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An adaptive discretized RNN
algorithm for posture
collaboration motion control of
constrained dual-arm robots

Yichen Zhang, Yu Han and Binbin Qiu*

School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen, China

Although there are many studies on repetitive motion control of robots,

few schemes and algorithms involve posture collaboration motion control of

constrained dual-arm robots in three-dimensional scenes, which canmeetmore

complex work requirements. Therefore, this study establishes the minimum

displacement repetitive motion control scheme for the left and right robotic

arms separately. On the basis of this, the design mentality of the proposed

dual-arm posture collaboration motion control (DAPCMC) scheme, which is

combined with a new joint-limit conversion strategy, is described, and the

scheme is transformed into a time-variant equation system (TVES) problem

form subsequently. To address the TVES problem, a novel adaptive Taylor-type

discretized recurrent neural network (ATT-DRNN) algorithm is devised, which

fundamentally solves the problem of calculation accuracy which cannot be

balanced well with the fast convergence speed. Then, stringent theoretical

analysis confirms the dependability of the ATT-DRNN algorithm in terms of

calculation precision and convergence rate. Finally, the e�ectiveness of the

DAPCMC scheme and the excellent convergence competence of the ATT-DRNN

algorithm is verified by a numerical simulation analysis and two control cases of

dual-arm robots.

KEYWORDS

dual-arm robot, dual-armposture collaborationmotion control (DAPCMC), time-variant

equation system (TVES), adaptive Taylor-typediscretized recurrent neural network (ATT-

DRNN), joint-limit conversion strategy

1 Introduction

With the continuous development of electronic information technology, robots, as
a key carrier in the realm of artificial intelligence, have been assuming a progressively
substantial role in manufacturing (Arents and Greitans, 2022), healthcare (Khan et al.,
2020), service industries (McCartney and McCartney, 2020), and beyond (Cheng et al.,
2023; Tanyıldızı, 2023; Yang et al., 2023; Liufu et al., 2024), bringing numerous
conveniences to human life and work. Many scholars are focusing their attention on
robotics research field.

A robotic arm is a mechanical device composed of multiple linked joints, typically
equipped with various end-effectors based on the requirements of the work environment.
By calculating and adjusting the rotational changes of each joint, the end-effector can be
controlled to perform variousmovements in a predeterminedmanner, such as position and
orientation, thereby accomplishing tasks. For instance, the MATLAB program and particle
swarm optimization were utilized for the trajectory planning of the robotic arm (Ekrem
and Aksoy, 2023); Chico et al. (2021) employed a hand gesture recognition system and the
inertial measurement unit to control the position and orientation of a virtual robotic arm.
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A target admittance model was designed in the joint space for
hands-on procedures that can be applied in all commercially
available general-purpose robotic arms with six or more DOF
(Kastritsi and Doulgeri, 2021).

Due to the escalating complexity of task environments,
single robotic arms frequently encounter challenges in effectively
completing tasks, which highlights the advantages of dual robotic
arms in collaborative and efficient task execution. For example,
Jiang et al. (2022) presented an adaptive control method for
a dual-arm robot to perform bimanual tasks under modeling
uncertainties. Bombile and Billard (2022) designed a unified
motion generation algorithm that enables a dual-arm robot to
grab and release objects quickly. Wang et al. (2023) proposed a
sliding mode controller with good robustness against the model
uncertainties to capture and stabilize a spinning target in 3D space
by a dual-arm space robot.

However, some of the methods mentioned above do not take
into account the actual physical constraints of the robotic arms
during initial modeling (e.g., Bombile and Billard, 2022; Jiang
et al., 2022). This greatly limits the application scenarios of these
algorithms and is inconsistent with the real working conditions of
the robotic arms. Furthermore, the physical limitations of robotic
arms typically pertain to constraints on joint angle and velocity.
These constraints do not reside at the same constraint level, thus
there are substantial computational challenges when attempting
to address them collectively. An optimal approach entails a series
of conversion strategies to harmonize these distinct hierarchical
constraints to a congruous level (Zhang and Zhang, 2013) (e.g.,
velocity level). By implementing this approach, the constraints
can be effectively unified and dealt without compromising their
intended meaning. Some scholars (e.g., Li, 2020) have crafted
novel approaches to these conversion strategies stemming from
this foundation. Nevertheless, in the process, they have introduced
too many supplementary parameters, rendering the strategies less
straightforward for apprehension. Additionally, certain studies
focus on the control of dual robotic arms based on 2D space,
considerably limiting the operating range of robotic arms (Stolfi
et al., 2017; Yang S. et al., 2020; Yang et al., 2021).

In recent years, with the rapid advancement of neural network
research, many scholars have been committed to applying its
formidable nonlinear modeling capability and efficient parallel
computing ability to the domain of robotic arm motion control
(Wang et al., 2021; Jin et al., 2024). This endeavor has given rise
to a special kind of neural network known as the RNN (Xiao et al.,

Abbreviations: 3D, Three dimensional; 2D, Two dimensional; RNN, Recurrent

neural network; TE, Truncation error; CRNN, Continuous recurrent neural

network; DRNN, Discretized recurrent neural network; DAPCMC, Dual-arm

posture collaboration motion control; JLCS, Joint-limit conversion strategy;

ATT-DRNN, Adaptive Taylor-type discretized recurrent neural network; CTT-

DRNN, Conventional Taylor-type discretized recurrent neural network; CET-

DRNN, Conventional Euler-type discretized recurrent neural network; TVES,

Time-variant equation system; MDRMC, Minimum displacement repetitive

motion control; DOF, Degrees of freedom; LA, Left arm; RA, Right arm;

TVQP, Time-variant quadratic programming; EE, Error equation; ACRNN,

Adaptive continuous recurrent neural network; RE, Residual error; D-H,

Denavit-Hartenberg; UAV, Unmanned aerial vehicle.

2021; Yan et al., 2022; Fu et al., 2023). For example, Xiao et al. (2021)
proposed a noise-enduring and finite-time convergent design
formula is suggested to establish a novel RNN. Fu et al. (2023)
presented a gradient-feedback RNN to solve the unconstrained
time-variant convex optimization problem.

To facilitate the calculation on computers and other digital
hardware devices, some scholars focus on discretizing conventional
CRNN models through time discretization techniques, leading
to the development of DRNN algorithms (Liao et al., 2016;
Liu et al., 2023a,b; Shi et al., 2023). The technique of second-
order Taylor expansion was used to deal with the discrete time-
variant nonlinear system, and a DRNN algorithm was proposed
subsequently (Shi et al., 2023). Liao et al. (2016) proposed two
Taylor-type DRNN algorithms on account of the Taylor-type
formula to perform online dynamic equality-constrained quadratic
programming. Liu et al. (2023a) designed a Taylor-type DRNN
algorithm based on Taylor-type discrete scheme with smaller TE.
It is worth noting that higher accuracy requirements often make
the discretization formulas more complicated, inevitably leading
to a large amount of computation and increasing the cost of
actual production applications. After overall consideration, this
study proposes an adaptive DRNN algorithm based on a three-
step general Taylor-type discretization formula with an adaptive
sampling period introduced, which is of high enough precision for
practical applications.

Typically, due to the use of fixed sampling periods and
fixed convergence factors in the conventional DRNN algorithms
mentioned above, it is difficult for them to achieve a balance in
computational precision and convergence rate, resulting in limited
algorithmic dynamic and convergence performance. Therefore,
some researchers have tried to introduce various adaptive
mechanisms into model/algorithm design (Song et al., 2008; Yang
M. et al., 2020; Dai et al., 2022; Cai and Yi, 2023). For example,
Yang M. et al. (2020) proposed two discretized RNN algorithms
with an adaptive Jacobian matrix. Cai and Yi (2023) developed
an adaptive gradient-descent-based RNN model to solve time-
variant problems based on the Lyapunov theory. Dai et al. (2022)
proposed a hybrid RNN model by introducing a fuzzy adaptive
control strategy to generate a fuzzy adaptive factor that can change
its size adaptively according to the RE. Song et al. (2008) proposed
a robust adaptive gradient-descent training algorithm based on an
RNN hybrid training concept in discrete-time domain.

