanding of other’s as
intentional agents (Meltzoff, 1995). For example, in the failed-
attempt paradigm children imitate a goal that the adult attempted,
but failed, to reach. Joint intentionality brings forth a new form
of cultural learning called role reversal imitation. Children can
reverse the roles of a collaborative activity by learning about the
partners role only from playing their own. For example, children
respond to an adult tickling their arm, by tickling the adult’s arm
(instead of its own) (Carpenter et al., 2005). This is enabled by the
dual-level structure of joint intentionality through which children
understand, at the same time, the joint goal of a dyadic interaction

on one level, and the individuals’ separate roles on another. The
next big step in the development of cultural learning is learning
from instructions—instructed learning (following the emergence
of collective intentionality). It is based on the adults’ motivation to
teach children as well as on the children’s ability to understand and
learn from linguistic instructions. Children understand knowledge
acquired through instructions as objective truth, and generalize
it much better than knowledge acquired by other means (Butler
and Tomasello, 2016). In this way we acquire the most complex
knowledge and skills such as reading or algebra.

2.2 Sca�olding and formats in Jerome
Bruner’s theory

This work is also influenced by Jerome Bruner’s theories,
especially regarding the concepts of scaffolding (Wood et al., 1976)
and formats (Bruner, 1985), which were recently reintroduced to
AI as pragmatic frames (Vollmer et al., 2016).

Formats (Pragmatic frames) (Bruner, 1985) simplify learning
by providing a stable structure to social interactions. They are
regular patterns characterizing the unfolding of possible social
interactions (equivalent to an interaction protocol or a grammar of
social interactions). Formats consist of a deep structure (the static
part) and a surface structure (the varying realizations managed
by some rules). An example of a format is the common peek-a-
boo game. The deep structure refers to the appearance and the
reappearance of an object. The surface structure can be realized
in different ways. For example, one might hide an object using
a cloth, or hands; one might hide his face or a toy; one might
do shorter or longer pauses before making the object reappear.
We understand social interactions through such formats, and our
social interactions are based on our ability to learn, negotiate, and
use them.

Another relevant concept is scaffolding (Wood et al., 1976)
[similar to Vygotsky’s zone of proximal development (Vygotsky
and Cole, 1978)]. Scaffolding is a process through which an adult
bootstraps the child’s learning. The adult controls aspects of a
task which are currently too hard for the child (scaffolds the
interaction). The scaffold is gradually reduced as the child is ready
to take on more aspects of the task, until they can solve the task
alone (without scaffolding). An example is a child constructing a
pyramid with the help of an adult (Wood et al., 1976). At first,
the child is not even focusing on the task, and the adult tries to
get its attention to the task by connecting blocks and building
the pyramid in front of them. Once the child is able to focus
on the task, the adult starts passing the blocks to the child to
connect. In the next phase, the child is grabbing blocks by itself,
and the adult is helping through verbal suggestions. Then, only
verbal confirmations are needed to guide the child. Finally, the
child can construct the pyramid by itself. In summary, the adult
observes the child and gradually transfers parts of the task (removes
the scaffold) to the child. Through this process, the caretaker
enables the child to master a task they would not be able to
master alone.
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3 The SocialAI school

The SocialAI school is a tool for building interactive
environments to study various questions regarding social
competence, such as “What do concepts related to social abilities
and motivations (outlined by developmental psychology) mean in
the scope of AI?”, “How can we evaluate their presence in different
AI agents?”, “What are their simplest forms and how can AI agents
acquire them?”

To construct SocialAI, we rely on a set of key experiments and
studies from developmental psychology, which were used to outline
the most important abilities, motivations and developmental steps
in humans. From the work of Tomasello, we focus on developments
before and around the age of 9 months (we believe it is important to
address those before more complex ones relating to development of
3-year-olds, see Section 2.1).We study the following developmental
pathways: Social cognition (inferring other’s perception and joint
attention), Communication (referential communication through
the pointing gesture and the beginning of conventionalized
communication through simple language), and Cultural Learning
(imitation and role reversal imitation). From the work of Bruner,
we study the concepts of Formats and Scaffolding (see Section
2.2). Using The SocialAI school, we construct environments and
conduct experiments regarding all of those concepts.

SocialAI, which is built on top of Minigrid (Chevalier-
Boisvert et al., 2018), includes a customizable parameterized

suite of procedurally generated environments. We implement this
procedural generation with a tree-based structure (the parametric
tree). This makes it simple to add and modify new environments,
and control their sampling. All the current environments are single-
agent and contain a scripted peer. The agent has to interact with the
peer to reach an apple. This setup enables a controlled and minimal
representation of social interactions. To facilitate future research,
this tool was made to be very easy to modify and extend. The
SocialAI school is completely open sourced, and we hope that it will
be useful to study the questions regarding social intelligence in AI.

The remainder of this section is organized as follows. First,
Section 3.1 describes technical details such as the observation and
the action space. Then, Section 3.2 introduces the parameter tree
and explains how it can be used to sample environments. Finally,
Section 3.2 describes two environment types, which were used in
case studies in Section 4. In the Supplementary material, we present
one additional environment type.

