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Introduction: In recent years, the perceptual capabilities of robots have been

significantly enhanced. However, the task execution of the robots still lacks

adaptive capabilities in unstructured and dynamic environments.

Methods: In this paper, we propose an ontology based autonomous robot

task processing framework (ARTProF), to improve the robot’s adaptability

within unstructured and dynamic environments. ARTProF unifies ontological

knowledge representation, reasoning, and autonomous task planning and

execution into a single framework. The interface between the knowledge base

and neural network-based object detection is first introduced in ARTProF to

improve the robot’s perception capabilities. A knowledge-driven manipulation

operator based on Robot Operating System (ROS) is then designed to facilitate

the interaction between the knowledge base and the robot’s primitive actions.

Additionally, an operation similarity model is proposed to endow the robot

with the ability to generalize to novel objects. Finally, a dynamic task planning

algorithm, leveraging ontological knowledge, equips the robot with adaptability

to execute tasks in unstructured and dynamic environments.

Results: Experimental results on real-world scenarios and simulations

demonstrate the e�ectiveness and e�ciency of the proposed ARTProF

framework.

Discussion: In future work, we will focus on refining the ARTProF framework by

integrating neurosymbolic inference.

KEYWORDS

service robot, knowledge-enabled robot, ontology, knowledge representation, task

planning

1 Introduction

Benefiting from the rapid advancements in artificial intelligence and robotics, the

perception capabilities of robots have been significantly improved in recent years. Robots

are now able to accomplish basic tasks such as object recognition, navigation, and

manipulation. However, the task execution of the robots still lacks adaptive capabilities in

unstructured and dynamic environments. Consider the basic task of retrieving apples, if the

robot can visually perceive the apple, the robot is able to successfully grasp it and execute

the corresponding action. However, if the robot is in an indoor environment and the apple

is placed in a box or drawer, the robot lacks the ability to reason about the task. The lack of

cognitive and reasoning ability poses a critical bottleneck for the robot to accomplish the

task. Specifically, robots lack the fundamental understanding of commonsense knowledge.

Their cognitive abilities remain confined to basic object recognition, limiting their capacity

to tasks in unstructured and dynamic environments.

Symbolism believes that cognition is a form of symbolic processing in ontology,

suggesting that human thought processes can always be described through specific

symbols. Ontology, which can effectively describe the hierarchical structures and semantics
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of different concepts, has become an important tool for robot’s

reasoning capacities (Olivares-Alarcos et al., 2019; Paulius and

Sun, 2019). Suh et al. (2007) proposed an ontology-based multi-

level robot knowledge framework (OMRKF) , which achieves

the semantic cognitive representation of robots by defining

four knowledge types: perception, model, activity, and context.

Ontological knowledge reasoning is achieved through defining

knowledge axioms and rules, providing the ability to query

semantic knowledge effectively. Tenorth et al. (2010), Tenorth and

Beetz (2013), Tenorth and Beetz (2017) and Beetz et al. (2018)

proposed an ontology-based knowledge processing system named

KnowRob, which built a semantic framework integrating multi-

source heterogeneous information. KnowRob has the capacity for

both knowledge representation and reasoning. Leveraging ontology

as the knowledge carrier enables the effective characterization

of multiple and complex classes, attributes and relationship

of knowledge. Based on the representation of classes and

attributes, KnowRob can align knowledge with objects in the real

scenario and generate a large number of instance descriptions

through inheritance operations. Rule-based reasoning approaches

empower the customization of rules tailored to specific application

scenarios, thereby enabling user-defined reasoning processes.

Based on KnowRob, Beetz et al. (2010) proposed CRAM cognitive

framework (Beetz et al., 2010, 2023). This framework addresses

the challenge of missing information in daily tasks by utilizing

CRAM Plan Language (CPL) to build action plans. By leveraging

knowledge reasoning, CRAM fills in the gaps in action plans,

which enables robots to execute daily operations effectively.

ORO (Lemaignan et al., 2010; Lemaignan, 2013) proposed a

general knowledge representation framework for autonomous

robot-human interaction processes. It aims to enhance the robot’s

interaction capabilities in complex human living environments.

The tasks include object recognition, natural language interaction,

task planning, and collaboration with other robots or humans. The

knowledge in ORO is grounded on an upper-level ontology built

on OpenCyc (Lenat, 1995), which allows for the addition of new

ontologies on top of the upper-level ontology. ORO employs Pellet

(Sirin et al., 2007) for ontology knowledge query and reasoning.

Li et al. (2017) introduced the Smart and Networking Underwater

Robots in Cooperation Meshes (SWARMs), which aims to address

information heterogeneity and facilitate uniform comprehension

among robots regarding exchanged information.