In light of the aforementioned circumstances, this study
formulates a DAPCMC scheme in 3D space based on the dual-arm
robot system and the new JLCS. Subsequently, a novel ATT-DRNN
algorithmwith adaptive sampling period and adaptive convergence
factor is devised to effectively face the challenge of achieving
a dynamic balance between great computational precision
and rapid convergence rate. When compared with the CTT-
DRNN algorithm and the CET-DRNN algorithm, the proposed
ATT-DRNN algorithm demonstrates outstanding computational
precision and rapid convergence rate. To demonstrate the features
and strengths of the proposed ATT-DRNN algorithm, Table 1
shows the comparisons among distinct methods for the motion
control of robots.

The remainder of this study consists of four parts. Section
2 formulates the DAPCMC scheme and designs the ATT-DRNN
algorithm. Section 3 presents the theoretical analyses of the
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TABLE 1 Comparisons among distinct methods for motion control of robots.

Method Posture
control

Inequality
constraint

Discretized
handling

Adaptive
mechanism

Applicable
scene

Robotic arm
number

Jiang et al. (2022) No No No Yes 2D Dual

Yang et al. (2021) Yes Yes Yes No 2D Dual

Yang S. et al. (2020) No Yes No No 2D Dual

Fu et al. (2023) No No No No 3D Single

Shi et al. (2023) No No Yes No 2D Single

Liao et al. (2016) No No Yes No 2D Single

Wu and Zhang (2023) Yes No Yes Yes 3D Single

Yang M. et al. (2020) No No Yes Yes 3D Single

ATT-DRNN Yes Yes Yes Yes 3D Dual

proposed ATT-DRNN algorithm. Section 4 provides illustrative
examples, and Section 5 concludes this study. Finally, the primary
contributions/novelties of this paper can be summarized as follows.

1) Distinguishing from common dual-arm robotmotion control
schemes in 2D space, a novel construction methodology
of the DAPCMC scheme in 3D space is provided, which
can make a spatial dual-arm robot collaboratively execute
repetitive tracking of a desired trajectory while adhering to a
predetermined posture.

2) Distinguishing from existing strategies, an innovative JLCS
is proposed, which has a ubiquitously differentiable and more
succinct expression.

3) Distinguishing from conventional discretization methods, an
innovative ATT-DRNN algorithm is engineered to address
the DAPCMC scheme, which introduces a new adaptive
convergence factor and sampling period to guarantee a notable
convergence rate and exceptional convergence precision.

4) Distinguishing from the simple path-tracking task of
single-arm robots, the posture collaboration motion control
experiments of a UR5 dual-arm robot with the joint-angle
and joint-velocity bound constraints considered substantiate
the effectiveness of the proposed DAPCMC scheme and the
outstanding convergence capability of the proposed ATT-
DRNN algorithm.

2 Scheme formulation and algorithm
design

This section describes how to construct a DAPCMC scheme
that can be converted into a TVES problem and processed by the
proposed ATT-DRNN algorithm.

2.1 Rudimentary knowledge

For the convenience of comprehension, let us construct a
single robot arm motion control scheme with n DOF, which takes
into account joint physical limits and can simultaneously ensure

position control and orientation control during the MDRMC.
Specifically, such a scheme can be described as below:

min.
ż(t)

1

2
żT(t)U(t)ż(t)+ ϕT(t)ż(t), (1)

s.t. J1(z(t))ż(t) = ϒ̇I(t)− α
[
ϒR(t)− ϒI(t)

]
, (2)

J2(z(t))ż(t) = ȯI(t)− β
[
oR(t)− oI(t)

]
, (3)

z− ≤ z(t) ≤ z+, (4)

ż− ≤ ż(t) ≤ ż+, (5)

where superscript T represents the transpose operator; z(t) =[
ż1(t), ż2(t), ..., żn(t)

]T
∈ R

n indicates the angle values of the
robotic joints, and ż(t) ∈ R

n means the angular velocities of the
robotic joints; matrix U(t) = In×n ∈ R

n×n is an identity matrix;
vector ϕ(t) = ξ

[
z(t)− z(0)

]
∈ R

n with design parameter ξ > 0
and z(0) means the initial joint-angle vector; J1(z(t)) ∈ R

3×n

and J2(z(t)) ∈ R
3×n represent the position Jacobian matrix and

the orientation Jacobian matrix, respectively; ϒI(t) ∈ R
3 and

ϒR(t) ∈ R
3 represent the ideal path and the real position of the

end-executor, separately; oI(t) ∈ R
3 and oR(t) ∈ R

3 represent
the ideal orientation and the real orientation of the end-executor,
respectively; α > 0 and β > 0 are both the error-feedback gains;
z± and ż± denote the upper and lower limits of z(t) and ż(t),
separately.

Remark 2.1: In accordance with previous experience (Zhang
and Zhang, 2013), when t → ∞, the objective function (1) at the
joint-velocity level is equivalent to

∥∥z(t)− z(0)
∥∥2
2/2 at the joint-

angle level, where the design parameter ξ > 0 ought to be adjusted
as large as allowed by the manipulator conditions. Note that the
robot arm’s repetitive motion planning scheme under minimal
displacement can be regarded as an optimization objective that can
be resolved at the joint-velocity level.

Remark 2.2: Referring to the contributions of previous scholars
(Yang et al., 2021), the equality constraint (2) at the joint-velocity
level is equivalent to f (z(t)) = ϒI(t) at the joint-angle level, when
t → ∞ and the error-feedback gain α > 0 is at an appropriate
value, where f (·) :Rn → R

3 represents the forward kinematics
mapping function of a robotic arm.

Remark 2.3: Similarly, the equality constraint (3) at the joint-
velocity level is equivalent to g(z(t)) = oI(t) at the joint-angle
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level, when t → ∞ and the error-feedback gain β > 0 is at an
appropriate value, where nonlinear function g(z(t)) = oR(t) =[
oRx(t), oRy(t), oRz(t)

]T
∈ R

3 and the 2-norm of the real orientation
vector oR(t) satisfies

∥∥oR(t)
∥∥
2 = 1.

Note that the inequality constraint (4) is at the joint-angle level
of the system. In order to integrate inequality constraints (4) and
(5) of distinct constraint levels into a unified formulation at the
joint-velocity level as below:

0
−(t) ≤ ż(t) ≤ 0

+(t), (6)

previous studies (Zhang and Zhang, 2013; Zhang et al., 2018; Li,
2020; Li et al., 2023; Qiu et al., 2023) supply a large number of JLCSs.

Nevertheless, the JLCS in Zhang and Zhang (2013) is unable
to guarantee 0

−(t) or 0
+(t) to be differentiable anywhere.

Meanwhile, as regard to the JLCS in Li (2020), 0−(t) and 0
+(t)

are designed as piecewise functions, respectively, and complex
compound functions are embedded in them. In addition, the
JLCS in Li et al. (2023); Qiu et al. (2023) adopt numerous design
parameters and construct pretty complex expressions.

Therefore, as one of the contributions of this study, we provide
a new JLCS. The ith (i = 1, 2, ..., n) elements of 0−(t) and 0

+(t) in
(6) are designed as follows:





0
−
i (t) = ż−i exp

[
γ żi(t)

żi(t)− ż−i + ε1

]
, ε1 → 0+, (7)

0
+
i (t) = ż+i exp

[
γ żi(t)

żi(t)− ż+i + ε2

]
, ε2 → 0−, (8)

where żi(t), ż
−
i , ż

+
i , ż

−
i , ż

+
i denote the ith element of

z(t), z−, z+, ż−, ż+ in (4) and (5), separately; ε1 and ε2 are
both non-zero minimum terms to ensure that the above equations
are able to differentiable everywhere; design parameter γ ∈ (0, 1)
should be as small as possible.

