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Introduction: Road cracks significantly shorten the service life of roads. Manual 
detection methods are inefficient and costly. The YOLOv5 model has made 
some progress in road crack detection. However, issues arise when deployed 
on edge computing devices. The main problem is that edge computing devices 
are directly connected to sensors. This results in the collection of noisy, poor-
quality data. This problem adds computational burden to the model, potentially 
impacting its accuracy. To address these issues, this paper proposes a novel 
road crack detection algorithm named EMG-YOLO.

Methods: First, an Efficient Decoupled Header is introduced in YOLOv5 to 
optimize the head structure. This approach separates the classification task 
from the localization task. Each task can then focus on learning its most relevant 
features. This significantly reduces the model’s computational resources and 
time. It also achieves faster convergence rates. Second, the IOU loss function 
in the model is upgraded to the MPDIOU loss function. This function works 
by minimizing the top-left and bottom-right point distances between the 
predicted bounding box and the actual labeled bounding box. The MPDIOU loss 
function addresses the complex computation and high computational burden 
of the current YOLOv5 model. Finally, the GCC3 module replaces the traditional 
convolution. It performs global context modeling with the input feature map 
to obtain global context information. This enhances the model’s detection 
capabilities on edge computing devices.

Results: Experimental results show that the improved model has better 
performance in all parameter indicators compared to current mainstream 
algorithms. The EMG-YOLO model improves the accuracy of the YOLOv5 
model by 2.7%. The mAP (0.5) and mAP (0.9) are improved by 2.9% and 0.9%, 
respectively. The new algorithm also outperforms the YOLOv5 model in complex 
environments on edge computing devices.

Discussion: The EMG-YOLO algorithm proposed in this paper effectively 
addresses the issues of poor data quality and high computational burden on 
edge computing devices. This is achieved through optimizing the model 
head structure, upgrading the loss function, and introducing global context 
modeling. Experimental results demonstrate significant improvements in both 
accuracy and efficiency, especially in complex environments. Future research 
can further optimize this algorithm and explore more lightweight and efficient 
object detection models for edge computing devices.
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1 Introduction

The cyclical effects of vehicle loads and the long-term erosion of 
natural environmental factors combine to affect the road structure. 
There is a significant decline in the service function of the road in the 
middle and later stages of its use. Not only does road degradation 
threaten the safety of motorists, it can also cause congestion in traffic 
flow and shorten the overall life of the road infrastructure. As a result, 
road crack detection has become an important means of extending the 
life of roads. However, in the actual road crack detection project, the 
complexity of the road environment makes it difficult for automated 
detection equipment to meet the needs of the actual project in terms 
of recognition accuracy. Thus, the accuracy of road crack detection 
algorithms needs to be further improved.

Object detection algorithms show significant advances in the field of 
road crack detection. Among them, semantic segmentation (Ronneberger 
et al., 2015; Liu et al., 2021; Xu et al., 2021; Zhang W. et al., 2021; Tan et al., 
2022) enables accurate labeling of crack regions down to the pixel level. 
This algorithm allows the fine-grained capture and differentiation of 
morphological features of pavement cracks. Nonetheless, the high 
annotation cost barrier of semantic segmentation becomes a major 
constraint to its widespread popularity. With the continuous breakthrough 
of deep learning technology (Maeda et al., 2018; Nhat-Duc et al., 2018; 
Hou et al., 2022; al-Huda et al., 2023; Talaei et al., 2023), it brings new 
opportunities for road crack detection. The mainstream object detection 
models are Faster R-CNN (Ren et  al., 2016), SSD (Liu et  al., 2016), 
EfficientDet (Tan et al., 2020), and CenterNet (Resnet50; Duan et al., 
2019). Whereas Faster R-CNN, due to its fine region cropping and 
subsequent refined classification and regression steps. The algorithm 
performs better in terms of accuracy. SSDs are more suitable for speed 
sensitive application scenarios. EfficientDet, on the other hand, combines 
the advantages of both, ensuring higher detection accuracy while 
improving operational efficiency and model scalability. CenterNet 
(Resnet50) converges more easily during training and can achieve better 
results for training with finite resources. With the continuous iterative 
updating of the YOLO algorithm (Redmon et al., 2016), the model of the 
YOLOv5 framework has become one of the mainstream solutions in the 
field. In response to the challenges of complex and diverse scenarios in 
road crack detection, researchers have proposed various improvements 
to enhance the accuracy of the model. Ren et al. (2023) proposed a model 
named YOLOv5s-M based on YOLOv5 which is capable of handling 
large-scale detection layers. The algorithm improves the detection 
accuracy of urban road crack objects. However, the model handles large-
scale detection layers, which may increase the computational complexity 
and affect real-time performance. Tang et al. (2024) proposed a crack 
detection algorithm based on improved YOLOv5s for asphalt pavement 
crack detection under complex pavement conditions (affected by glare, 
road surface water, debris, etc.) with low recognition accuracy. The results 
show that the improved YOLOv5s model has better detection accuracy 
under complex pavement conditions. While the model performs well 
under complex pavement conditions, the model may have been over-
fitted to specific environmental conditions with limited generalization. 
Guo and Zhang (2022) proposed the MN-YOLOv5 pavement damage 
detection algorithm. Algorithm uses a new backbone feature extraction 
network and attention module. Size of the model is reduced by about 1.62 
times. The accuracy is improved by 2.5 percent. However, the 
experimental results may lack diverse test data and do not fully 
demonstrate the performance of the model in different scenarios. 