The aforementioned knowledge frameworks use ontology as

the basis for knowledge representation and reasoning, which

could provide rich semantic information for robots. OMRKF (Suh

et al., 2007) addresses the low-level perception by storing SIFT

visual features in a hierarchical symbolic architecture, making it

difficult to extend to more complex entities or actions. KnowRob

adopts an encyclopedia form to build the semantic knowledge

model, which lacks the top-level design for tasks. CRAM focuses

on completing task parameters through knowledge but lacks

emphasis on dynamically generating action execution sequences

in tasks. The ORO knowledge management system highlights

the interaction between robots and humans. The ontology in

SWARMs is specialized for unmanned underwater robots, limiting

its applicability to other types of robot applications. Moreover,

representative work of knowledge frameworks such as RoboEarth

(Waibel et al., 2011), OPEN-EASE (Beetz et al., 2015), and

RoboBrain (Saxena et al., 2014) emphasize more on knowledge

sharing among different robots. They do not offer task processing

tailored for robot manipulations in dynamic environments.

Recently, deep learning has achieved remarkable breakthroughs

in vision tasks such as object detection and recognition. R-CNN

series from R-CNN to Mask R-CNN (Girshick, 2015; Ren et al.,

2015; He et al., 2017; Bharati and Pramanik, 2020), YOLO series

(Redmon et al., 2016; Redmon and Farhadi, 2017, 2018; Jiang

et al., 2022), and SSD (Liu et al., 2016; Zhai et al., 2020) are

representative works in deep learning-based object detection. Deep

learning-based approaches have greatly improved the performance

of object detection and recognition compared with manually

designed features. Meanwhile, Robot Operating System (ROS),

as a communication framework specifically designed for robot

software development, has attracted much attention. ROS hosts a

varieties of algorithms such as Gmapping for laser-based SLAM

(Simultaneous Localization and Mapping) and MoveIt for robotic

arm motion planning. In a semantic knowledge-assisted robot,

beyond achieving the dynamic update of the knowledge base by

combining robot perception system with the knowledge-driven

decision-making control, it is also necessary to address the easy

deployment of new perception and control algorithms. To this

end, this paper proposes an ontology autonomous robot task

processing framework (ARTProF). This framework seamlessly

integrates knowledge representation, knowledge reasoning, and

autonomous task planning and execution.

ARTProF is based on ontological knowledge representation

and reasoning. In the proposed framework, the instances in the

knowledge base are generated with neural network-based object

detection algorithms. The proposed framework also defines ROS-

based manipulation operators for the robot, which establishes

the connections between the primitive actions of the robot and

the objects it interacts with. The integration with the ROS

system facilitates the relationship between the knowledge system

and the robot. Moreover, the proposed framework includes

an operation similarity model for different objects. When the

robot is operating a novel object, the robot’s action is selected

autonomously according to the similarity model, which endows

the robot with the ability to manipulate generalization. Moreover,

ARTProF achieves dynamic task planning by leveraging knowledge

reasoning. The robot can autonomously and dynamically organize

action sequences to complete tasks in diverse environmental

conditions. Compared with existing knowledge frameworks,

ARTProF offers the following advantages: (1) ARTProF addresses

the task demands in dynamic and uncertain environments by

supporting the representation and reasoning of common sense and

task knowledge, dynamic knowledge generation, task planning and

execution. These functionalities provide a comprehensive support

for robot task execution. (2) An operation similarity model is

proposed to facilitate operation transfer among different objects.

Objects with similar characteristics are manipulated in a similar

manner. (3) A dynamic task planning algorithm is proposed

based on the ARTProF framework. The generated plans satisfy the

execution constraints defined in the prior knowledge during robot

task execution.

The paper is organized as follows. Section 2 introduces the

basic architecture, knowledge representation and reasoning of the

ARTProF. Section 3 gives the design and implementation of the

perception system, where the instances in the knowledge base are

dynamically generated. Section 4 introduces the knowledge-guided
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manipulation operators. Section 5 introduces the dynamic task

planning based on knowledge reasoning. Section 6 presents our

experimental result and analysis on both real-world scenarios and

simulations. Finally, we conclude the paper in Section 7.

2 The framework of ARTProF

As the knowledge processing and task execution system for

autonomous robots, ARTProF is able to handle diverse knowledge

types such as environment knowledge and task knowledge.

ARTProF also presents capacities for flexible knowledge reasoning.

Through integration of the perception and control systems,

ARTProF achieves knowledge-based autonomous control, enabling

the robot to execute everyday manipulation tasks. The framework

of ARTProF is shown in Figure 1.

In ARTProF, the ontological knowledge base is constructed

using the description logic (DL), which includes classes, attributes,

and instances needed to describe the object. The ontological

knowledge base is extensible, allowing the derivation of new

classes from existing ones and incorporation of new object

instances. The ontological knowledge is denoted as D = (T,A),

where T is the TBox (Terminology Box) and A is the ABox

(Assertional Box). The TBox represents static knowledge built

from commonsense knowledge and task-specific background

information. It defines concepts and relationship between

concepts such as abstract classes, inherent attributes, and

relationships between classes. On the contrary, the ABox

represents dynamic knowledge derived from the real-time

data acquired by the robot perception system. This dynamic

knowledge represents specific events such as object instances,

size, pose, and state. We use Web Ontology Language (OWL;

Motik et al., 2009) to store the description logic knowledge

in XML-based files. Originally developed for knowledge

representation in the semantic web, OWL has now become a

general knowledge representation format capable of describing

all aspects of objects, actions, time events, attributes, and

their relationships.