Remark 2.4: To present the proposed JLCS (7)-(8) more
specifically, Figure 1 exhibits the relationship between the ith joint
angle żi(t) and the ith joint velocity żi(t). It is worth noting that,
when the joint approaches its lower or upper limit, the value of
γ has a crucial effect on the changing rate of the joint-velocity
boundary.

2.2 DAPCMC scheme

Finally, upon the previous section, we construct a dual-arm
collaborative control system consisting of the LA and RA.

FIGURE 1

The relationship between the ith joint angle ż
i
(t) and the ith joint

velocity ż
i
(t) in the proposed JLCS (7)–(8), with i = 1, 2, ...,n.

2.2.1 LA collaborative control subsystem
According to (1)–(5), we construct theMDRMC scheme for the

n-DOF LA as follows:

min.
ż
L

(t)

1

2
żT
L
(t)UL(t)żL(t) + ϕT

L
(t)żL(t), (9)

s.t.J1L(zL(t))żL(t) = ϒ̇IL(t)

− αL

[
ϒRL(t)− ϒIL(t)

]
, (10)

J2L(zL(t))żL(t) = ȯIL(t)

− βL

[
oRL(t)− oIL(t)

]
, (11)

z−
L

≤ zL(t) ≤ z+
L
, (12)

ż−
L

≤ żL(t) ≤ ż+
L
, (13)

where the subscript L denotes the LA; vector zL(t) =[
żL1(t), żL2(t), ..., żLn(t)

]T
∈ R

n; vector ϕL(t) =

ξL

[
zL(t)− zL(0)

]
∈ R

n with the design parameter ξL > 0 and
zL(0) means the LA’s initial joint-angle vector. Additionally, the
meanings represented by the other symbols are similar to those in
the MDRMC scheme (1)–(5).

Moreover, according to the JLCS (7)–(8), (12) and (13) in the
LA’s MDRMC scheme can be converted into the following form:

0
−

L
(t) ≤ 0L(t) ≤ 0

+

L
(t), (14)

where 0L(t) = żL(t) =
[
żL1(t), żL2(t), , ..., żLn(t)

]T
∈

R
n; the upper and lower limit values of 0−

L
(t) and 0

+

L
(t) are

correspondence to those of 0−(t) and 0
+(t) in the JLCS (7)-(8).

Furthermore, by reorganizing the LA’s MDRMC scheme (9)-
(13), we obtain the LA collaborative control subsystem scheme,
which has a briefer representation:

min.
0
L
(t)

1

2
0
T
L
(t)UL(t)0L(t)+ ϕT

L
(t)0L(t), (15)

s.t. AL(t)0L(t) = cL(t), (16)

BL(t)0L(t) ≤ dL(t), (17)
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where matrices AL(t) ∈ R
6×n and BL(t) ∈ R

2n×n and vectors
cL(t) ∈ R

6 and dL(t) ∈ R
2n are expressed as below:

AL(t) =

[
J1L(zL(t))
J2L(zL(t))

]
,

cL(t) =

[
ϒ̇IL(t)− αL

[
ϒRL(t)− ϒIL(t)

]

ȯIL(t)− βL

[
oRL(t)− oIL(t)

]
]

BL(t) =

[
In×n

−In×n

]
, dL(t) =

[
0
+

L
(t)

−0
−

L
(t)

]
.

2.2.2 RA collaborative control subsystem
Similar to the (2.2.1), the MDRMC scheme for the n-DOF RA

is follows:

min.
ż
R

(t)

1

2
żT
R
(t)UR(t)żR(t) + ϕT

R
(t)żR(t), (18)

s.t.J1R(zR(t))żR(t) = ϒ̇IR(t)

− αR

[
ϒRR(t)− ϒIR(t)

]
, (19)

J2R(zR(t))żR(t) = ȯIR(t)

− βR

[
oRR(t)− oIR(t)

]
, (20)

z−
R

≤ zR(t) ≤ z+
R
, (21)

ż−
R

≤ żR(t) ≤ ż+
R
, (22)

where the subscript R denotes the RA; vector zR(t) =[
żR1(t), żR2(t), ..., żRn(t)

]T
∈ R

n; vector ϕR(t) =

ξR

[
zR(t)− zR(0)

]
∈ R

n with design parameter ξR > 0
and zR(0) means the RA’s initial joint-angle vector. Additionally,
the meanings represented by the other symbols are similar to those
in the MDRMC scheme for the LA (9)–(13).

Similarly, (21) and (22) in the RA’s MDRMC scheme can be
transformed into the following form:

0
−

R
(t) ≤ 0R(t) ≤ 0

+

R
(t), (23)

where 0R(t) = żR(t) =
[
żR1(t), żR2(t), , ..., żRn(t)

]T
∈ R

n; the
upper and lower limit values of 0−

R
(t) and 0

+

R
(t) are parallelism

to those of 0−

L
(t) and 0

+

L
(t) in the LA’s JLCS (14).

Then, by reorganizing the RA’s MDRMC scheme (18)–(22), we
obtain the RA collaborative control subsystem scheme:

min.
0
R

(t)

1

2
0
T
R
(t)UR(t)0R(t)+ ϕT

R
(t)0R(t), (24)

s.t. AR(t)0R(t) = cR(t), (25)

BR(t)0R(t) ≤ dR(t), (26)

where matrices AR(t) ∈ R
6×n and BR(t) ∈ R

2n×n and vectors
cR(t) ∈ R

6 and dR(t) ∈ R
2n are expressed as follows:

AR(t) =

[
J1R(zR(t))
J2R(zR(t))

]
,

cR(t) =

[
ϒ̇IR(t)− αR

[
ϒRR(t)− ϒIR(t)

]

ȯIR(t)− βR

[
oRR(t)− oIR(t)

]
]

BR(t) =

[
In×n

−In×n

]
, dR(t) =

[
0
+

R
(t)

−0
−

R
(t)

]
.

Furthermore we combine the LA collaborative control
subsystem scheme (15)–(17) with the RA collaborative control
subsystem scheme (24)–(26) to obtain a complete DAPCMC
scheme, which is also a TVQP problem:

min.
0(t)

1

2
0
T(t)U(t)0(t)+ ϕT(t)0(t), (27)

s.t. A(t)0(t) = c(t), (28)

B(t)0(t) ≤ d(t), (29)

where

A(t) =

[
AL(t) 0

0 AR(t)

]
∈ R

12×2n, 0(t) =

[
0L(t)
0R(t)

]
∈ R

2n,

c(t) =

[
cL(t)
cR(t)

]
∈ R

12

B(t) =

[
BL(t) 0

0 BR(t)

]
∈ R

4n×2n, d(t) =

[
dL(t)
dR(t)

]
∈ R

4n,

ϕ(t) =

[
ϕL(t)
ϕR(t)

]
∈ R

2n

U(t) =

[
UL(t) 0

0 UR(t)

]
∈ R

2n×2n.

In order to resolve the proposed DAPCMC scheme (27)–(29),
that is, to seek the optimal solution to the TVQP problem (27)–
(29), it is necessary for us to concentrate on how to translate
such a TVQP problem (27)–(29) into a more computationally
convenient TVES problem. After that, solving the TVES problem is
tantamount to finding the optimal solution to the TVQP problem
(27)–(29).