Aghayan-Mashhady and Amirkhani (2024) developed an algorithm for 
detecting road damage based on YOLOv5 with several different baseline 
models. The algorithm utilizes traditional bounding box enhancement 
and road damage generation adversarial network based enhancement 
techniques. New models improve the accuracy of road damage detectors 
in different environments and field conditions. However, the introduction 
of GAN may increase the complexity and computational cost of the 
model and affect the real-time detection performance. Dai et al. (2021) 
proposed the Dyhead dynamic object detection head. Multiple self-
attention mechanisms are coherently combined between feature layers for 
scale-awareness, between spatial locations for spatial-awareness, and 
within the output channel for task-awareness. This method significantly 
improves the detection accuracy of the YOLOv5 object detection head 
without adding any computational overhead. While the Dyhead dynamic 
target detection head improves detection accuracy, the combination of 
multiple self-attention mechanisms may increase the computational 
overhead and affect the real-time performance of the model. Qiao et al. 
(2021) proposed Switchable Atrous Convolution (SAconv). It convolves 
features at different Atrous rates and collects the results using switching 
functions. SAconv combines them to form DetectoRS, which greatly 
improves the accuracy of YOLOv5. However, the method may be effective 
in specific scenarios, but the ability to generalize to other scenarios needs 
further validation. Wei et al. (2023) proposed a YOLOv5s-BSS to address 
the limitations of existing state-of-the-art crack detection methods in 
terms of accuracy and detection speed. The algorithm was compared to 
YOLOv5s on road damage datasets from China, Japan, and the USA with 
higher crack detection accuracy. However, the introduction of modules 
such as BiFPN and SPPCSPC may increase the model complexity and 
affect the real-time performance. Jiang et  al. (2023) proposed an 
RDD-YOLOv5 to address the complexity of the road crack background, 
low resolution and high similarity of cracks. The model’s ability to 
accurately identify road cracks and the average accuracy are better than 
the original YOLOv5, with an average accuracy of 91.48%, which is 2.5% 
better than the original YOLOv5. However, the experimental results are 
mainly based on specific datasets and lack validation against more diverse 
scenarios and data. Hu et al. (2024) proposed an automated 3D crack 
detection system for structures based on high-precision Light Detection 
Ranging (LiDAR) and camera fusion. Through the extraction of high-
precision 3D crack features, the significant measurement accuracy reaches 
sub-millimeter level (0.1 mm) when compared with the measurement 
results of traditional methods. However, the dependence on LiDAR 
equipment limits the practical application of the method, especially in 
resource-constrained  
situations.

Although YOLOv5-based algorithms have made significant 
progress in road crack detection accuracy. However, current research 
has not yet fully explored the effective integration of the improved 
YOLOv5 model with edge computing devices. Edge devices, due to 
their inherent miniaturization, usually carry limited processor power, 
memory size and storage space. This creates a stark hardware 
configuration gap compared to centralized high-performance 
computers or servers. Such devices are often difficult to support YOLO 
while meeting the requirements of low power consumption and 
compact size. However, it is often difficult to support the massive 
floating-point operations required during the implementation of the 
YOLOv5 model. This leads to a decrease in model detection accuracy. 
Therefore, how to maintain or even optimize the detection accuracy 
on the premise of achieving YOLOv5 model for edge computing 
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architecture is highly adaptable and efficient operation. This has 
become a key technology and challenge to be solved.