3.1 Parameterized social environments

The SocialAI school is built on top of the MiniGrid codebase
(Chevalier-Boisvert et al., 2018), which provides an efficient and
easily extensible implementation of grid world environments.
SocialAI environments are grid worlds consisting of one room. In
all of our environments, the task of the agent is to eat the apple, at
which point it is rewarded. The reward is diminished according to
the number of steps it took the agent to complete the episode. The
episode ends when the agent eats the apple, uses the done action, or
after a timeout of 80 steps.

The agent’s observation and action spaces are shown in
Figure 3. This multimodal observation space consists of the full
dialogue history, and a 7 × 7 × 8 tensor corresponding to the 7
× 7 grid in front of the agent. Each cell is encoded by six integers
representing the object type, color, and some additional object-
dependent information (e.g. is the door open, point direction,
gaze direction, etc). A list of all possible objects in provided in
the Supplementary material. The agent acts in the environment
through a multimodal action space, which consists of 6 primitive
actions (no, movement actions, toggle, and done) and a 4 ×

16 templated language (the agent also has the option not to
speak). All environments can also be instantiated as Textworlds
(Côté et al., 2018). This procedure is explained in more detail
in Section 4.5.

All environments, unless otherwise stated, contain a scripted
social peer, and the task can only be solved by interacting with
this peer (for which socio-cognitive abilities are needed). A social
peer observes the world in the same way as the agent does (as
a grid in front of it), and it also observes the agent’s utterances.
Their action space consists of primitive actions for movement,
pointing, and the toggle action. The peer can also communicate
with words and sentences. As the peer is scripted, there are no
constraints on the language it can utter (it is not constrained
to a templated language). The language it uses depends on the
environment, which defines with sentence the peer will utter at
which point. The peer is represented in the agent’s observation
by seven integers depicting their: object type, position, color,
type (cooperative or competitive), gaze direction, point direction,
and the last executed primitive action. The peer’s gaze and point
directions are represented relative to the agent (e.g. 1—to the left
of the agent). The pointing direction can also be set to 0, which
signifies that the peer is not pointing. Figure 4 shows an example
of an environment with the corresponding encoding of the peer.
The agent (red) and the scripted peer (purple) are making eye
contact—the peer and the agent are in the same row or column and
their gazes meet frontally. In this example, the scripted peer is also
pointing to the blue box.

The SocialAI environments are parameterized, and those
parameters define the social dimensions of the task. In other words,
parameters define which socio-cognitive abilities are needed to
solve the task. For example, depending on the ENVIRONMENT TYPE

parameter, the peer can give information, collaborate with the
agent, or be adversarial. In the case of the peer giving information,
additional parameters define what is the form of this information
(linguistic or pointing).

3.2 Parameter tree

SocialAI enables the creation of many parameterized
environments, and those parameters are implemented as nodes in
a parameter tree. A parameter tree is a structure through which the
experimenter can easily define which parameters (and their values)
can be sampled. An example of such a tree can be seen in Figure 5.
The experimenter defines a parameter tree at the beginning of
the experiment. Each episode begins with the sampling of a set of
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FIGURE 3

Workflow of an agent acting in the SocialAI school. The environment generates a state, which is represented as multimodal observations: a 7 × 7 × 6
tensor and the full dialogue history. The agent acts through a multi-modal action space consisting of primitive actions and utterances.

parameters from this tree. Then, an environment is created and the
agent placed inside.

The parameter tree is used to sample parameter sets, an
example of such sampling is shown in Figure 5. There are two kinds
of nodes: parameter nodes (rectangles) and value nodes (ovals).
Parameter nodes correspond to parameters, and value nodes
corresponds to possible values for those parameters. Sampling
proceeds in a top-down fashion, starting from the root node. In all
our experiments, ENV_TYPE parameter node is the root. Sampling
from a parameter node selects one of its children (a value node),
i.e. sets a value for this parameter. This can be done by uniform
sampling over the node’s children, or by prioritized sampling with
a curriculum. Once a value node has been chosen, the sampling
continues through all of its children (parameter nodes). In other
words, setting a value for one parameter, defines which other
parameters (the value node’s children) need to be set. In our
codebase, it is simple to create such trees, and add additional
parameters and environments. In the following sections, we
explain the most relevant parameters. The Supplementary material
contains additional examples of parametric trees.

3.3 Environment types

The most important parameter is the environment type—
ENV_TYPE (the root node). We implemented three different
environment types: INFORMATIONSEEKING, COLLABORATION, and
ADVERSARIALPEER. A parameter tree doesn’t have to contain all of
them, rather this depends on the type of experiment one wants
to conduct (most often only one will be present). For example,
Figure 5 shows the tree with only the INFORMATIONSEEKING

environment type. This tree was used to study understanding of
the pointing gesture in Section 4.2. In the rest of this section,
we describe the INFORMATIONSEEKING and the COLLABORATION

environment types. The ADVERSARIALPEER type is described in the
Supplementary material.

3.3.1 Information seeking type environments
We used this environment type in case studies regarding

communication, joint attention, and imitation learning. Figure 6
shows examples of INFORMATIONSEEKING type environments.
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FIGURE 4

A depiction of a peer and its encoding. The agent and a peer are in eye contact, and the peer is pointing to the blue box. To the right is an encoding
of the peer. The encoding contains information about the peer, e.g. the gaze and point direction.