With reference to Wei et al. (2022), the optimal solution to
the TVQP problem (27)–(29) can be obtained by dealing with the
following TVES problem:

H(t)χ(t)+ g(t) = 0, (30)

where the coefficient matrixH(t) ∈ R
̟×̟ and the vectors χ(t) ∈

R
̟ and g(t) ∈ R

̟ can be described as follows:

H(t) =




U(t) AT(t) BT(t)
A(t) 012×12 012×4n

−B(t) 04n×12 I4n×4n




χ(t) =



0(t)
λ(t)
µ(t)


 , g(t) =




ϕ(t)
−c(t)
r(t)




where the Lagrange multiplier λ(t) ∈ R
12 is connected with the

equality constraint (28) and the Lagrange multiplier µ(t) ∈ R
4n

connected with the inequality constraint (29); r(t) = d(t) −√
v(t) ◦ v(t)+ µ(t) ◦ µ(t)+ ε3 and v(t) = d(t) − B(t)0(t); ◦

bespeaks the Hadamard product operator; ε3 → 0+ and ̟ =

6n+ 12.
In other words, as long as we can explore the solution χ(t)

suitable for the TVES problem (30), it means that we have found
the optimal solution to the TVQP problem (27)–(29); Next, we will
explain the derivation of the ATT-DRNN algorithm and employ it
to work out the TVES problem (30), the TVQP problem (27)–(29),
and the proposed DAPCMC scheme (27)–(29).
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2.3 Algorithm design

First, we set up the following vector-valued EE in the light of
the TVES problem (30):

e(t) = H(t)χ(t)+ g(t). (31)

Finally, we utilize the RNN evolution rule (Shi and Zhang,
2018) as below:

ė(t) =
de(t)

dt
= −ζ e(t), (32)

where the fixed convergence factor ζ > 0 has an important
impact on the global exponential convergence rate. The larger the
ζ chooses, the faster the convergence rate one acquires.

Then, the RNN evolution rule (32) can be further expanded as
the following equation on account of the EE :

Ḣ(t)χ(t)+H(t)χ̇(t)+ ġ(t) = −ζ
[
H(t)χ(t)+ g(t)

]
. (33)

For the handiness of figuring out the optimal solution to the
TVQP problem (27)–(28), we reformulate (33) as

D(t)χ̇(t) = −V(t)χ(t)− ̺(t)− ζ
[
H(t)χ(t)+ g(t)

]
, (34)

where

D(t) =




U(t) AT(t) BT(t)
A(t) 012×12 012×4n[

ℓ1(t)− I4n×4n
]
B(t) 04n×12 I4n×4n − ℓ2(t)


 ∈ R

̟×̟

V(t) =




U̇(t) Ȧ
T
(t) Ḃ

T
(t)

Ȧ(t) 012×12 012×4n[
ℓ1(t)− I4n×4n

]
Ḃ(t) 04n×12 04n×4n


 ∈ R

̟×̟

̺(t) =




ϕ̇(t)
−ċ(t)[

I4n×4n − ℓ1(t)
]
ḋ(t)


 ∈ R

̟ ,

with




ℓ1(t) = ∧
[
�(t) ◦ v(t)

]

ℓ2(t) = ∧
[
�(t) ◦ µ(t)

]

�(t) =
[
v(t) ◦ v(t)+ µ(t) ◦ µ(t)+ ε3

]− 1
2 , ε3 → 0+.

We treat (34) as a CRNN model. In order to facilitate its
realization in computer system and digital hardware, the CTT-
DRNN algorithm and the ATT-DRNN algorithm are introduced
in the following subsections.

2.3.1 CTT-DRNN algorithm
In this subsection, a conventional Taylor-type discretization

formula is given, and the CTT-DRNN algorithm is obtained by
combining it with the CRNNmodel (34).

Based on Hu et al. (2018), the three-step general Taylor-type
discretization formula is formulated as follows:

ẋk =
(−2a+ 1)xk+1 + 6axk − (6a+ 1)xk−1 + 2axk−2

2σ

+O(σ 2), k = 2, 3, 4, ..., (35)

where the argument a < 0; k is the updating index; σ > 0 is the
fixed sampling period; xk = x(tk) denotes the samping value of
function x(t) at time instant tk = kσ ; O(σ 2) is the TE.

By applying the three-step general Taylor-type discretization
formula (35) to discretize the CRNN model (34), we can acquire
CTT-DRNN algorithm as below:

χk+1
.
=

6aχk − (6a+ 1)χk−1 + 2aχk−2 − 2Mk

[
σ

(
−Vkχk − ̺k

)
− h

(
Hkχk + gk

)]

2a− 1
(36)

where symbol
.
= denotes the computational assignment operation;

Mk,Vk,Hk, ̺k,gk, and χk mean the instantaneous values of
M(t),V(t),H(t), ̺(t),g(t), and χ(t) sampling at time instant tk
with M(t) denoting the pseudoinverse of D(t); parameter h = σζ

represents the solution step size generally set at the range of (0, 1).

2.3.2 ATT-DRNN algorithm
According to the analysis of Subsection (2.3.1), on the one

hand, the larger the fixed convergence factor ζ , the faster the
global convergence rate of the system, thus we should naturally
set ζ as large as possible at the beginning to ensure a sublime
exponential converging capability of the CRNN model (34). On
the other hand, it is recognized that the fixed argument σ as the
sampling period is a significant factor affecting the convergence
precision of the CTT-DRNN algorithm (36). Generally, the more
remarkable convergence precision is guaranteed by a smaller value
of σ taken at the initial stage. However, blindly setting a small
value of σ may directly lead to an exiguous solution step size h,
making it knotty for the solution process to converge rapidly or
even proceed normally. Similarly, an excessively huge ζ also makes
it hard to ensure a brilliant exactness of the algorithm due to
incurring a gigantic solution step size h. It can be seen that the above
situations are contradictory to each other. Moreover, according to
the changes in system conditions, fixed parameters cannot meet the
needs of different states. In view of this, to autonomously adjust the
convergence factor ζ and the sampling period σ according to the
actual convergence situation, and assure that the global state both
has a remarkable convergence rate and outstanding convergence
precision, a novel ATT-DRNN algorithm is designed as described
in the following text.

First, according to the actual solution status, the adaptive
sampling period σk = σ (tk) is designed as follows:

σk =
q

(
p+ ‖ek‖2

)δ
, (37)

where fixed arguments p, q > 0 are applied to adjust the solution
accuracy of the algorithm; variable argument δ is utilized to ensure
the algorithm precision while adjusting the sampling period change
rate; error ek = Hkχk +gk and symbol ‖·‖2 represents the 2-norm
of a vector.

Accordingly, the adaptive convergence factor ζk = ζ (tk) is
designed as follows:

ζk =
h

(
p+ ‖ek‖2

)δ

q
, (38)
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where variable argument δ is utilized to ensure the algorithm
accuracy while adjusting the global convergence rate of the
algorithm; h = σkζk is the same as that in (36).

Meanwhile, the corresponding continuous adaptive
convergence factor ζ (t) can be written as follows:

ζ (t) =
h

(
p+

∥∥e(t)
∥∥
2

)δ

q
. (39)

With the help of the continuous adaptive convergence factor
ζ (t) (39), a novel RNN evolution rule can be written as follows:

ė(t) =
de(t)

dt
= −ζ (t)e(t). (40)

Thus, on the account of the EE (31), the novel RNN evolution
rule (40) can be further expanded and reformulated as the ACRNN
model:

χ̇(t) = M(t)
{
−V(t)χ(t)− ̺(t)− ζ (t)

[
H(t)χ(t)+ g(t)

]}
, (41)

where the corresponding parameters are all the same as in the
previous section.