Based on the above, Liang et al. (2022) proposed an object detection 
(OD) system based on edge cloud cooperation and reconfigured 
convolutional neural networks, called edge YOLO. The system can 
effectively avoid over-reliance on computing power and uneven 
distribution of cloud computing resources. The model can maximize the 
efficiency of multi-scale prediction. However, the model is a lightweight 
OD framework implemented by combining pruned feature extraction 
network and compressed feature fusion network. The pruning operation 
removes weights or channels that are considered unimportant in the 
network. This may lead to information loss, which in turn affects the 
detection accuracy of the model. Ganesh et al. (2022) proposed a new 
edge GPU friendly multi-scale feature interaction module. The algorithm 
utilizes the existing state-of-the-art methods in the lost combinatorial 
connections between various feature scales. This can improve the 
accuracy and execution speed of various edge GPU devices available in 
the market. However, the algorithm uses the older YOLO v4 model and 
is not adapted to the latest models. Li et al. (2021) designed an edge to 
client road damage detection system based on YOLO object detection 
algorithm. The system includes roadside information acquisition 
platform, edge computing device, cloud transmission system and client. 
The experimental results show that the system can achieve real-time 
display of road damage detection. However, the system does not solve the 
accuracy degradation of YOLOv5 in the edge computing device due to 
the poor quality data collected. Zhang Y. M. et al. (2021) proposed a 
lightweight detector, CSL-YOLO. The model was modeled by proposing 
a new lightweight convolutional method cross-level lightweight (CSL) 
module. The CSL module is used to generate redundant features from 
cheap operations and the proposed CSL-Module can significantly reduce 
the computational cost. However, the model is not optimized for the 
specific problem of road crack detection and its performance in road 
crack detection is not very satisfactory.

To address the problem of accuracy degradation caused by poor 
quality data collected due to the complexity of the real environment 
in edge computing devices. In this paper, an improved YOLOv5 object 
detection model, EMG-YOLO, is proposed. The model performance 
is strengthened through the introduction of Efficient Decoupled Head 
(EDH) by decoupling mechanism. The optimization of the IOU loss 
function, as well as the improvement of the C3 module and the Head 
part of the model, successfully enhanced the overall performance of 
the model. The successful application of the method in road crack 
detection verifies the feasibility of the method. The main contributions 
of this paper are as follows:.

 1. The Efficient Decoupled Head addresses the issue of information 
confusion and task conflict arising from the shared feature map 
for classification and regression tasks in the traditional YOLOv5 
model, thereby enhancing overall performance.

 2. The shapes of road cracks vary greatly, and traditional IoU 
performs poorly in handling elongated or irregularly shaped 
cracks. The MPDIOU function better adapts to various crack 
shapes by upgrading the conventional IoU function, resolving the 
issue of inaccurately reflecting prediction accuracy in cases where 
bounding boxes are highly overlapping but differ in shape.

 3. To tackle the problem of target features being easily obscured 
by background noise during detection on edge devices, the 
Global Context Block is introduced to optimize the C3 module, 

thereby improving the feature representation capability of the 
YOLOv5 model.

2 YOLOv5 network architecture

When compared with the traditional two-stage detector, YOLOv5 
exhibits superior detection speed and enhanced accuracy. Its network 
architecture comprises three essential components: Backbone, Neck, 
and Head. Moreover, the YOLOv5 algorithm has been fine-tuned for 
parameter count and inference speed optimizations in contrast to 
YOLOv4. Figure 1 illustrates the structure of YOLOv5.

Implementing YOLOv5 on edge computing devices presents the 
challenge of varying data quality. This not only heightens the model’s 
difficulty in handling noisy data but also risks excessive consumption 
of computational resources. Thereby impacting model recognition 
accuracy. To address this, a series of optimizations were implemented 
on the YOLOv5 model. Firstly, an efficient decoupled head structure 
was introduced to expedite the model’s training convergence speed. 
Secondly, fine tuning of the loss function and adoption of the 
MPDIOU loss function were carried out to alleviate computational 
burdens during training. Finally, the traditional convolutional layer 
was replaced with the GCC3 module to reduce both computational 
complexity and parameter count.