The general principle of this environment type is as follows.
The agent is rewarded upon eating the apple, which is hidden. The
apple can be accessed by interacting with an object. The PROBLEM

parameter defines which objects will in the environment. There
are six different problems: BOXES, SWITCHES, MARBLE, GENERATORS,
DOORS, or LEVERS. Different objects make the apple accessible
in different ways. For example, opening the box will make
the apple appear at the location of the box, while pulling the
lever will open the door in front of the apple. A distractor
can also be present (if N is set to 2). A distractor is an
object of the same type as the correct object, but if it is used,
both objects are blocked and the apple cannot be obtained in
this episode.

To find out which object is the correct one, the agent must
interact with the scripted peer. This interaction starts with the agent
introducing itself. The way in which the agent should introduce
itself is defined by the INTRODUCTORY SEQUENCE parameter. We
define the following four values: NO, EYE_CONTACT, ASK, ASK-

EYE_CONTACT. For the value NO, no introduction is needed and
the peer will give information at the beginning of the episode. In
most of our experiments, we will use the value EYE_CONTACT. For
this value, the scripted peer will turn to look at the agent and wait
for the agent to look at it. The agent must direct its gaze directly
toward the scripted peer. An example of an established eye contact
can be seen in Figure 4. For the value ASK, the agent needs to
utter “Help, please” (a full grammar of the language is given in the
Supplementary material). Finally, the ASK-EYE_CONTACT value is a
combination of the previous two (the agent utters “Help, please”
during eye contact).

Once the agent introduces itself, the HELP parameter defines
the peer’s behavior. If it is set to Y the peer with obtain the
apple, and leave it for the agent to eat. Alternatively, it will

give cues to the agent about which object to use. The nature of
this cue is defined by the CUE TYPE parameter. We define four
different values: POINTING, LANGUAGE COLOR, LANGUAGE FEEDBACK,
and IMITATION. For the POINTING type, the peer will point to
the correct object. It will move to a location from which it can
unambiguously point (e.g. the same row) and point to the object.
For the LANGUAGE COLOR type, the peer will say the color of the
correct object. For the LANGUAGE FEEDBACK type, the peer will
hint how close the agent is to the correct object. Every step, the
peer will say “Cold,” “Medium,” “Warm,” or “Hot,” depending on
how close the agent is to the correct object (e.g. “Cold” means
that the agent is far from the object, and “Hot” that it is right
next to it). For the IMITATION type, the peer will demonstrate
the use of the correct object. The peer will use the correct
object, obtain the apple, eat it, and reset the environment to its
initial state.

For the purpose of analyzing the agent’s behavior more
thoroughly, Information seeking environments can also be
created without the distracting object, i.e. in their asocial
versions. This can be achieved by setting parameter PEER

to N and parameter N to 1. The asocial version of an
information seeking environment contains no distractor, and
no peer, i.e. the agent just needs to use the only object in
the environment.

3.3.2 Collaboration type environments
We used this environment type to study the agent’s role-

reversal ability. It consists of collaborative activities with two clearly
defined roles. Environments are separated into two halves by a
fence over which the agent can see, but which it cannot cross
(each half corresponds to one role). If both roles are fulfilled
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FIGURE 5

An example of procedural environment generation using tree-based parametric sampling. Parameter nodes (rectangles) require that one of its
children (a value node) is selected. Value nodes (ovals) require that sampling progresses through all of its children (parameter nodes). Three examples
of parameter sampling (and the three corresponding environments) are shown.

correctly, two apples will become accessible (one on each side of
the fence).

The most important parameters are ROLE and PROBLEM. The
ROLE parameter defines in which role to put the agent. The
PROBLEM parameter defines the collaborative activity, of which we
implemented seven:DOORLEVER,MARBLEPUSH,MARBLEPASS, BOXES,
SWITCHES, GENERATORS, MARBLE. In DOORLEVER one participant
opens the door by pulling the lever and the other passes through
them, and activates the generator (generating two apples). In
MARBLEPUSH one participant opens the door by pulling the lever,
and the other pushes a marble through them. This marble
activates the marble generator upon touching it. In MARBLEPASS

one participant pushed the marble to the right side of the room,
and then the other redirects it toward the marble generator. In
the other four problems, one participant is presented with two
boxes of different colors, and the other participant is presented with
two objects of those same colors and of the type defined by the
PROBLEM parameter (e.g. two generators). First, the participant that
was presented with boxes opens one box (an apple will be in both).
After this, to obtain its apple, the other participant must use the
object of the same color as the opened box. Figure 7 shows examples
of COLLABORATION type environments.

Like the information seeking environments, collaboration
environments can also be instantiated in their asocial versions.
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FIGURE 6

Examples of INFORMATIONSEEKING type environments, in which agents learn to find hidden apples using textual or non-verbal communication with
social peers. (A) A scripted peer pointing to a box. The agent needs to open the red box. (B) A scripted peer uttering the color of the correct
generator. The agent needs to push the marble onto the blue generator. (C) A scripted peer hinting the distance to the correct lever (“Hot” means
very close). The agent needs to pull the purple lever to open the door.

This can be achieved by setting the VERSION parameter to
ASOCIAL. The peer is not present in the environment, and the
environment is initialized so that the task can be solved alone.
For example, in MARBLEPASS the marble is already on the right
side of the room, so the agent just has to push it toward the
marble generator.