The semantic knowledge of robot task processing is shown

in Figure 2. The “Environment” class describes information

related to the environment where the robot is located. It

includes “Object” for the classes of the operated object and its

associated semantic attributes, “State” for defining the object’s

state, “Map” for representing the semantic layout of the

task environment, “Time” for temporal concepts, “Math” for

mathematical models and algorithms, and “User” for robot user-

related knowledge including identity and task-specific information

such as usernames, habits, interests, etc. The “Task” class

defines basic primitive actions necessary for the robot’s task

execution. Upon receiving a task, semantic understanding,

action decomposition, and dynamic planning are facilitated

through the “Task” class. The “Robot” class describes the

attributes of the robot itself. It includes “Capability” for function

descriptions, “Component” for hardware configuration, “Type” for

the robot category (e.g., industrial and service), and “Status” for

describing the robot’s operational states (e.g., working, shutdown,

and charging).

There are many inference tasks implemented by DL inference

engines, such as Racer (Haarslev and Möller, 2001), Pellet (Sirin

et al., 2007), and HermiT (Shearer et al., 2008), which are operated

by maintaining a complete knowledge base in memory. This

reasoning mechanism requires reasoning on the entire knowledge

base whenever there are changes, which is both time-consuming

and not suitable for the reasoning in dynamic environments. In

ARTProF, we choose a purely memory-based infrastructure for

efficiency. The knowledge query and reasoning engine of ARTProF

utilizes the semweb library (Wielemaker et al., 2003) as an XML

parser to convert the XML parse-tree from the OWL ontology

file into a Prolog list of triples. We further employ the rule-

based reasoning used in SWI-Prolog (Wielemaker et al., 2012).

SWI-Prolog allows to customize the rules according to specific

application scenarios, enabling reasoning through querying the

predicates (Vassiliadis et al., 2009).

When the robot is interacting with objects, the

robot needs to understand the object’s attributes, infer

the object’s location, and formulate the manipulation

policies. These decisions necessitate relating the abstracted

knowledge about objects to the physical entities in the

environment. Moreover, the knowledge base is required

to associate with the robot perception system. To

seamlessly integrate the perceived visual information

into the knowledge query and reasoning processes, the

perceptual fusion model is designed in ARTProF. This model

synchronously transforms the perceived visual information into

dynamic knowledge.

Figure 3 illustrates the interaction between the knowledge base

and the perception system within ARTProF. ARTProF provides

two connection modes between the knowledge base and the robot

perception system: (1) synchronous communication (request-

response mode). This mode allows on-demand perception of

objects while querying the knowledge base to generate object

instances. It achieves synchronous updates of the knowledge base

by incorporating the perceived object instances. (2) Asynchronous

communication (channel broadcast mode). The knowledge base

asynchronously updates by passively listening to the published

object detection results. The generated object instances mainly

include attributes such as ID, category, pose, size, material, etc.

Since the pose of the object can be varied, an intermediate

perception instance is added to bridge the object instance and its

pose, capturing the object’s state at a specific timestamp.

The robot control system transforms the control decision into

a knowledge reasoning task. The robot control is obtained by

querying the knowledge base, where different primitive actions of

the robot are combined as illustrated in Figure 4. The dynamic

task planning module employs a dynamic planning algorithm

(Algorithm 1). Upon acquiring task definitions through knowledge

base queries, it derives a sequence of primitive actions required

for the task. The action control module also inquires the object

characteristics through knowledge queries. It then determines

suitable manipulation operators according to an operation

similarity model. Subsequently, it executes the corresponding

primitive actions leveraging the ROS communication mechanism.

The interaction between the robot control system and the

knowledge query and reasoning engine is realized through calling

Json_prolog in high-level languages such as Python, C++, and Java.
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FIGURE 1

The architecture of ARTProF. The knowledge representation layer utilizes the OWL language to describe static and dynamic ontology knowledge

related to the environment and tasks. The knowledge reasoning layer achieves ontology parsing and constructs inference rules grounded in logic

programming. Additionally, it integrates perception algorithms to implement logical reasoning process. The task planning and control layer

incorporates a knowledge-based dynamic planning algorithm to enable autonomous robot task execution.

FIGURE 2

The semantic knowledge of robot task processing in ARTProF. The nodes and edges in the graph correspond to classes (instances) and properties in

the OWL language, respectively.

3 The perception system

In ARTProF, we present a unified communication interface

between the knowledge base and the perception system. Recently,

deep learning has revolutionized object detection. The performance

of object detection has been improved significantly (Girshick, 2015;

Ren et al., 2015; Redmon et al., 2016; He et al., 2017; Redmon

and Farhadi, 2017, 2018; Bharati and Pramanik, 2020; Jiang et al.,
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FIGURE 3

The interaction process between the knowledge base and the perception system in ARTProF. ARTProF provides two connection modes:

synchronous communication (request-response mode) and asynchronous communication (channel broadcast mode).