3 Enhancement of road defect 
detection network architecture based 
on the YOLOv5 model

3.1 Constructing a hybrid channel strategy 
for the detection head

The demanding computational resources and lengthy training 
time required during the model training phase contribute to this issue. 
In constructing deep learning models using the YOLOv5 framework, 
minimizing the required iterations is pivotal to enhancing model 
learning efficacy while effectively managing computational expenses. 
Rapid convergence indicates that the model can efficiently grasp and 
assimilate critical features, swiftly reaching the desired performance 
level. This accelerates the feedback loop from data input to 
precise prediction.

The architecture of YOLOv5’s integrated detection head enables 
the sharing of multi-dimensional parameters across classification and 
localization tasks. This approach is designed to optimize the 
performance equilibrium between these two tasks synergistically. In 
the realm of road crack detection, the convolutional head (conv-head) 
and the fully connected head (fc-head) demonstrate distinct biases: 
the fc-head excels in crack type classification, whereas the conv-head 
is more adept at crack localization. It is imperative to acknowledge the 
indispensability of both heads for precise road crack detection. 
Further analysis revealed that the fc-head exhibits heightened 
sensitivity to spatial resolution compared to the conv-head. This 
grants the fc-head the capability to discern subtle distinctions between 
entire crack areas and their localized features. However, this 
characteristic also implies potential instability for the fc-head in global 
object localization regression tasks.
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Hence, when crafting and refining the YOLOv5 model, meticulous 
attention must be paid to the attributes of both the classification and 
localization tasks, as well as their interplay. This ensures the attainment 
of an optimal equilibrium, wherein each task maintains peak 
performance while enabling the model to deliver highly efficient and 
precise prediction outcomes. This encompasses proficient 
identification of crack categories and accurate localization judgments.

In response to the challenges outlined above, Dai et al. (2021) 
introduced Dyhead, a dynamic object detection head structure 
designed to enhance the expressive capability of the detection head 
while circumventing the need for additional computational resources. 
However, when employed for the purpose of road crack detection, 
Dyhead, despite its innovation, was experimentally demonstrated to 
potentially diminish the model’s average precision (mAP) and recall. 
This constraint warrants careful consideration when integrating 
Dyhead with the YOLOv5 model and deploying it on edge 
computing devices.

Efficient Decoupled Head (EDH) is a design scheme for 
decoupled heads, which employs a fused-channel strategy to create 

a more efficient and separate detection head. This scheme 
delineates between localization and classification tasks, treating 
them as independent entities, and augments model performance 
through a decoupling mechanism. In the classification task 
processing, a fully connected layer (fc-head) is utilized to enhance 
classification accuracy and localization precision. The specific loss 
function is:

In traditional detection heads, classification and localization share 
a single convolutional kernel, represented as:

 y W x� �
 (1)

where: C i jcls ,� �  denotes the classification loss of the i-th 
prediction frame and the j -th true frame, y denotes the output 
feature map, W  denotes the convolutional kernel, x  denotes the 
input feature map.

In decoupled detection heads, the classification and localization 
tasks are handled by separate convolutional kernels:

FIGURE 1

Structure of YOLOv5.
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 y W xcls cls� �
 (2)

 y W xreg reg� �
 (3)

where: ycls  and yreg  denotes the output feature maps for 
classification and localization, respectively, Wcls and Wreg denotes the 
convolutional kernels used for classification and localization, 
respectively.

The primary concept of the Efficient Decoupled Head (EDH) is 
to decouple the classification and regression tasks. Independent 
network heads are designed for each task. Assuming the input 
feature map is F , separate classification and regression heads are 
designed to handle the classification and localization tasks, 
respectively.

 P conv Fcls cls� � � (4)

where: Pcls denotes the classification prediction results, convcls  
denotes the convolution operation used for regression.

A joint loss function is used to simultaneously optimize the 
classification and regression tasks. The classification loss typically 
employs the focal loss, which is formulated as follows:

 L a p pf t t t� � �� � � �1
�
log  (5)

where: Lf  denotes the focal loss. pt  is the predicted probability of 
the model for the true class t , atdenotes the balancing factor, which is 
used to balance the ratio of positive to negative samples, γ  is the 
focusing parameter, used to adjust the weights of easy-to-classify and 
hard-to-classify samples.