4 Experiments

In this section, we demonstrate the diversity of experiments
that can be conducted with the SocialAI school. To facilitate future
research, the SocialAI school is easy to modify and extend, and
is completely open sourced. We hope that it will be useful to
study various questions regarding social intelligence in AI. Here, we
present a series of such case-studies inspired by theories and studies
discussed in Section 2.

The remainder of this section is organized as follows. In Section
4.1 we describe the agents used in case studies with reinforcement
learning. In Section 4.2 we evaluate the generalization of socially
recursive inferences by RL agents to new contexts—pointing in
a new context. In Section 4.3 we show how an experiment from
cognitive science can be recreated in the context of AI—we study
the transfer of knowledge from one role to another, i.e. role reversal.
In Section 4.4 we study how an RL agent can be made to learn
a complex task by changing the environment (scaffolding) rather
than the agent. Finally, in Section 4.5 we show how SocialAI
environments can be easily transformed to pure Textworlds to
study large language models as interactive agents. Five additional
case studies are briefly outlined in Section 4.6 and presented
in detail in the Supplementary material. These regard linguistic
communication, joint attention, meta imitation learning, inferring
the other’s field of view, and formats (pragmatic frames). The
Supplementary material also presents a pilot study, which was used
to outline the most promising agent for all case-studies.

4.1 Baselines

In all of our case studies, except the study with LLMs (Section
4.5), we use a PPO (Schulman et al., 2017) reinforcement learning
agent as depicted in Figure 3. The multimodal observation space
consists of a 7 × 7 × 6 tensor (vision) and the full dialogue history
(language). The multimodal action space consists of 6 primitive
actions (no_op, turn left, turn right, go forward, toggle, and done),
and a 4 × 16 templated language. The architecture of the agent is
taken from Hui et al. (2020) and adapted for the multimodal action
space with an additional output head (see Supplementary material
for details). This additional head consists of three outputs: a binary
output indicating if the agent will speak, and outputs for the
template and the word to use.

In a set of pilot experiments (see Supplementary material)
we proposed two count-based exploration bonuses, which we
compared to other exploration bonuses including RND (Burda
et al., 2018) and RIDE (Raileanu and Rocktäschel, 2020). Visual
count-based exploration bonus (“PPO-CB”) performed best on
the tasks in which language is not used, and its linguistic variant
“PPO-CBL” performed best in environments with the peer giving
linguistic cues. We therefore used those two agents in our case
studies. Both of those two exploration bonuses are episodic. They
estimate the diversity of observations in an episode and give reward
proportional to that diversity. The linguistic exploration bonus uses
the number of different words, and the vision-based exploration
bonus the number of different encodings observed. In case studies
in Sections 4.2, 4.3 we use the “PPO-CB” exploration bonus. The
case study in Section 4.4 requires as raw PPO agent, and the one in
Section 4.5 uses LLMs as agents.

4.2 Understanding the pointing gesture

This experiment is motivated by a study of children’s ability
to understand pointing gestures (Behne et al., 2005), discussed in
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FIGURE 7

Examples of COLLABORATION type environments, in which agents must learn cooperative strategies with a (scripted) peer to achieve two-player
puzzles. (A) The MARBLEPASS problem with the agent in role B. The peer pushes the marble to the right and then the agent pushes it further to the
purple marble generator. This makes two apples appear on the blue and red platforms. (B) The LEVERDOOR problem with the agent in role B. The peer
opens the red door by pulling on the green lever. This enables the agent to go through the door and activate the purple generator This makes two
apples appear on the gray and yellow platforms. (C) The MARBLEPUSH problem with the agent in role A. The peer opens the yellow door using the
green lever. Then the agent pushes the marble through the door to the purple marble generator. This makes two apples appear on the purple and
green platforms.

Section 2.1.2. We study if an RL agent (with a visual count-based
exploration bonus) can infer the meaning of a pointing gesture, and
generalize this ability to new situations (infer the new meaning of
a pointing gesture in a new context). This kind of generalization
is relevant because the power of inferring pointing gestures is
based on being able to infer its meaning to new referents based
on new social contexts. We show how the SocialAI school can
be used to evaluate the presence of generalizable social skills in
artificial agents.

The environment consists of two objects (ex. boxes) and the
peer that points to the correct object. The agent then has to interact
with that object (ex. open the box) to get access to an apple. The
agent is trained on five problems each with different objects (Boxes,
Switches, Levers, Marble, Generators), and on the asocial version of
the Doors problem (only one door and no peer). Training on the
asocial version enables the agent to learn how to use a door, which
is a prerequisite for generalization of the pointing gesture to an
environment with two doors. The agent is evaluated on the Doors
problem in the social setting (two doors and a peer pointing to the
correct one). The agent needs to combine the knowledge of how to
use a door (learned on the asocial version of that problem), with
inferring the meaning of the pointing gesture (learned on the other
five problems), and generalize that to a new scenario where the peer
points to a door. To succeed, it needs to do pragmatically infer the
intended meaning of the point (a socially recursive inference).