FIGURE 4

Knowledge-based control system in ARTProf. The robot control system transforms the control decision into a knowledge reasoning task. The robot

control is obtained by querying the knowledge base, where di�erent primitive actions of the robot are combined.

2022). Moreover, the 6D pose of the detected objects can be

obtained through PoseCNN (Xiang et al., 2018), PVNet (Peng

et al., 2019), and SilhoNet (Billings and Johnson-Roberson, 2019),

etc. By defining a unified communication interface between the

knowledge base and neural network-based perception algorithms,

detection and recognition of objects at different abstraction levels

can be achieved.

Figure 5 illustrates the communication modes between

the knowledge base and the perception system. The

“object_detect_listener” and “comp_object_detect” are

different communication modes: synchronous on-demand

in a request-response manner (“comp_object_detect”)

and asynchronous in a passive listening manner

(“object_detect_listener”), respectively.
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Input: 1. List of basic actions for task: T.

2. The basic set of actions after conditional

generation: T′.

3. Action depth: len.

Output: result

Function fun(T,T′, len)

if len ≥MAXLEN then
return

end if

for a in T do

if a is not in T′ then

if a cannot execute then
PS = getPreActionsList(a)

for P in PS do
S.append(P)

S.append(a)

T′.append(a)

fun(S, T′, len+ 1)

if a can execute then
break

end if

end for

else
actionExe(a)

end if

else

if a can execute then
actionExe(a)

end if

end if

end for

return

end

Algorithm 1. Dynamic task planning algorithm.

In the synchronous communication mode, the object

perception algorithm is encapsulated as a ROS service node.

The connection is triggered by a custom Prolog predicate, which

implements ROS service invocation, accesses the knowledge

base, and processes the data returned by the perception system.

When a user queries the knowledge base for a specific object

class, “comp_object_detect” initiates the object detection and

recognition request to the perception system. Then, the knowledge

query and reasoning system filters the commonsense knowledge

based on data returned by the perception system, identifying

object instances that match the query or its subclasses. The

data returned by the perception system includes object category

labels. The filtering process involves determining whether the

label is defined as a class in the knowledge base, and it is the

process of querying either the category itself or its subclasses.

This filtering process can be implemented using the Prolog

built-in predicate “rdfs_subclass_of.” Taking the query for

fruits as an example, when the perception system detects and

locates objects such as apples, bananas, and plates, by evaluating

whether the return value of “rdfs_subclass_of(L, ’Fruit’)” is true

(where L represents the object label returned by the perception

system, and “Fruit” represents the queried fruit category), it

can be determined that apples and bananas belong to the fruit

category, thereby creating and returning instances of apples and

bananas. Finally, all object instances belonging to the queried

class are returned to the user. The synchronous communication

pipeline is shown in Figure 6. Meanwhile, in the asynchronous

communication mode, the perception algorithm is encapsulated

as a ROS publisher node, and object instance generation is

implemented by calling a custom Prolog predicate in subscriber

nodes. “object_detect_listener” monitors sensory data from the

perception system, detecting and generating object instances

at regular intervals. The knowledge representation of object

instances includes ID, class, timestamp, size, and pose, which

can be extended according to task requirements and perception

algorithms. Figure 7 displays the partial knowledge topology of

“Instance1” of “Class1.” The “latestDetection” indicates the most

recent detection results.

We choose YOLO v3 for object detection, which strikes

a good balance between accuracy and efficiency. Here, Yolo

v3 can be replaced with any object detection algorithm. In

Figure 8, three types of objects, namely apple, banana and box,

are queried and recognized. It can be seen from Figure 8 that

there is information exchanged between the knowledge base and

the perception system, which can be extended to multi-class

objects or objects of different abstraction levels. Deep learning-

based object detection and recognition approaches improve the

generalization and scalability of ARTProF for object perception.

Consequently, the robot is able to associate the physical objects

detected in the environment with the abstracted knowledge about

object classes.

4 Knowledge-guided manipulation
operators

4.1 Action knowledge representation

Action knowledge is used to describe the actions executed

by robots in manipulation tasks. In ARTProF, the relationships

between the actions and objects are defined in the constraint

attributes {preActors, postActors}, where preActors are the pre-

conditions necessary for the action, specifying the action

properties that are needed to be satisfied before the action

is executed. postActors define the post-effects of the action,

describing the environment’s state after successful execution of

the action.

As shown in Figure 9A, preActors include: {objectActedOn,

performedBy, fromLocation, fromState}, representing the operated

object, the action execution agent, initial position and the initial

state of the operated object, respectively. The postActors include:

{outputs, toLocation, toState}, representing the output object, target

position and target state of the operated object, respectively. The

action attribute is defined using OWL pseudo-code, as shown in

Figure 9B. Figure 9C showcases the OWL pseudo-code of two basic

actions: picking up and putting down.
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FIGURE 5

The communication modes between the knowledge base and the perception system in ARTProF: synchronous on-demand in a request-response

manner and asynchronous in a passive listening manner.