The regression loss employs the Smooth L1 Loss, defined as:

 
L

N
Smooth t treg

i

N

j
L ij ij� �� �

� �

���1

1 1

4

1

 
(6)

where: Lreg  denotes the regression loss, N  denotes the number of 
samples, tij  denotes the predicted value of the j -th bounding box 
parameter for the i-th sample, SmoothL1  denotes the Smooth L1 
Loss function.

The total loss is the weighted sum of the classification loss and the 
regression loss:

 L L Lcls reg� � �  (7)

Where: λ is the weighting coefficient that balances the 
classification and regression losses. L denotes the total loss.

The model’s complexity was diminished by consolidating the 3 × 3 
convolutional layers in the middle layer into a single layer, alongside 
adjusting the head’s width according to the width multipliers of the 
backbone and neck. Furthermore, this study employs an anchorless 
detector, which forecasts the distance from the anchor point to each 
edge of the object bounding box via a box regression branch, thus 
augmenting the model’s detection accuracy. These enhancements not 

only alleviate the computational load of the model but also bolster its 
efficacy in real-world scenarios.

3.2 Optimizing the loss function for 
bounding box regression

At present, YOLOv5 extensively employs the CIOU loss 
function. This function not only evaluates the overlap area between 
the predicted and actual bounding boxes but also introduces the 
centroid distance metric and considers differences in aspect ratio. 
As a result, it provides a comprehensive metric that aids in more 
accurate alignment of predicted and actual bounding boxes. 
Compared to the previous IOU loss function, the CIOU loss 
function demonstrates faster convergence and greater stability 
during the training process, as fully confirmed in experiments. The 
formula for deriving this function is:

 
IOU

A B
A B

�
�� �
�� �  

(8)

 IoU � �1 IOU  (9)

 
v w

h
w
h

gt

gt

prd

prd� �
�

�
��

�

�
��

4
2

2

�
arctan arctan

 
(10)

 
� �

�� � �
v
IOU v1  

(11)

 

CIoU IoU
b ,b

� � �
� �

�
�

�

�
��

�

�

�
��

1

2

2

�
�

gt prd

c
v

 

(12)

where: IOU  denotes the cross-combination ratio, A and B 
represent the area of the true frame of the prediction frame, 
respectively, IoU denotes the IOU  loss function, v is used to measure 
the consistency of the relative proportions of two rectangular boxes, 
wprd  and h prd  denote the width and height of the prediction box, 
respectively, wgt  and hgt denote the width and height of the real box, 
respectively, α  is the weighting factor, CIoU denotes the CIOU loss 
function, b prd denotes the center of the prediction box, bgt denotes 
the center point of the real frame, ρ  denotes the Euclidean distance 
between two rectangular boxes, c denotes the distance between the 
diagonals of the closed regions of two rectangular boxes.

Although the CIOU loss function has made significant progress 
in object detection tasks, its computational complexity remains a 
challenge for edge computing devices, particularly during the training 
process of road crack detection models. The data collected from the 
external environment can be complex, leading to a large computational 
burden during the recognition process. Additionally, the CIOU loss 
function may cause the prediction box to unreasonably expand in 
certain cases, and reducing the loss value may not result in accurate 
detection, because the function prioritizes reducing the distance from 
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the bounding box’s center point, disregarding the precision of the 
bounding box dimensions.

To address these limitations, this paper proposes the use of the 
MPDIOU loss function as an alternative to the CIOU loss function in 
YOLOv5. The MPDIOU loss function considers overlapping regions, 
centroid distances, and deviations in widths and heights, when 
evaluating the similarity between predicted and actual boxes. This 
method is well-suited for edge computing devices as it simplifies the 
comparison of similarities between bounding boxes. The MPDIOU 
loss function enhances computational efficiency in both overlapping 
and non-overlapping bounding box regression tasks, thereby 
improving the model’s accuracy in real-world scenarios.

MPDIOU aims to minimize the distance between the top-left and 
bottom-right points of the predicted box and the actual box. The 
formula for this derivation is as follows:.