Besides, by taking into account the adaptive sampling period
σk (37), the adaptive three-step general Taylor-type discretization
formula can be expressed as follows:

ẋk =
(−2a+ 1)xk+1 + 6axk − (6a+ 1)xk−1 + 2axk−2

2σk

+O(σ 2
k ), k = 2, 3, 4, ..., (42)

Then, we can acquire the ATT-DRNN algorithm by using the
adaptive three-step general Taylor-type discretization formula (42)
to discretize the ACRNN model (41), which can be written as
follows:

χk+1
.
= 6a

2a−1χk −
6a+1
2a−1χk−1 +

2a
2a−1χk−2

− 2
2a−1Mk

[
σk

(
−Vkχk − ̺k

)
− h

(
Hkχk + gk

)]
, (43)

where the solution step size h = σkζk is generally set at the range of
(0, 1). Moreover, three initial state vectors χk with k = 0, 1, 2 are
necessary to start up the proposed ATT-DRNN algorithm (43). The
first one χ0 consists of 00, λ0, and µ0, where 00 is determined by
the initial joint-velocity vectors of the LA and RA, while λ0 and µ0

are relatively arbitrarily set. The remaining initial state vectors can
be generated by utilizing an adaptive Euler-type DRNN algorithm,
which can be obtained by applying adaptive Euler forward formula
to discretize the ACRNN model (41), i.e., χk+1

.
= χk + σkχ̇k with

χ̇k = Mk

[
−Vkχk − ̺k − ζk

(
Hkχk + gk

)]
.

Remark 2.5: By observing (37), it is evident that the adaptive
sampling period σk continuously adjusts according to the changes
in the RE ‖ek‖2, with an increase in the RE ‖ek‖2 and a decrease in
the sampling period σk, and vice versa.

Remark 2.6: By observing (38), it is evident that the adaptive
convergence factor ζk continuously adjusts according to the
changes in the RE ‖ek‖2, when the RE ‖ek‖2 increases, the adaptive
convergence factor ζk grows, leading to a higher convergence rate,
and vice versa.

Remark 2.7: The solution step size h procured through
multiplying σk and ζk is always a positive constant. By observing

Equations (37) and (38) simultaneously, it can be easily found
that σk and ζk exhibit the reciprocal states to each other. That
is to say, when the RE ‖ek‖2 is large, the algorithm will adjust
and yield a smaller sampling period σk and a larger convergence
factor ζk to guarantee a rapid convergence of the algorithm in
an extremely short sampling time; on the contrary, when the RE
‖ek‖2 reduces, the algorithm will adaptively increase the sampling
period σk and simultaneously decrease the convergence factor ζk.
By decreasing the sampling period and increasing the convergence
rate, the algorithm can promptly complete the calculation and
improve its computational efficiency. Therefore, the ATT-DRNN
algorithm (43) can consider both computational accuracy and
convergence efficiency during the calculation process.

3 Theoretical analyses and results

This section theoretically analyzes the convergence property
of the ACRNN model (41) and the computational precision of
the ATT-DRNN algorithm (43) for solving the TVQP problem
(27)–(29).

Theorem 1:With the parameters h, p, q, δ > 0 of the continuous
adaptive convergence factor ζ (t), the RE

∥∥e(t)
∥∥
2 generated by the

ACRNNmodel (41) exponentially converges to zero in a large-scale
manner with the exponential convergence rate at least being hpδ/q.

Proof: To begin with, by exploiting the EE (31), a Lyapunov
function can be chosen as follows:

L(t) =

∥∥e(t)
∥∥2
2

2
. (44)

Then, the time derivative of the function L(t) is obtained by
referring to (40):

L̇(t) = eT(t)ė(t) = −ζ (t)
∥∥e(t)

∥∥2
2 . (45)

Observing (44) and (45), one can draw the following
conclusions.

(1) If and only if e(t) = 0, L(t) = 0; otherwise, L(t) > 0.
(2) If and only if e(t) = 0, L̇(t) = 0; otherwise, L̇(t) < 0.
In other words, the function L(t) is positive definite and its

derivative L̇(t) is negative definite, which satisfies the Lyapunov
stability theory conditions (Isidori, 1989). Thus, it can be concluded
that the RE

∥∥e(t)
∥∥
2 converges to zero in a large-scale manner.

Second, by reconstructing and expanding (45), we acquire

L̇(t) = −2
h

(
p+

∥∥e(t)
∥∥
2

)δ

q

∥∥e(t)
∥∥2
2

2
= −2

h
(
p+

∥∥e(t)
∥∥
2

)δ

q
L(t).

(46)

Furthermore, based on (46), the following inequality can be
further formulated as follows:

L̇(t) = −2
h

(
p+

∥∥e(t)
∥∥
2

)δ

q
L(t) ≤ −2

hpδ

q
L(t). (47)

Attempting to figure out the inequality (47), we get

∥∥e(t)
∥∥2
2

2
≤

∥∥e(0)
∥∥2
2

2
exp

(
−2

hpδ

q
t

)
, (48)
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and the inequality (48) can be further formulated as

∥∥e(t)
∥∥
2 ≤

∥∥e(0)
∥∥
2 exp

(
−
hpδ

q
t

)
. (49)

Until now, in accordance with the inequality (49), we can
conclude that the RE

∥∥e(t)
∥∥
2 of the ACRNN model (41)

exponentially converges to zero in a large-scale manner with the
exponential convergence rate at least being hpδ/q, which completes
the proof. �

Theorem 2: With the parameters h, p, q, δ > 0 of the adaptive
sampling period σk, the ATT-DRNN algorithm (43) is zero-stable
and convergent with the TE of order O((q/pδ)3). In addition,
the theoretical solution of TVES problem (30) converged by the
ATT-DRNN algorithm (43) with a maximal steady-status RE
limk→∞ sup

∥∥ek+1

∥∥
2 bing of order O((q/p

δ)3).
Proof: First, drawing on the experience of Hu et al. (2018),

it testified that the adaptive three-step general Taylor-type
discretization formula (42) meets the conditions of zero-stable and
convergent, which has a TE term O(σ 2).

By using the adaptive three-step general Taylor-type
discretization formula (42) to discretize the ACRNN model
(41), the new ATT-DRNN algorithm (43) can be rewritten as
follows:

χk+1 =
6a

2a−1χk −
6a+1
2a−1χk−1 +

2a
2a−1χk−2

− 2
2a−1Mk

[
σk

(
−Vkχk − ̺k

)
− h

(
Hkχk + gk

)]
+ O(σ 3

k
), (50)

where O(σ 3
k
) is the TE term.

Due to the development process recommended above, it is
distinct that the ATT-DRNN algorithm (43) originating from (50)
is also zero-stable and similarly convergent with the TE of order
O(σ 3

k
). Therefore, we get

lim
k→∞

σk = lim
k→∞

q
(
p+ ‖ek‖2

)δ
=

q

pδ
, (51)

which means that the TE term for the ATT-DRNN algorithm (43)
is O((q/pδ)3).

Then, based on the ATT-DRNN algorithm (43), the theoretical
solution χ∗

k+1 of TVES problem (30) can be expressed as follows:

χ∗
k+1 = χk+1 + O((q/pδ)3). (52)

In addition, it is known that the theoretical solution χ∗
k+1 of

the TVES problem (30) satisfies Hk+1χ
∗
k+1 + gk+1 = 0. Thus, by

combining (51) with (52), we can draw the following conclusion:

lim
k→∞

sup
∥∥ek+1

∥∥
2

= lim
k→∞

sup
∥∥Hk+1χk+1 + gk+1

∥∥
2

= lim
k→∞

sup
∥∥Hk+1χ

∗
k+1 + gk+1 −Hk+1O(σ

3
k )

∥∥
2

= lim
k→∞

sup
∥∥Hk+1O(σ

3
k )

∥∥
2

≤ lim
k→∞

sup(
∥∥Hk+1

∥∥
F

∥∥O(σ 3
k )

∥∥
2) = O((q/pδ)3). (53)

Based on (53), it can be concluded that the maximal steady-
status RE limk→∞ sup

∥∥ek+1

∥∥
2 generated by the ATT-DRNN

algorithm (43) is O((q/pδ)3). Thus, we complete the proof. �

4 Illustrative examples

In this section, a numerical simulation example is provided
first and explored to state explicitly the remarkable competence
of the devised ATT-DRNN algorithm (43) when tackling the
TVQP problem (27)–(29). Then, two examples of dual-arm robot
control are provided to demonstrate the effectiveness of the devised
ATT-DRNN algorithm (43) in addressing the proposed DAPCMC
scheme (27)–(29). Meanwhile, we utilize the CTT-DRNN
algorithm (36) and the CET-DRNN algorithm in Wu and Zhang
(2023) for comparisons to show the superior performance of the
devised ATT-DRNN algorithm (43). To help readers understand
the algorithm implementation process, the pseudo-code of the
proposed ATT-DRNN algorithm (43) for addressing the DAPCMC
scheme (27)–(29) is presented in Algorithm 1.