4.2 Manipulation operator

In ARTProF, manipulation operators based on ROS are

designed to guide robot actions via knowledge. The integration

with ROS is to maximize the utilization of existing robot operation

algorithms. These operators are instances of the “Algorithm”

class, which is a subclass of “Math” in the ontological knowledge

base. The constraints for actions and objects are respectively

fulfilled by “operatorAction” and “objectActedOn.” Basic operation

algorithms on ROS are associated with ROS-related properties such

as “serviceName,” “serviceReq,” “serviceRes,” and “serviceSrv.”

More specifically, as shown in Figure 10, the “PrimitiveAction”

denotes the primitive action class in the knowledge representation.

The “Object” corresponds to the “Object” class in the knowledge

base, which describes the category of the operated object and

its related semantic attributes. “service name”, “request data,”

“response data,” and “service data type” are the service name,

function name for obtaining the requested data, response data

name, and service data type defined in ROS, respectively.

For example, in the task of “grasp an apple,” a manipulation

operator named “PickingUpAnApple” is defined in ARTProF. The

OWL pseudo-code of this operator is described as:

I n d i v i d u a l : PickingUpAnApple

t yp e : A lgor i thm

op e r a t o rA c t i o n : P ick ingUpAnObjec t

ob j ec tAc tedOn : Apple

se rv i ceName : ‘ ‘ p ick ingUpApple ’ ’

s e r v i c e R e q : ‘ ‘ p ickingUpAppleReq ’ ’

s e r v i c e R e s : ‘ ‘ s t a t u s ’ ’

s e r v i c e S r v : ‘ ‘ pickUpApple ’ ’

Ob j e c t P r op e r t y : o p e r a t o rA c t i o n

domain : A lgor i thm

rang : Ac t ion

Da t a t y p eP r op e r t y : s e rv i ceName

domain : A lgor i thm

rang : s t r i n g

. . .

During task execution, when the robot is performing the

task, it first queries the knowledge base using the primitive

action “PickingUpAnObject” and the operated object “Apple” to

determine the manipulation operator “PickingUpAnApple.” The

“grasp” operation is then invoked through ROS-related attributes

of the manipulation operator to finish the task. The process

of searching and reasoning for the manipulation operator is

represented by Prolog pseudo-codeas follows:

g e t _ op e r a t o r ( Act ion , Objec t , Opera to r ) :−

r d f ( Opera tor , type , A lgor i thm ) ,

r d f ( Opera tor , op e r a t o rAc t i on , Ac t ion ) ,

r d f ( Opera tor , ob jec tActedOn , Ob j e c t ) .

If the “Action” (the primitive action) and the “Object”

(the operated object) are determined, the manipulation

operator “PickingUpAnApple” is obtained through the

“get_operator” operator.

4.3 Object operation similarity model

In human experiences, objects with similar characteristics can

be manipulated in a similar manner. For example, apples and

oranges, or water bottles and milk bottles can be manipulated

upon using the same manipulation operator. To endow the robot

with similar flexibility, ARTProF introduces an object operation

similarity model. This model determines suitable manipulation

operator for an unknown object based on object similarity. The

object similarity is defined as:

SIM(a1, a2) = Sig(

N∑

i=1

Si), a1, a2∈A

Sig(x) =
1

1+ exp(−k ∗ x)

(1)

Frontiers inNeurorobotics 07 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1401075
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Ge et al. 10.3389/fnbot.2024.1401075

FIGURE 6

Synchronous communication. When querying a specific object

through the “object detect listener” in the knowledge base, it

triggers the perception system to acquire instances of the queried

object in the environment through synchronous communication.

where SIM denotes the object similarity with values ranging from

[0, 1]. Higher values indicate larger object similarity. a1 and a2
are two object instances being compared. A is the set of object

instances. N is the number of object features. Si represents the

similarity of objects based on feature i. k is used to adjust the slope

of the sigmoid function. Decreasing the value of k will slow down

the speed of approaching the limiting values.

The object similarity model extracts object features that directly

influence the robot’s manipulation of the object. The similarity

of object features is then computed. The object features include:

{category, shape, material, and size}. The influences of different

features on the object similarity is manually defined. Table 1 shows

object similarities with the same, different or unknown conditions

of category, shape, and material. Table 2 shows object similarities of

different sizes, measured using deviation intervals d. The volume

deviation uses a unit of 10cm3, while length, width, and height

deviations use units of 2cm, 1cm, and 1cm, respectively. The object

similarities are shown in Table 3 [k is set to 0.3 in Equation (1)]. The

results align with human cognition.

The category and size features can be obtained in real-time

through perceptual algorithms such as YOLO v3 and SSD.

The shape and material are static features defined directly

in the knowledge base through attributes “shapeOfObject”

and “materialOfObject.” The manipulation operator is then

searched based on the object operation similarity model.

All manipulation operators associated with the basic action

are identified. The similarity between the current operated

object and the object in each manipulation operator is

calculated. Finally, the manipulation operator with the

highest similarity is selected, and the corresponding action

is executed.