Define the fixed point coordinates, and for the real bounding box 
Bgt  and the predicted bounding box Bprd , define their 
vertex coordinates:

Any two convex shapes A, B S Rn� � , for A and B, x yA A
1 1,� � , 

x yA A
2 2,� �  denote the coordinates of the upper left and lower right 

points of A. x yB B
1 1,� �, x yB B

2 2,� � denote the coordinates of the upper left 
and lower right points of B.

Calculate the Euclidean distance between the top left and bottom 
right points:

 
d x x y yB A B A
1
2

1 1

2

1 1

2
� �� � � �� �  

(13)

 
d x x y yB A B A

2
2

2 2
2

2 2
2

� �� � � �� �  
(14)

Based on the above distances, MPDIOU is calculated as:

 
MPDIOU A B

A B
d

w h
d

w h
�

�
�

�
�

�
�

1
2

2 2
2
2

2 2  
(15)

Using MPDIOU as a loss function, it is defined as follows:

 MPDIOU MPDIOU� �1  (16)

The four-point coordinates can be used to determine all factors of 
the existing bounding box regression loss function. Use the following 
conversion formula:

 

|C| , ,

,

� � � � � �� �
� � � �

max min

max min

x x x x

y y x

gt prd gt prd

gt prd

2 2 1 1

2 2 11 1
gt prdx,� �� �

 
(17)

 
x

x x
c
gt

gt gt
�

�1 1

2
,
 
y

y y
c
gt

gt gt
�

�1 1

2  
(18)

 
x

x x
c
prd

prd prd
�

�1 2

2
,
 
y

y y
c
prd

prd prd
�

�1 2

2  
(19)

 w x xgt
gt gt� �2 1 , h y ygt

gt gt� �2 1  (20)

 w x xprd
prd prd� �2 1 , h y yprd

prd prd� �2 1  (21)

where d1
2 and d2

2 denote the square of the distance between the 
upper left and lower right points of Aand B, MPDIoU  denotes 
MPDIOU loss function, w and h  denote the width and height of the 
input image, | |C  denotes the smallest outer rectangle that covers both 
the real and predicted bounding boxes, (xcgt,ycgt ) and (x yc

prd
c
prd ) 

denote the coordinates of the center points of the real and predicted 
bounding boxes, respectively, wgt and hgt denote the width and height 
of the real bounding box, wprd and hprd  denote the width and height 
of the predicted bounding box.

3.3 Introduction of the C3 module of the 
Global Context Block

Deploying YOLOv5 models in edge computing environments 
presents several challenges,. Because of the limited computing power 
and memory that edge devices typically have. The complexity of 
YOLOv5 is a test for resource-constrained edge devices. To address 
this issue, compression or pruning operations may be necessary. But 
these processes can negatively impact the model’s detection accuracy.

Furthermore, despite the faster detection speed of YOLOv5, 
computational power limitations on edge devices may still hinder 
their real-time object detection goals. Therefore, it is crucial to develop 
more efficient and lightweight object detection models that meet the 
specific needs of these devices. Such models should minimize their 
dependence on computational resources while maintaining high 
detection accuracy, thus meeting the accuracy requirements in edge 
computing environments.

Qiao et al. (2021) proposed the Switchable Atrous Convolution 
(SAconv) method to more accurately identify and segment objects in 
an image. This is achieved by applying different null convolution rates 
to the same input features for convolution. Additionally, a switching 
function is used to combine the results of the convolution with 
different null rates, making the network more flexible for feature size 
and scale. However, while the application of SAconv in road crack 
detection improves the model’s performance, it also consumes a 
significant amount of GPU resources thereby slowing down the 
model’s training speed, which is not conducive to deploying the 
YOLOv5 model on edge computing devices.

To address the issue mentioned above, the C3 module of YOLOv5 
introduces the Global Context Block. This block performs global 
context modeling on the input feature graph to obtain global context 
information. GCBlock computes the pairwise relationship between 
the query location and all other locations to form an attention graph. 
The features of all locations are then weightedly aggregated with the 
attention graph. The aggregated features and the features of each query 
location are used to derive the output. Additionally, GCBlock captures 
inter-channel dependencies. GCBlock maps the weights in the 
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attention graph to the channel dimensions of the feature graph. It then 
performs a feature transformation using a 1 × 1 convolution for inter-
channel dependency transformation. Finally, GCBlock fuses the 
global context features with the inter-channel dependency 
transformed features to obtain the final output. The exact mathematical 
derivation is as follows:

Let the input feature map be  X RC H W� � � . Where C is the 
number of channels, H  and W  are the height and width of the feature 
map, respectively.