Figure 8 shows the success rate of the agent on the

training environments [“PPO_CB(train)”] and on the evaluation

environment [PPO_CB(test)]. We can see that while the agent

easily solves the training environments (with the success rate of
95.2%), it fails to generalize to the testing environments (it reaches

the success rate of 45.2%, which corresponds to randomly guessing
the correct object). These results demonstrate that, while the agent
can learn to infer the meaning of a pointing gesture in a familiar
context, it cannot generalize to new social contexts. These results

FIGURE 8

The Pointing experiments. Is an RL agent is able to infer the meaning
of a pointing gesture in a new context? The figure compares the
success rate (mean ± SD over eight seeds) on the training
environments with the evaluation on the testing environment. The
cross marks depict statistical significance (p = 0.05). The agent
achieves high performance on the training environments, but it is
not able to infer the meaning of a pointing gesture in a new context.

motivate future research on how an agent can be endowed with
abilities for such combinatorial generalization. Given the recent
advances in modeling social interactions with LLMs (Park et al.,
2023), the LLM-based agents constitute a potential solution.
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The Supplementary material presents similar two experiments
in which the peer provides linguistic cues for the color and
for the proximity of the correct object (instead of pointing).
Similarly, we observe that, while the PPO agents master the training
environments, they fail to generalize to a new context.

4.3 Role reversal imitation

In this experiment, we study the role-reversal capabilities of
an RL agent: to what extent can it learn about the partner’s role
from playing its own. In doing so, we also show how SocialAI
can be used to adapt a cognitive science methodology for AI to
recreate the experiment. In Fletcher et al. (2012) apes and children
were trained on one role (role B), and then tested on how long
it took them to master the opposite role (role A). Results showed
that children, but not apes, master role A faster than the control
group (not pretrained). These results imply that children learn
about the opposite role just from playing their own, i.e. they see
the interaction from a bird’s eye perspective.We study the following
two questions: (1) Howmuch do RL agents learn about the partner’s
role during a collaborative activity? (2) Does increasing the training
diversity (training on more tasks in both roles) enable the agent to
learn more about the partner’s role?

We conduct this study on the MarblePass task. This task
consists of two roles: one participant pushes the marble to the right
side of the environment (role A), from where the other can redirect
it toward the generator (role B). We study how much an agent
learns about the testing role (role A), from the training role (role B).
Following Fletcher et al. (2012) we measure the sample efficiency of
fine-tuning agents to the test role. Unlike in Fletcher et al. (2012)
it is not sufficient to compare an agent pretrained on the training
role with an unpretrained agent. Even if the agent pretrained on
the training role learns nothing about the testing role, it would still
learn about environment dynamics and one would expect it to learn
faster than the unpretrained agent. For this reason, we compare
with an agent pretrained on the asocial version of the training role.
In this version, the agent obtains reward in the same way as in the
social version, but no peer is needed—the agent and the marble are
placed on the right side of the environment and the agent has to
push the marble toward the generator. Therefore, this agent learns
all about the relevant environment dynamics, but not about the
specific collaborative activity (this represents the control group in
Fletcher et al., 2012).

We conduct two experiments: single and group. In single

experiments, the agents are trained only on one problem: role
B and the asocial version of the MarblePass problem. In group

experiments, both agents are also trained on both roles of six
additional collaborative problems (a total of 13 environments).
In other words, we compare the agents pretrained in the four
following ways: (1) experimental (single): pretrained only on role
B of the MarblePass problem, (2) control (single): pretrained only
on the asocial version of the MarblePass problem, (3) experimental
(group): pretrained on role B of the MarblePass problem, and on
both roles of all other problems, (4) control (group): pretrained on
the asocial version of the MarblePass problem, and on both roles of
all other problems.

4.3.1 How much do RL agents learn about the
partner’s role during a collaborative activity?

Figure 9A shows the success rate of fine-tuning to role A of
the MarblePass task. It compares the experimental and the control
conditions of the single experiments. It is interesting to note that
the agent pretrained on the asocial version (“asocial”) masters role
A of the task slightly faster than the agent pretrained on role B
of the task (“role_B”). This implies that, not only, the agent does
not learn anything useful about the peer’s role, but pretraining on
role B actually makes it harder for the agent to learn about role
A. We believe that this is because, during training in role B, the
agent learns to first wait for the peer, while in the asocial version
it pushes the marble right away. As, in role A, the agent pushes the
marble right away too, we believe this makes it slightly easier for the
asocially pretrained agent to adapt to the new role. In other words,
from an egocentric view the asocial version is closer (than role B)
to role A. This shows that the RL agent, rather than understanding
the interaction from a bird’s-eye perspective, finds the simplest way
to solve the task.

4.3.2 Does training on additional problems
enable the agent to learn more about the
partner’s role?

Figure 9B shows the success rate of fine-tuning to role A of
the MarblePass task. It compares the experimental and the control
conditions of the group experiments. Here we can see that there
is no significant difference in sample efficiency. We can make two
observations from this. First, as the socially pretrained agent was
less sample efficient in the single experiments, we can conclude
that pretraining on many tasks reduces overfitting on role B. And
second, as this agent is not more sample efficient than the asocially
pretrained baseline, we can conclude that this agent does not learn
anything useful about the peer’s role as well.

These results imply an interesting avenue of research into how
agent’s attention can be directed to the partner’s role and the
birds-eye-view of the activity.