5 Dynamic task planning

5.1 Task knowledge representation

A robotic task can often be decomposed into several low-level

primitive actions. The aim of the task planning is to rearrange

the primitive actions with preconditions and effects to achieve

the task. The knowledge representation in ARTProF adopts a

hierarchical structure. The OWL pseudo-code for retrieving an

apple is described as:

C l a s s : TakeAnAppleToPlate

subC l a s sO f : Put t ingSometh ingSomewhere

ob j ec tAc tedOn some Apple

t o L o c a t i o n in P l a t e

C l a s s : Put t ingSometh ingSomewhere

subC l a s sO f : Ac t ion

subAc t ion some Pick ingUpAnObjec t

subAc t ion some Putt ingDownAnObject

C l a s s : P ick ingUpAnObjec t

subC l a s sO f : Ac t ion

ob j ec tAc tedOn some Ob j e c t

C l a s s : Putt ingDownAnObject

subC l a s sO f : Ac t ion

ob j ec tAc tedOn some Ob j e c t

t o L o c a t i o n some P l a c e

. . .

The task of “TakeAnAppleToPlate” is defined as a subclass of

“PuttingSomethingSomewhere.” The predicates “objectActedOn”

and “toLocation” are used to define the operated object

and its target location. The “PuttingSomethingSomewhere”
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FIGURE 7

Knowledge topology of the “Instance1.” The nodes in the graph are represented by classes or instances in OWL, and the edges are represented by

properties in OWL.

FIGURE 8

Object instance inquiry based on the knowledge base and perception system. Through the query interface, we can not only obtain instances of

labeled objects in the perception system but also acquire instances of abstract concepts (such as “fruit“).

class as a subclass of “Action” comprises sub-actions

“PickingUpAnObject” and “PuttingDownAnObject.” The

sub-action “PickingUpAnObject,” as a subclass of “Action,”

is constrained by the predicate “objectActedOn.” The sub-

action “PuttingDownAnObject,” which is also a subclass of

“Action,” is constrained by the predicates “objectActedOn”

and “toLocation.”

5.2 Task execution

Task knowledge guides the process of robotic task execution.

Upon receiving a task execution command, the robot initiates

the task planning process by inquiring the task knowledge

from the knowledge base to create the task instance. The action

execution sequence is then obtained. The action instances
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FIGURE 9

Action knowledge representation. (A) The hierarchy of the action attributes. (B) The definition of the action attributes. (C) An example of the

knowledge representation of the action.

FIGURE 10

Manipulation operator. Manipulation operator is defined as instances of the “Algorithm” class in OWL, guiding robot actions based on ROS.

TABLE 1 Category, shape, and material feature similarity measure.

Feature

Deviation
Same Di�erent Unknown

Category 10 0 0

Shape 4 -4 0

Material 1 -1 0

are generated following the constraints of the task (e.g.,

preconditions and effects). Both task instances and action

instances are stored in memory as temporary knowledge

using a prolog-based representation. The pseudo-code of the

generated task and action example of retrieving an apple is

described as:

I n s t a n c e : TakeAnAppleToPlate _001

t yp e : TakeAnAppleToPlate

ObjectActedOn : Apple

t o L o c a t i o n : in P l a t e

subAc t ion : P ick ingUpAnObjec t _001

subAc t ion : Putt ingDownAnObject _001

I n s t a n c e : P ick ingUpAnObjec t _001

t yp e : P ick ingUpAnObjec t

ob j ec tAc tedOn : Apple

I n s t a n c e : Putt ingDownAnObject _001

t yp e : Putt ingDownAnObject

ob j ec tAc tedOn : Apple

t o L o c a t i o n : in P l a t e

. . .

The generated task instance “TakeAnAppleToPlate_001”

includes two action instances “PickingUpAnObject_001”

and “PuttingDownAnObject_001.” The action instance

“PickingUpAnObject_001” is subject to task constraints. The

operated object is replaced from the abstract “Object” by the

specific object “Apple.” Similarly, the abstract position “Some

Place” is replaced by “in Plate” in “PuttingDownAnObject_001.”
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TABLE 2 Size feature similarity measure.

Size feature

Deviation x
|x| ≤ 1d 1d < |x|

≤ 2d
2d < |x|
≤ 3d

3d < |x|
≤ 5d

|x| > 5d

Volume (cm3) 1 0 0 0 -1

Length (cm) 1 0 0 -1 -1

Width (cm) 2 0 -1 -2 -2

Height (cm) 1 0 0 -1 -1

TABLE 3 Example of object similarity.

Object

SIM Object

Apple Orange Water bottle Milk bottle

Apple 1.0 0.95 0.14 0.23

Orange 0.95 1.0 0.14 0.23

Water bottle 0.14 0.14 1.0 0.77

Milk bottle 0.23 0.23 0.77 1.0

FIGURE 11

The execution process of the dynamic task planning. The initial action sequence for the task is [a1, a2, a3, ..., an−1an], and during the task execution

process, dynamic planning is triggered due to some actions not satisfying the execution conditions. The actual execution action sequence becomes

[a1, e1, e2, c1, a2, a3, ..., an−1, f1, an].