1. Set: α, β, ξ, a, h, p, q, δ, Te, γ, z±
L
, z±

R
, ż±

L
,

ż±
R
;

2. Initialize: zL(0), zR(0), 0L(0), 0R(0), λ(0), µ(0),

t(0);

3. while tk ≤ Te do

4. Generate 0
±

L
(tk), 0

±

R
(tk) from the JCLS;

5. Compute H(tk), χ(tk), g(tk), M(tk), V(tk), ̺(tk), V(tk),

σ (tk), ζ (tk);

6. if k = 0, 1 then

7. Compute χ(tk+1) via the adaptive Euler-type

DRNN algorithm:

χ(tk+1)
.
= χ(tk)+ σ (tk)χ̇(tk);

8. else

9. Compute χ(tk+1) via the ATT-DRNN algorithm:

χ(tk+1)
.
=

6a

2a− 1
χ(tk)−

6a+ 1

2a− 1
χ(tk−1)+

2a

2a− 1
χ(tk−2)

−
2

2a− 1
σ (tk)χ̇(tk);

10. Obtain 0L(tk+1) from the first n elements of

χ(tk+1) and 0R(tk+1) from the n+ 1

to 2n elements of χ(tk+1);

11. if k = 0 then

12. Compute zL(tk+1) = zL(tk)+ σ (tk)0L(tk+1),

zR(tk+1) = zR(tk)+ σ (tk)0R(tk+1);

13. else

14. Compute zL(tk+1) =
4
3zL(tk)−

1
3zL(tk−1)+

2
3σ (tk)0L(tk+1),

zR(tk+1) =
4
3zR(tk)−

1
3zR(tk−1)+

2
3σ (tk)0R(tk+1);

15. Update tk+1 = tk + σ (tk);

16. end

Algorithm 1. Pseudo-code of the proposed ATT-DRNN algorithm (43) for

addressing the DAPCMC scheme (27)–(29).

4.1 Numerical simulation verification

A specific TVQP problem with equality and
inequality constraints is provided, the details of which are
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outlined below:

min.
0(t)

[cos(3t)/6+ 1]02
1(t)+ sin(t)01(t)02(t)

+ cos(3t)01(t)03(t)+ 2 sin(t)01(t)

+[sin(3t)/6+ 1]02
2(t)+ [sin(2t)+ 1]02(t)04(t)

+ 2 cos(t)02(t)− [cos(t)/2+ 1/2]02
3(t)

+ [cos(2t)03(t)04(t)]/2+ sin(2t)03(t)

− [sin(t)/2+ 1/2]02
4(t)+ cos(2t)04(t)

s.t.− t sin(t/2)01(t)+ {[4 cos(t/2)]/5+ 1/5}02(t) = t sin(2t + 1)

− [3 cos(9t/10)]/203(t)+ sin(9t/10)04(t) = − cos(3t/2)/2− 3/10

− 0.2 sin(3t)− 1.2 ≤ 01(t),02(t),03(t),04(t) ≤ 0.2 sin(3t)+ 1.2

(54)

where 0(t) = [01(t),02(t),03(t),04(t)]T. By referring to the
standard form of the TVQP problem (27)–(29), the corresponding
coefficients are as follows:

U(t) =




cos(3t)/3+ 2 sin(t) cos(3t) 0
sin(t) sin(3t)/3+ 2 0 sin(2t)+ 1
cos(3t) 0 − cos(t)− 1 cos(2t)/2

0 sin(2t)+ 1 cos(2t)/2 − sin(t)− 1


 ∈ R

4×4

ϕ(t) =
[
sin(t) cos(t) sin(2t) cos(2t)

]
∈ R

4

A(t) =

[
−t sin(t/2) [4 cos(t/2)]/5+ 1/5 0 0

0 0 −[3 cos(9t/10)]/2 sin(9t/10)

]
∈ R

2×4

B(t) =

[
I4×4

−I4×4

]
∈ R

8×4

c(t) =

[
t sin(2t + 1)

− cos(3t/2)/2− 3/10

]
∈ R

2

d(t) =
[
0.2 sin(3t)+ 1.2

]
8×1

∈ R
8.

To successfully address the above TVQP problem (54) using
the ATT-DRNN algorithm (42), we set parameters h = 0.1, p = 5,
q = 0.05, and γ = 0.001; the initial values of 0(0),λ(0), and
µ(0) are set to random values at the range of (0, 0.001). Then, the
entire simulation calculation time in the program is uniformly set
to Te = 4 s. Besides, we set the fixed sampling period σ = 0.01 s
for the CTT-DRNN algorithm (36) and the CET-DRNN algorithm
in Wu and Zhang (2023).

Figure 2A shows the element trajectories of the status vector
0(t) generated by the ATT-DRNN algorithm (43) with a = −0.3
and δ = 2, which are strictly confined to the ranges of inequality
constraints. Meanwhile, it can be seen from Figure 2B that the
equality constraint A(t)0(t) of the TVQP problem (54) can be
promptly satisfied and can consistently maintain this state. To
save space, the solving states of the proposed algorithm (43) with
different a and δ, as well as similar figures of other algorithms, are
omitted.

In order to research the impact of δ on the solving results of
the ATT-DRNN algorithm (43), the variation trajectory of the RE∥∥e(t)

∥∥
2 when taking different δ with a = −0.3 is exhibited in

Figure 2C. As we can see that, when entering the steady state, the
RE

∥∥e(t)
∥∥
2 maintains at around 10−4 with δ = 1, 10−6 with δ = 2,

and 10−8 with δ = 3. In other words, as the setting value of δ

increases, the convergence speed of the ATT-DRNN algorithm (43)
is accelerated, and the solution precision is higher.

To demonstrate the excellent performance of the proposed
ATT-DRNN algorithm (43) compared with other conventional
algorithms, we further investigate the REs

∥∥e(t)
∥∥
2 generated by the

algorithms of ATT-DRNN (43) with δ = 2, CTT-DRNN (36) and
CET-DRNN in Wu and Zhang (2023) by figuring out the TVQP
problem (54), respectively. The REs

∥∥e(t)
∥∥
2 synthesized by these

three algorithms with different a are displayed in Figure 2D. It can
be seen that the RE

∥∥e(t)
∥∥
2 generated by the ATT-DRNN algorithm

(43) with δ = 2 and different a values can converge as small as
10−6 in approximately 0.3 s. The REs

∥∥e(t)
∥∥
2 generated by the

CTT-DRNN algorithm (36) with different a values can converge to
roughly 10−4 in 1 s. The RE

∥∥e(t)
∥∥
2 generated by the CET-DRNN

algorithm in Wu and Zhang (2023) merely converges to around
10−2 in 0.5 s. Overall, the solution accuracy and convergence
rate of the ATT-DRNN algorithm (43) are superior to the other
two conventional algorithms. Besides, it can be concluded that
the computing precision of the ATT-DRNN algorithm (43) is
higher with the smaller absolute value of a chosen. In addition,
the variation curves of the adaptive sampling period σ (t) and
the adaptive convergence factor ζ (t) with different δ values are
portrayed in Figures 2E, F, separately, which indicate that σ (t) and
ζ (t) can converge and stabilize to their corresponding values in
an extremely short time. The greater the δ chosen, the smaller the
final stable value of σ (t) and the larger the final stable value of ζ (t).
Furthermore, during the solving process, as the RE

∥∥e(t)
∥∥
2 rapidly

converges and decreases at the beginning stage, the change of σ (t)
is inversely proportional to it, and the change of ζ (t) is directly
proportional to it, which is consistent with our previous analysis
conclusions from Remark 2.5 to Remark 2.7.