4.4 Sca�olding

In this section, we study the concept of scaffolding (see Section
2.2 for details).We show howmodifying the environment canmake
it easier for the agent to learn a complex task, i.e. we explore if
a scaffolded environment can help an agent learn more complex
interaction sequences (formats). This can be seen in contrast to
the standard approach, where the environment is kept fixed and
the agent improved (e.g. with an exploration bonus). For this
reason, here we use a PPO agent without an exploration bonus.
From the AI perspective, scaffolding can be seen as analogous to
curriculum learning (Bengio et al., 2009). In curriculum learning,
the task is made gradually more complex, enabling the learner to
gradually acquire it part by part. Scaffolding refers to the caretaker
taking a large part of the task on itself, and then gradually, as the
learner becomes more proficient, transferring parts of the task to
the learner until the learner can do the whole task by themselves.
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FIGURE 9

Role reversal imitation experiments. To what extent is an RL agent able to transfer knowledge from one role of a collaborative activity to another?
The success rate of fine-tuning to role A (mean ± SD over nine seeds) is shown [x denotes statistical significance (p = 0.05)] Agents pretrained on
role B do not master role A faster than asocially pretrained agents, implying that the RL agents do exhibit role reversal capabilities. (A) Single
experiment: learning role A given pretraining on role B (one environment). (B) Group experiment: learning role A given pretraining on role B and six
other two-roles tasks (13 environments).

We show how the SocialAI school can be used to study curricula
fostering social skill acquisition.

The environment is similar to the one in Section 4.2 with
small changes. First, we evaluate on all six problems (instead of
one) in the social version. Second, instead of pointing, the peer
gives linguistic cues for how close the agent is to the target object
(e.g. “Hot” for very close). And third, these cues are given after
a more complex introductory sequence (established eye contact
and the utterance of “Help, please”). The agent is trained in two
phases. In the first phase, the agent is trained on environments of
different complexity. After reaching a set success rate the training
goes to the second phase. In the second phase, the agent is trained
only on the six testing environments. We compare two types of
scaffolding: “scaf_4” and “scaf_8.” The scaffolding type defines the
environments in the first phase. The “scaf_4” agent is trained on
four different introductory sequences (requiring or not requiring
eye contact and the utterance)—a total of 18 environments (six
problems, four sequences). The “scaf_8” agent is in addition trained
on environments where the peer can help in two different ways:
linguistically hinting to the object or interacting with it and
leaving the apple for the agent to eat—a total of 36 environments
(six problems, four sequences, two helping options). The easiest
environments on which the “scaf_8” agent is trained do not require
an introduction and the peer leaves the apple for the agent, i.e. the
agent just goes to the apple and eats it. The hardest ones require
the introduction with both the utterance and the eye contact, and
include the peer linguistically hinting to the object (those hardest
environments constitute the testing set).

Figure 10 compares the success rate of the agents trained with
the two scaffolding types (“scaf_4” and “scaf_8”) to that of an agent
trained only on the six testing environments (“no_scaf”). We can

FIGURE 10

Sca�olding experiment. Comparing agents trained on multiple
environments of varying di�culty to an agent trained an
unsca�olded environment. Success rates on the testing
environments (mean ± SD over eight seeds) are shown [x denotes
statistical significance (p = 0.05) with respect to the “no_scaf”
baseline]. Only the sca�olded agents solve the environments
(sca�olding with eight di�culty levels is the best).

see that only the scaffolded agents solve the testing environments,
and that the agent with a more detailed scaffolding (“scaf_8”)
solves the environment faster. These results show that scaffolding
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enables the agents to learn more complex formats, and that a more
thorough scaffolding further improves the efficiency. In future
work, more advanced scaffolding could be explored [e.g. based on
learning progress (Oudeyer and Kaplan, 2007) or other surrogate
objectives (Portelas et al., 2020)].

4.5 Large language models as interactive
agents

Large languagemodels (LLMs) are starting to be used in various
tasks (Brown et al., 2020; Devlin et al., 2018; Zhang et al., 2022;
Ouyang et al., 2022), including to control interactive agents (Yao
et al., 2022; Carta et al., 2023). In this section, we show how the
SocialAI school enables the parsing of visual grid observations to
text in order to study LLMs as interactive agents This process can
be easily modified, which simplifies prompt engineering (Liu et al.,
2021) and similar experimentation.

We use two environments: AsocialBox and ColorBoxes (see
Figure 11). The ColorBoxes enviroment is in addition used to test
generalization. In the AsocialBox environment, there is a box,
which the agent has to open to get the apple. In the ColorBoxes
environment, there are two boxes and a peer. At the beginning of
the episode, the peer utters the color of the box with the apple.
When testing for generalization, we create in-context examples in
environments with other objects (e.g. doors, levers) and in the
asocial version of the Boxes problem (analogous to the training
environments in Section 4.2). To generalize, an agent must infer
the meaning of the peer’s utterance in a new context (to select the
correct box) and combine this with the knowledge of how to open
a box (from the asocial version).