5.3 Dynamic task planning

In ARTProF, we introduce a dynamic task planning method

called Action Primitive Conditional Exploration Dynamic Task

Planning. The robot performs each primitive action based on its

prior task knowledge. During task execution, if a primitive action

fails to meet the execution preconditions. the system initiates a

search for a new action sequence through knowledge reasoning.

This process continues until a valid primitive action, meeting

the execution preconditions, is successfully executed. The task is

considered completed once all defined primitive actions have been

carried out.

Suppose the task is denoted by T, and the action is denoted by

a. The task can be represented as T = [a1, a2, ai, . . . , an], where

ai represents the i-th primitive action in the action sequence. This

task comprises an ordered composition of n primitive actions. The

description of the algorithm is shown in Algorithm 1.

In Algorithm 1, T′ denotes the set of actions generated,

initialized to ∅. len is the action depth, initialized to 0. When

an action fails to meet the execution condition, the action
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FIGURE 12

Experimental environment for autonomous retrieval of manipulation operators with objects.

TABLE 4 Features of objects to be grasped.

Object Category Shape Material Volume
(cm3)

Length
(cm)

Width
(cm)

Height
(cm)

Manipulation
operator

Orange Orange Sphere Fruit 512 8 8 8 pickingUpOrange

Cup Cup Cylinder Metal 540 6 6 15 pickingUpCup

Football Football Sphere Leather 8,000 20 20 20 pickingUpFootball

Apple Apple Sphere Fruit 512 8 8 8 pickingUpOrange

Waterbottle Bottle Cylinder Plastic 720 6 6 20 pickingUpCup

Watermelon Watermelon Sphere Fruit 8,000 20 20 20 pickingUpFootball

depth is increased by 1, and this process iterates. The maximum

action depth is denoted by MAXLEN. PS is the set of action

sequences generated through knowledge reasoning represented

by getPreActionsList. P denotes the action sequence that meets

the execution conditions for the current action. The function

actionExe(a) denotes the robot’s execution of action a. By default,

if action a fails during execution and still meets the execution

conditions, it will be executed again until successful.

Assuming task T = [a1, a2, ai, ..., an], the execution process

of the dynamic task planning algorithm is shown in Figure 11.

Initially, the system executes a1 and plans a2 next. As a2 fails

the execution conditions, the system explores alternative action

sequences [b1, b2, a2] and [c1, a2] through knowledge reasoning.

After checking that b1 does not meet the execution conditions,

and the action depth of d1 is already at the maximum depth

(MAXLEN=2), the system backtracks to execute [c1, a2]. Upon

evaluation, [e1, e2, c1] are successfully executed, and the system

implements a2, a3, etc.

The dynamic task planning relies on task ontological

knowledge as the prior knowledge. Throughout the execution

of robotic tasks, new actions are explored by considering both

depth and breadth. This strategy empowers the robot with

adaptability to work in unstructured environments while avoiding

the shortcomings of manually editing domain knowledge in

traditional task planners.

6 Experimental results and analysis

6.1 Experiment 1: autonomous retrieval of
manipulation operators with objects in the
scene

The experiments are carried out in a laboratory environment

shown in Figure 12. The robotic system, named RedBot, is

equipped with two 6-degrees-of-freedom (DOF) manipulators, a
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FIGURE 13

The experimental results of operation transfer. (A) The Similarities of objects to be grasped. Darker cells indicate lower similarities between objects.

(B) The robot grasping of di�erent objects and the corresponding manipulation operators. The grabbing of apples and oranges uses the same

manipulation operator “pickingUpOrange.” Similarly, the grabbing of the cup and water bottle uses the same manipulation operator “PickingUpCup,”

and the grabbing of the football and watermelon uses the same manipulation operator “PickingUpFootball”.

FIGURE 14

The scenario and the background knowledge of the dynamic task planning. (A) The scenario of the dynamic task planning. The location of the apple

is uncertain, it could be placed on the table near the robot or in a box or drawer far from the robot. (B) The semantic map of the task-related

background knowledge. The dark nodes are task knowledge, and the light nodes are environmental knowledge.

mobile platform, two single line radars, an industrial computer, and

an RGB-D camera (Intel RealSense D435i). The software modules

include mapping, navigation, obstacle avoidance, object detection

and recognition, grasping, etc. These modules are communicated

through ROS messages. The robot is controlled by a back-end

server. The back-end platform utilizes containers to isolate distinct

software environments. The data exchange between the robot and

the back-end platform is facilitated through Ethernet.

The robot demonstrates capability in grasping various

objects such as oranges, cups, and footballs, etc, as indicated

in Table 4. Corresponding manipulation operators for

these grasp actions are denoted as “pickingUpOrange,”

“pickingUpCup,” and “pickingUpFootball.” However, real-

world scenarios often introduce novel objects to the robot.