Global Average Pooling (GAP) is performed on the input feature 
map to obtain the global context features G :

 
G

H W
X

i

H

j

W
ijk�

� � �
��1

1 1  
(22)

where G RC∈  denotes the global average for each channel.
The global context feature G  is transformed through a Fully 

Connected Layer (FCL) to obtain the transformed feature G ;

 
G W G bg g� �  (23)

where Wg  and bg are the weights and biases of the fully connected 
layer, respectively.

Next, the transformed global context feature G  is fused with the 
input feature map X  through a channel attention mechanism:

 Y X G W G by y� � � �� � �  (24)

Where: Wy and by  are the parameters of the channel attention 
mechanism, σ  is the activation function (e.g., Sigmoid function) 
Y RC H W� � �  is the output feature map.

The channel attention mechanism is used to weight different 
channels with the specific formula:

 A W G ba a� �� �� 

 (25)

Where: Wa and ba  are the weights and biases of the channel 
attention mechanism, respectively, and A RC∈  is the channel 
attention coefficient.

Finally, the channel attention coefficient A is applied to the input 
feature map X :

 Z X A� �  (26)

Where: Z RC H W� � �  is the weighted feature map.
By introducing Global Context Block, the C3 module can enhance 

the perception of global context information while preserving the 
original local features. The specific process is as follows:

 1 The input feature map X  is passed through multiple 
convolutional layers to obtain the intermediate feature map ′X .

 2 Input ′X  into the Global Context Block to get a feature map 
that incorporates the global context information Z .

 3 Fuse Z  with the input feature map X  to get the final output 
feature map Y .

The Backbone component is a crucial element in the YOLOv5 
architecture, responsible for extracting features from the input data, 
particularly in the shallow part of the network. However, capturing 
shallow features becomes increasingly challenging as the network’s 
depth increases. For this reason, the feature extraction process can 
be effectively enhanced through global modeling relationships. The 
Global Context Block enhances the network’s ability to capture distant 
correlations in the image through expanding the existing sensory field, 
which in turn improves the understanding of the object’s contextual 
information. Combined with the C3 structure, this approach extends 
the receptive field at different levels and enhances the global 
perception capability of the network. The C3 structure builds a feature 
pyramid network to generate multi-scale feature maps. When 
combined with the Global Context Block, global context information 
can be introduced at all scales, thus significantly enhancing the feature 
representation. Based on this, we  propose the GCC3 module to 
replace the traditional C3 module in YOLOv5. This will optimize the 
feature extraction process and improve the overall performance of the 
model. The network architecture for this module is shown in Figure 2.

3.4 YOLOv5 model improvements

This study proposes an enhanced YOLO-EMG detection 
algorithm to alleviate the performance limitations encountered by 
YOLOv5, when deployed in edge computing environments. The 
algorithm effectively resolves the conflict between classification and 
localization tasks within the model by introducing an efficient 
decoupled head structure. This leads to a significant reduction in the 
model’s reliance on computational resources and expedites training 
convergence. Additionally, optimization of YOLOv5’s CIOU loss 
function is achieved by implementing a more efficient MPDIOU loss 
function. This not only decreases computational overhead during 
training but also addresses the potential issue of the CIOU loss 
function amplifying prediction frame errors while simultaneously 
reducing loss values. By integrating the GCC3 module in place of the 
traditional convolutional layer, the EMG-YOLO algorithm enhances 
real-time detection performance on edge computing devices, while 
preserving model accuracy and precision. The EMG-YOLO 
architecture is depicted in Figure 3.

4 Results

4.1 The data set and the experimental 
environment

To demonstrate the efficiency of the proposed YOLO-EMG for 
road crack detection on edge computing devices, this paper utilizes 
two datasets: the RDD2022 dataset, which contains over 20,000 new 
photos compared to RDD2020 and covers six countries (Japan, India, 
Czech Republic, Norway, USA, and China), and a dataset on road 
damage. Although this dataset of 47,420 images of road damage 
cannot be  directly used in the YOLO algorithm, it can be  made 
suitable for the algorithm through cleaning and format conversion 
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TABLE 1 Meaning of various crack labels.