A language model acts by generating text given some textual
prompt. In our experiments, the prompt contains the following:
the in context examples, the last three steps (observations and
actions) of the current episode, and the action query (“Act:”).
The observations are parsed to text as shown in Figure 12.
We manually create expert trajectories to be used as in-context
examples—six episodes for the AsocialBox environment, and five
for ColorBoxes (the full in-context examples are given in the
Supplementary material. The model then generates the textual
continuation of this prompt.1 If one of the available actions (“turn
left,” “turn right,” “move forward,” “toggle”) is a substring of
the generated text, the action is executed and the environment
generates the next observation. However, if no action was matched
to the generated text, the “no_op” action is executed (the agent does
not act this step). The executed action and the new observation are
then added to the prompt.

We compare six different large language models: the open-
source multilingual bloom-560m (Scao et al., 2022) (560M),
and five models from the GPT (Brown et al., 2020) family
“text-ada-001” (estimated to be 350M2), “text-davinci-003” (175B
parameters), “gpt-3.5-turbo-instruct-0913,” “gpt-3.5-turbo-0613,”
and “gpt-4-0613.” We also compare with a random baseline, which
samples a random action each step. We evaluate these models

1 We generate three tokens for GPT models, and three words for bloom.

2 https://blog.eleuther.ai/gpt3-model-sizes/

on a fixed test set of 10 environments for AsocialBox and 20
environments for ColorBoxes, with a time limit of 15 steps.

Table 1 shows that, on the AsocialBox environment, the best
GPT models (gpt-4 and davinci-003) achieve a high performance
(100% success rate), despite only observing six expert trajectories.
On ColorBoxes, GPT-4 is the only model to achieve high
performance (75%). This model escapes the local optimum of 50%
(randomly choosing a box to open), these results imply that the
model uses the given social cue (the peer’s utterance of the color).
As GPT-4 was the only model to do so, we test only this model
on generalization. The model reaches a performance of 55%, which
implies that themodel doesn’t generalize to a new social context—it
randomly chooses a box to open.

The motivation of this experiment was only to show how
LLM-based agents can be studied in SocialAI. Therefore, more
detailed experiments and analysis are needed to reach stronger
conclusions. Even though the environments used in this case
study are simpler than those RL case studies (only the Boxes
problem, and no introductory sequence), we find it impressive that
such performance is achieved from observing only a few expert
trajectories: six for AsocialBox and five for ColorBoxes given that
the model was not explicitly pretrained for such a task.

We are optimistic that in future work LLM-based agents could
solve much more complex tasks with further prompt engineering
andmore advanced methods. Promising methods include planning
(Huang et al., 2022), chain-of-thought reasoning (Wei et al., 2022;
Zhang et al., 2023), fine-tuning (Ouyang et al., 2022; Carta et al.,
2023), and many more. As the main motivation of this case study
was to show that it is easy to study large language models with the
SocialAI school, we leave those experiments for future work.

4.6 Additional experiments

We refer interested readers to the Supplementary material for
details on additional case studies, which we briefly outline in this
section. As mentioned in the pointing case study (Section 4.2), we
performed analogous experiments to study whether the agent can
leverage linguistic cues instead of the pointing gesture. We observe
similar results: while the agents master the training environments,
they fail to generalize to new context.

We study joint attention as defined by Tomasello (see Section
2). Environments feature a peer providing cues both inside and
outside joint attention. Informative cues are only given inside
joint attention (after completing the introductory sequence), while
misleading random cues are given outside joint attention. In our
experiments, the agent was unable to sufficiently discriminate
between those cues to solve the task. We present a case-study on
the acquisition of an (in-episode) imitation learning mechanism.
From the AI perspective, this can be seen as social meta-
learning: the agent acquires (through gradients) the imitation
learning mechanism, which is used during the episode to learn an
instrumental action on a new object. This study is motivated by an
experiment from cognitive science in which children showed such
imitation abilities (Carpenter et al., 1998). Experiments showed that
RL agents are not able to acquire a learning mechanism which
would enable them to learn how to use a completely new object
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FIGURE 11

Environments used in the experiments with LLMs with observations are parsed into text. (A) The AsocialBox environment (B) The ColorBoxes
environment.

FIGURE 12

An example of how a language model can be used as an interactive agent. An observation is parsed into text and combined with previous two
observations and actions. This is appended to the in-context examples, and is used as prompt for the LLM. The agent generates text that is matched
(as case-insensitive substring) with the list of possible actions.

at test time. We test the agent on its ability to infer the peer’s

field of view. The agent is rewarded for eating the apple without
being observed by the peer. We show that the agent partially infers
the peer’s field of view, but is still not able to match the upper

performance bound. Finally, we study the acquisition and use of
formats as defined by Jerome Bruner (Section 2.2), i.e. protocols
of social interactions. Agents were trained on tasks in which cues
can be obtained from a peer after a more complex introductory
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TABLE 1 Comparison of LLM-based agents on two SocialAI environments parsed into pure text (see Figure 12).

gpt-4 gpt-3.5-
turbo

gpt-3.5-turbo-
instruct

ada-001 davinci-
003

Bloom-
560m

Random

AsocialBox 100% 90% 90% 90% 100% 10% 0%

ColorBoxes 75% 5% 25% 0% 15% 5% 5%

ColorBoxes
(generalization)

55%

The best model (gpt-4) reached the success rates of 100% on AsocialBox, and 75% on ColorBoxes. The score of 75% suggests that the model is levering the peer to choose the correct box. When

tested for generalization this model reached 55% success rate implying it is not able to generalize to a novel object. These expriments demontrate how LLM-based agents can be used in the