In summary, the several situations above confirm that the
ATT-DRNN algorithm (43) has an excellent ability to solve the
TVQP problem. Compared with other conventional algorithms,
the proposed algorithm has faster convergence speed and higher
precision.

4.2 Control case I of dual-arm robot

For this fraction, we establish a DAPCMC scheme consisting of
two UR5 robotic arms placed on the contralateral side, controlled
by the ATT-DRNN algorithm (43) for dual heart-shaped trajectory
tracking. In addition, the UR5 robotic arm is a sensitive lightweight
6-DOF robot, which has a small footprint and can be directly
installed in a narrow workspace to complete tasks with high
sensitivity requirements (Vivas and Sabater, 2021).

According to the design form of the DAPCMC scheme (27),
(28), we establish a particular TVQP problem for a UR5 dual-arm
robot consisting of two 6-DOF (with n = 6) UR5 robotic arms.
In this scheme, the LA and RA’s initial joint-angle vectors are set
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FIGURE 2

Numerical simulation results of the ATT-DRNN (43), CTT-DRNN (36), and CET-DRNN in Wu and Zhang (2023) algorithms for addressing the TVQP

problem (53), separately. (A) Status vector 0(t) under inequality constraint generated by the ATT-DRNN algorithm (43) with a = −0.3 and δ = 2. (B)

A(t)0(t) under equality constraint c(t) obtained by the ATT-DRNN algorithm (43) with a = −0.3 and δ = 2. (C) RE ‖e(t)‖2 generated by the ATT-DRNN

algorithm (43) with a = −0.3 and di�erent δ. (D) RE ‖e(t)‖2 by three algorithms with di�erent a and δ = 2. (E) Adaptive sampling period σ (t) with

di�erent δ. (F) Adaptive convergence factor ζ (t) with di�erent δ.

TABLE 2 The D-H parameters of UR5 robotic arm and its joint-angle and joint-velocity physical limits in the DAPCMC scheme (27)–(29).

Joint α̃ (rad) ã (m) d̃ (m) z (rad) z+ (rad) z− (rad) ż+ (rad/s) ż− (rad/s)

1 1.5708 0 0.0892 z1 1.5708 −1.5708 0.285 −0.285

2 0 −0.4250 0 z2 0 −3.1416 0.285 −0.285

3 0 −0.3923 0 z3 0 −3.1416 0.285 −0.285

4 1.5708 0 0.1092 z4 1.5708 −1.5708 0.285 −0.285

5 −1.5708 0 0.0948 z5 3.1416 0 0.285 −0.285

6 0 0 0.0825 z6 1.5708 −1.5708 0.285 −0.285

as zL(0) = [0,π/12,−4π/9, 13π/36,π/2, 0]T rad and zR(0) =

[0,−π/12, 4π/9,−13π/36,−π/2, 0]T rad, respectively; the LA and
RA’s initial joint-velocity vectors are set as żL(0) = żR(0) =

[0]6×1 rad/s. We set the design parameters as h = 0.2, p = 10,

q = 0.2, and δ = 2. Then, the other correlative parameters are
taken as a = −0.1, ξ = 5, and γ = 0.001; λ and µ are set to
random values at the range of (0, 0.001); α and β for two robotic
arms are uniformly set as 0.8 and 0.1. Besides, we set the fixed
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FIGURE 3

The ATT-DRNN algorithm (43) controls the posture collaboration motion of the UR5 dual-arm robot with two arms placed on the contralateral side

for the dual heart-shaped trajectory tracking. (A) Starting and terminal statuses of the dual-arm robot and the end-executor real and ideal trajectories

in 3D space. (B) Outlines of real trajectory and ideal path in a 3D space. (C) Variations of the LA joint angles zL(t). (D) Variations of the RA joint angles

zR(t). (E) Variations of the LA joint velocities 0̇L(t). (F) Variations of the RA joint velocities 0̇R(t). (G) Variations of the LA end-executor orientation

oRL(t). (H) Variations of the RA end-executor orientation oRR(t). (I) The RE ‖e(t)‖2 generated by three di�erent algorithms.

sampling period σ = 0.01 s for the CTT-DRNN algorithm (36)
and the CET-DRNN algorithm inWu and Zhang (2023). Moreover,
the D-H parameters of the UR5 robotic arm and its joint-angle and
joint-velocity physical limits in the DAPCMC scheme (27)–(29) are
exhibited in Table 2.

Figure 3A illustrates the movement trajectory outlines of the
dual-arm robot in a 3D space. It can be observed that the end-
executor real trajectory is unanimous with the ideal path and that
the joint-angle terminal status also perfectly overlaps with the
starting status for each side of the dual robotic arms, which can
be further confirmed by Figures 3C, D. Similarly, in Figure 3B,
the ATT-DRNN algorithm (43) controls the dual-arm robot to
achieve the posture collaboration motion and accomplish the dual
heart-shaped path tracking. Finally, Figures 3E, F outline the joint-
velocity variation curves for the joints of the left and right robotic

arms. Clearly, all the joint-velocity values are not beyond the joint-
velocity physical limits set at the beginning. Besides, the end-
executor orientation variation curves are shown in Figures 3G, H,
which remain constant during the task execution. Furthermore, in
Figure 3I, the RE

∥∥e(t)
∥∥
2 generated by the ATT-DRNN algorithm

(43) for addressing the DAPCMC scheme (27)-(29) maintains at
around 10−7. By contrast, the RE

∥∥e(t)
∥∥
2 generated by the CTT-

DRNN algorithm (36) keeps at roughly 10−4, and that generated
by the CET-DRNN algorithm in Wu and Zhang (2023) can merely
remain at about 10−2.

In addition, Figure 4 shows the position error variation curves
of the end-executor when the UR5 dual-arm robot tracks the dual
heart-shaped trajectory under the control of different algorithms.
In Figure 4A, the dual-arm robot controlled by the ATT-DRNN
algorithm (43) can accomplish the trajectory following task
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FIGURE 4

Variations of the end-executor position error when the UR5 dual-arm robot with two arms placed on the contralateral side to achieve the posture

collaboration motion for the dual heart-shaped trajectory tracking. (A) Generated by the ATT-DRNN algorithm (43). (B) Generated by the CTT-DRNN

algorithm (36). (C) Generated by the CET-DRNN algorithm in Wu and Zhang (2023).

FIGURE 5

Snapshots of the UR5 dual-arm robot with two arms placed on the contralateral side during the trajectory tracking task of the dual heart-shaped

path via the ATT-DRNN algorithm (43) solving the DAPCMC scheme (27)–(29). (A) Capturing at the starting moment. (B) Capturing at the

intermediate moment. (C) Capturing at the terminal moment.

accurately with the maximal position error of the end-executor
being less than 2.3 × 10−7 m. In Figure 4B, the dual-arm robot
controlled by the CTT-DRNN algorithm (36) can realize the
maximal tracking error of the end-executor no more than 2.3 ×

10−5 m. In Figure 4C, the dual-arm robot controlled by the CET-
DRNN algorithm in Wu and Zhang (2023) can merely ensure that
the position error of the end-executor is within 7× 10−4 m.