In our experiments, we also conduct grasping experiments

involving apples, water bottles, and watermelons, of
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FIGURE 15

Screenshots of robot’s dynamic task planning experiment. (a1–a5) The apple is placed on the table, and there are no instances of action execution

failure. (b1–b7) The apple is placed on the table, and the first attempt at the “PickingUpAnObject” action fails. (c1–c9) The apple is in the box.

(d1–d12) The apple is in the drawer.

which the manipulation operators are not specified in the

knowledge base.

In our grasping experiment, the robot is placed in front of a

table where the objects are placed. As there is no manipulation

operator for grasping apples, water bottles, and watermelons in our

knowledge base, the robot selects the manipulation operators by

evaluating the similarities between objects. The object’s shape and

material are obtained from the knowledge base as prior knowledge.

The perception system of ARTProF provides measurements for

the length, width, and height of the objects, from which the

volume is calculated as V = L × W × H. The similarity

between objects is calculated as shown in Figure 13A. Darker boxes

indicate lower similarity. The robot grasping of different objects

and the corresponding manipulation operators are illustrated in

Figure 13B. The experiments highlight the robot’s ability not only

to autonomously match manipulation operators for objects in the

scene but also to generalize operators across different objects.

6.2 Experiment 2: dynamic task planning

This experiment takes retrieving an apple as an example to

achieve task planning in unknown environments. The dynamic

task planning experiment is conducted in the simulation platform

CoppeliaSim (version 4.1.0). The indoor experimental setting, as

shown in Figure 14A, includes a YouBot by KUKA, an apple,

a plate, a box, a cabinet with drawers, and two tables. The

semantic map of the task-related background knowledge is shown

in Figure 14B, where the dark nodes are task knowledge, and

the light nodes are environmental knowledge. The grasping task

is defined as two actions: picking up and putting down. The

knowledge representation of the task is presented in Section 5.1.

In scene 1 and scene 2, the apple is placed on the table, as shown

in Figures 15a1, b1. In scene 3, the apple is in the box, as shown

in Figure 15c1. In scene 4, the apple is in the drawer, as shown in

Figure 15d1.

In scene 1, the “pick-up” action is executed successfully.

However, the subsequent “put-down” action fails due to the

“toLocation” (plate location) is beyond the robot arm’s operational

range. According to the dynamic task planning, the “navigatingTo”

action is triggered. Once the navigation is completed, fulfilling the

conditions for the “put-down” action, the “put-down” action is

executed accordingly. The final action sequence involves picking

up the apple→ navigating to the plate→ putting down the apple,

as illustrated in Figures 15a2–a5.

In scene 2, during the execution of the “pick-up” action, the

apple falls, resulting in the failure of the action execution. However,

since the conditions for executing the “pick-up” action are still met

at this point, the “pick-up” action is repeated. After successfully

execution of the pick-up action, the subsequent task execution

process follows the same pattern as in scene 1. The final action

execution sequence involves picking up the apple (performed

twice) → navigating to the plate → putting down the apple, as

illustrated in Figures 15b2–b7. In scene 3, the robot fails to perceive

the apple, leading to the unmet condition for the “pick-up” action.

After the knowledge reasoning in ARTProF, the robot infers the

potential presence of the apple within the box. Consequently, it

performs the “openingABox” operation. Once the apple is found,
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the subsequent actions are similar with those of scene 1, resulting

in the final action sequence: navigating to the box → opening the

box → picking up the apple → navigating to the plate → putting

down the apple, as shown in Figures 15c2–c9.

In scene 4, the apple is not present in the box. According to

dynamic task planning, the robot infers the potential presence of

the apple within the drawer. Since the drawer is not within the

operating range of the manipulator, the robot navigates to the

drawer firstly. The final action sequence of the robot is: navigating

to the box → opening the box → navigating to the drawer →

opening the drawer → picking up the apple → navigating to

the plate → putting down the apple. The execution process is

shown in Figures 15d2–d12. Experimental details are demonstrated

in the Supplementary video.1 Experimental results show that the

effectiveness of the proposed ARTProF in improving the robot’s

adaptability within unstructured and dynamic environments.

7 Conclusions

In this paper, we proposed an Ontology based Autonomous

Robot Task Processing Framework (ARTProF) to improve

the robot’s adaptability within unstructured and dynamic

environments. ARTProF includes key functionalities such

as knowledge representation, knowledge reasoning, and task

planning and control. The interface between the knowledge

base and the neural network-based object detection algorithms

augments the perception capabilities of the robots. To bridge

the gap between the knowledge base and robot actions, the

framework defines ROS based manipulation operators. ARTProF

also introduces an operation similarity model, enabling the robot

to generalize operations to novel objects effectively. A dynamic

task planning method based on knowledge reasoning is further

proposed for autonomous task planning. Experimental results

showcase improvements of ARTProF in the robot’s environmental

perception, generalization abilities, and autonomous task execution

within unstructured and dynamic environments. Ongoing research

is focused on refining the ARTProF framework by integrating

neurosymbolic inference.

1 https://doi.org/10.6084/m9.figshare.25531045.v2
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