SocialAI School. While more detailed analysis is needed to reach stronger conclusions, the performance is impressive given that the models observed only six (for AsocialBox) and five (for

ColorBoxes) expert trajectories. We are confident that with more advanced LLM-based methods better performance can be achieved. The bold numbers indicate the best performing model for

each task.

sequence (ASK_EYE_CONTACT). The results show that, while an RL
agent trained without the exploration bonus was unable to learn
that introductory sequence, the agent with a linguistic count-based
exploration bonus was. This results can be interpreted in tandem
with the scaffolding case study (Section 4.4) in which an RL agent
without an exploration bonus is able to learn the most complex
introductory sequence, given training in a scaffolded environment.
Therefore, the acquisition of complex formats can be achieved
either by changing the learner or the environment. These additional
case studies show further examples of interesting research questions
that can be explored with the SocialAI school.

5 Conclusion and discussion

Following contemporary research in developmental
psychology, this work presents and studies a wider set of
socio-cognitive abilities than those usually studied in the field of
AI. The motivation of this work is to introduce those concepts
to AI and motivate related research. We present an introduction
to Michael Tomasello’s and Jerome Bruner’s theories of socio-
cognitive development. Following these theories, we outlined a set
of key socio-cognitive abilities and concepts for AI: social cognition
(inferring other’s perception and joint attention), communication
(referential and early conventionalized communication), cultural
learning (imitation and role reversal imitation), scaffolding,
and formats.

We introduce the SocialAI school—a tool simplifying the
research of core socio-cognitive abilities. We show how the
SocialAI school can be used to easily create environments
studying various questions inspired by developmental psychology.
With RL agents, we conduct experiments regarding the pointing
gesture, scaffolding, and role reversal (by recreating an experiment
from developmental psychology). We demonstrate that, by using
SocialAI to parse environments into text, Large Language Models
be easily studied as well. In the Supplementary material, we
present additional studies concerning linguistic communication,
joint attention, imitation learning, inferring others’ field of view,
and formats. Our experiments demonstrated the diversity of studies
that can be conducted with the SocialAI school, highlighted the
limitations of standard RL agents, and showed that while large
language models learn with high sample efficiency, additional
methods such as fine-tuning or chain-of-thought might be needed
for generalization.

5.1 Limitations

In this work, we outline and discuss several concepts from
developmental psychology (mostly regarding the development
before and around 9 months of age), which we believe to be
most relevant for AI at the moment. Due to the magnitude of
this field of research, many relevant cognitive concepts are either
discussed very briefly (e.g. conformity, social norms, instructed
learning) or left unmentioned (e.g. morality, fairness, sense of
self). Furthermore, while we argue that the work of Tomasello and
Bruner provides an interesting framework to guide AI research in
social skill acquisition, many other perspectives could have been
considered as well, e.g. Erikson (1993), Gopnik andMeltzoff (1997),
or Heyes (2019).

Similarly, as the present work merely represents a first
step toward socially proficient artificial learners, many technical
dimensions were simplified. In particular, we refrain from free
form language dialogues and consider simple templated language.
Likewise, we do not use human or trained peers, but scripted
peers (which enables to isolate social abilities). Rather than
implementing rich 3D visual worlds with continuous actions, we
use grid-worlds with discrete primitive actions. We argue that such
simplifying assumptions affords tractable studies while maintaining
enough social complexity to model and isolate various social
challenges. Assuming progress is made over these social scenarios,
an interesting avenue for future work will be to extend the
parametric generation toward environments with more complex
sensorimotor challenges.

5.2 Future work

Given recent works showcasing the importance of Automatic
Curriculum Learning in “asocial” DRL (Parker-Holder et al., 2022;
Portelas et al., 2020), an interesting direction for future work would
be to study whether this can also be observed in the SocialAI
school. Our short case study on the importance of scaffolding
(Section 4.4) suggests a positive impact, although we restricted
our analysis to simple expert curricula. An interesting challenge
is to design curriculum methods able to leverage the hierarchical
structure of SocialAI’s parametric tree, rather than the usual low-
dimensional flat spaces of task-encoding parameters (predominant
in the literature).

Frontiers inNeurorobotics 16 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1396359
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
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Large language models (LLMs) are spreading to countless
branches of artificial intelligence. A promising avenue of future
research is the application of language models to interactive agents
(Carta et al., 2023). In this paper, we studied LLMs only on simple
environments with a simple method—prompting the model with
a few expert trajectories. While this approach showed impressive
sample efficiency, it is limited due to the constraints on the prompt
size. These experiments should be revisited with more powerful
methods, such as fine-tuning or chain-of-thought prompting. Such
methods could potentially make more complex social inferences,
leading to better performance on many case studies in this paper,
especially the ones related to generalization to new scenarios.

An important factor for the observed learning failures of our
PPO agents in our case-studies might be linked to the simple
forms of exploration bonuses that we used. Finding an exploration
bonuses suited for social challenges is another interesting direction.
We show that RIDE (Raileanu and Rocktäschel, 2020) and RND
(Burda et al., 2018), two state-of-the-art exploration bonuses
from classical DRL underperformed compared to our simple
CountBased methods. An interesting avenue would be to study
recent exploration bonusmethods designed for social scenarios, e.g.
Zhang et al. (2020).
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