To further simulate the movement status of the dual-arm robot
vividly and intuitively in the physical scene, we utilize a virtual
robot experiment platform (i.e., CoppeliaSim 2020) to show the
real-time status of the dual-arm robot following the ideal paths
with the help of the ATT-DRNN algorithm (43) in solving the
DAPCMC scheme (27)–(29). Snapshots describing the movement
process (i.e., starting moment, intermediate moment, and terminal
moment) are shown in Figure 5.

4.3 Control case II of dual–arm robot

For this fraction, we establish a DAPCMC scheme consisting
of two UR5 robotic arms placed on the identical side, controlled by

the ATT-DRNN algorithm (43) for the heart-shaped and auspicious
cloud trajectory tracking.

According to the design form of the DAPCMC scheme (27),
(28), we establish another particular TVQP problem for a UR5
dual-arm robot consisting of two 6-DOF UR5 robotic arms. In
this scheme, the LA and RA’s initial joint-angle vectors are set as
zL(0) = zR(0) = [0,−π/12,−2π/3,π/4,−π/2, 0]T rad; the LA
and RA’s initial joint-velocity vectors are set as żL(0) = żR(0) =

[0]6×1 rad/s. We set the design parameters as h = 0.2, p = 5,
q = 0.05, and δ = 2. Then, the other correlative parameters are
taken as a = −0.5, ξ = 5, and γ = 0.001; λ and µ are set to
random values at the range of (0, 0.001); α and β for two robotic
arms are uniformly set as 0.8 and 0.1. Additionally, the joint-angle
and joint-velocity physical limits in the DAPCMC scheme (27)-(28)
are separately set as follows: z+

L
= 0.3 rad/s, z−

L
= −0.3 rad/s,

z−
R

= 0.54 rad/s, and z−
R

= −0.54 rad/s.
Figure 6A shows the movement trajectory outlines of the dual-

arm robot in a 3D space. It is evident that the end-executor
real trajectory aligns seamlessly with the ideal path. Moreover,
the terminal statuses of the joint angles for both robotic arms
precisely coincide with their initial ones, as corroborated by
the results presented in Figures 6C, D. Similarly, in Figure 6B,
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FIGURE 6

The ATT-DRNN algorithm (43) controls the posture collaboration motion of the UR5 dual-arm robot with two arms placed on the identical side for

the heart-shaped and auspicious cloud trajectory tracking. (A) Starting and terminal statuses of the dual-arm robot and the end-executor real and

ideal trajectories in a 3D space. (B) Outlines of real trajectory and ideal path in a 3D space. (C) Variations of the LA joint angles zL(t). (D) Variations of

the RA joint angles zR(t). (E) Variations of the LA joint velocities 0̇L(t). (F) Variations of the RA joint velocities 0̇R(t). (G) Variations of the LA

end-executor orientation oRL(t). (H) Variations of the RA end-executor orientation oRR(t). (I) The RE ‖e(t)‖2 generated by three di�erent algorithms.

the ATT-DRNN algorithm (43) controls the dual-arm robot to
realize the posture collaboration motion and accomplish the task
of tracking the heart-shaped and auspicious cloud trajectories
separately. Subsequently, Figures 6E, F delineate the joint-velocity
profiles of the left and right robotic arms. It is apparent that
none of the joint-velocity values exceed the predetermined physical
limits initially determined. Besides, the end-executor orientation
variation curves are shown in Figures 6G, H, which maintain a
constant state during the task execution. Furthermore, in Figure 6I,
the RE

∥∥e(t)
∥∥
2 generated by the ATT-DRNN algorithm (43)

maintains at approximately 10−6 and converges to a extremely
small value of 10−8. By contrast, the RE

∥∥e(t)
∥∥
2 generated

by the CTT-DRNN algorithm (36) keeps at roughly 10−3 and
converges to about 10−5 and that generated by the CET-DRNN

algorithm in Wu and Zhang (2023) can merely converge to
about 10−3.

In addition, Figure 7 shows the position error variation curves
of the end-executor when the UR5 dual-arm robot tracks the
heart-shaped and auspicious cloud trajectory under the control of
different algorithms. In Figure 7A, the dual-arm robot controlled
by the ATT-DRNN algorithm (43) can accomplish the trajectory
following task accurately with the maximal position error of the
end-executor being less than 1.0× 10−6 m. In Figure 7B, the dual-
arm robot controlled by the CTT-DRNN algorithm (36) can realize
the maximal position error of the end-executor no more than
1.2 × 10−4 m. In Figure 7C, the dual-arm robot controlled by the
CET-DRNN algorithm inWu and Zhang (2023) can merely ensure
that the position error of the end-executor is within 1.8× 10−3 m.
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A B C

FIGURE 7

Variations of the end-executor position error when the UR5 dual-arm robot with two arms placed on the identical side to achieve the posture

collaboration motion for the heart-shaped and auspicious cloud trajectory tracking. (A) Generated by the ATT-DRNN algorithm (43). (B) Generated

by the CTT-DRNN algorithm (36). (C) Generated by the CET-DRNN algorithm (Wu and Zhang, 2023).

FIGURE 8

Snapshots of the UR5 dual-arm robot with two arms placed on the identical side during the trajectory tracking task of the heart-shaped and

auspicious cloud path via the ATT-DRNN algorithm (43) solving the DAPCMC scheme (27)-(29). (A) Capturing at the starting moment. (B) Capturing

at the intermediate moment. (C) Capturing at the terminal moment.

To further simulate the movement status of the dual-arm robot
vividly and intuitively in the physical scene, we utilize the virtual
robot experiment platform to show the real-time status of the
dual-arm robot following the ideal paths with the help of the
ATT-DRNN algorithm (43) in solving the DAPCMC scheme (27)–
(29). Snapshots describing the movement process (i.e., starting
moment, intermediate moment, and terminal moment) are shown
in Figure 8.

In summary, the aforementioned two control cases of dual-arm
robots substantiate that the proposed DAPCMC scheme (27)–(29)
and its corresponding ATT-DRNN algorithm (43) can be utilized
for the posture collaboration control of the industrial robots
with joint physical limits considered and further demonstrate the
potential of the proposed scheme and algorithm to optimize the
efficiency and precision of repetitive trajectory tracking in practical
applications.

5 Conclusion

In this study, the ATT-DRNN algorithm (43) has been
devised for solving the DAPCMC scheme (27)–(29) with a

novel JLCS (7), (8). Additionally, theoretical analyses and results
have indicated the excellent performance of the ATT-DRNN
algorithm (43) and the ACRNN model (41) in terms of the
convergence rate and precision. Then, three illustrative examples
with comparisons have further demonstrated that the proposed
DAPCMC scheme (27)–(29) in a 3D space with the innovative
JLCS (7), (8) offers a new solution measure for realizing the posture
collaboration motion control of constrained dual-arm robots and
accomplishing repetitive trajectory following missions, and it can
be worked out by the ATT-DRNN algorithm (43) efficiently
and accurately.

Finally, some possible research directions in the future are put
forward.

• The whole design process of the ATT-DRNN algorithm
(43) is set in an ideal noiseless environment. Therefore,
enhancing the ATT-DRNN algorithm (43) with relevant anti-
noise technologies to make it possess strong robustness in
various noise environments is an interesting future research
direction.

• The ATT-DRNN algorithm (43) involves an explicit inverse
operation, which is computationally expensive. Thus,
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proposing an inverse-free ATT-DRNN algorithm is another
future research direction.

• Two robotic arms of the same model are used to
form a dual-arm robot in this study. Thus, achieving
the collaboration motion control by composing a
heterogenous multi-arm robot system is a meaningful future
research direction.

• Popularizing the ATT-DRNN design scheme to more kinds
of engineering applications (e.g., UAV flight control) is also a
significant future research direction.
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