Label name Crack name

D00 Longitudinal cracks

D10 Transverse cracks

D20 Meshlike cracking

D40 Pavement pothole

processing of the data. The other dataset is from the CrackForest 
dataset, which gives a general picture of urban pavement conditions. 
This dataset is mainly used for the image recognition task of automatic 
crack and damage detection. The four road distresses in the dataset. 
The meaning of each category is shown in Table 1.

The experiment was conducted on a Windows 10 operating 
system, using an NVIDIA GeForce RTX2080Ti GPU with 8 GB of 
RAM. The software environment included CUDA 11.3 and Python 
3.10. The experimental code was based on YOLOv5-master, with the 
initial learning rate set to 0.01, the batch size set to 8, and the input 
image resolution set to 640 × 640. The experiment was run for 50 
epochs, with all other parameters set to their default values. The 
performance metrics include mean average precision (mAP) which 
reflects the object localization effect and bounding box regression 
capability. It is calculated using IOU thresholds ranging from 0.5 to 
0.95. Additionally, the mean accuracy (mAP) is calculated using 
IOU thresholds of 0.5 and 0.5: 0. The model’s performance is 
evaluated based on its objectivity, comprehensibility, logical 
structure, conventional structure, clear and objective language, 

FIGURE 2

GCC3 structure.

FIGURE 3

EMG-YOLO structure.
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adherence to formatting guidelines, formal register, balanced 
approach, precise word choice, and grammatical correctness. The 
evaluation metrics include model accuracy (mAP), model size (M), 
volume (MB), GFLOPS (G), and frames per second (FPS). The mAP 
(0.5) reflects the mean accuracy when the IOU threshold is 0.5, 
which mainly indicates the recognition ability of the object 
detection model.

4.2 Ablation experiment results

To verify the effectiveness of the introduced modules, their 
performance was hypothesized and subsequently validated through 
ablation experiments Efficient Decoupled Head: The Efficient 
Decoupled Head was introduced to separate the classification and 
localization tasks. It is hypothesized that this separation can improve 
the model’s training efficiency and detection accuracy. MPDIOU Loss 
Function: The MPDIOU loss function was introduced to account for 
overlapping regions, central point distances, and width and height 
discrepancies, thereby reducing bias during the training process. It is 
hypothesized that this optimization can enhance the model’s 
computational efficiency on edge devices. GCC3 Module: The Global 
Context Block was introduced into the C3 module, with the hypothesis 
that this module can enhance feature extraction capabilities through 
global contextual information, thereby improving the model’s 
performance in complex environments.

To validate the effect of each enhancement module of EMG-YOLO 
on the whole model, this experiment sequentially adds each module 
to the original YOLOv5 model. Ablation experiments are then 
performed on two road crack datasets to validate the effectiveness of 
the present model. The three enhancements tested are denoted by the 
acronyms E (Efficient Decoupling Header), M (MPDIOU) and G 
(GCC3), with a tick indicating the use of the module. The results are 
displayed in Table 2.

Analysis of experimental results: The Efficient Decoupled Head 
(E) enables each task to optimize its respective features 
independently by separating the classification and localization 
tasks. This design reduces interference between tasks, especially 
when dealing with complex scenarios. The results show that the 
mAP (0.5, 0.95) of the model improves from 0.252 to 0.254 and the 
mAP (0.5) improves from 0.489 to 0.495 with the use of the Efficient 
Decoupling Header. this indicates that the separation of the 
classification and localization tasks effectively improves the overall 
performance of the model.

The MPDIOU loss function (M) optimizes bounding box 
regression by more accurately calculating the overlap region and 
distance between the predicted and real boxes. Compared with the 
traditional IOU loss function, MPDIOU takes more geometric 
information into account. Thus, it reduces the bias in the training 
process. The experimental results show that the mAP (0.5:0.95) of the 
model improves from 0.252 to 0.257 and the mAP (0.5) improves 
from 0.489 to 0.497 with the use of MPDIOU. indicating that the 
accuracy of the bounding box localization is significantly improved.

The GCC3 module (G) enhances the feature extraction by 
introducing global context information. Compared with the 
traditional convolutional layer, GCC3 is able to better capture the 
relationship between global and local features, thus improving the 
detection performance of the model. The results show that the mAP 
(0.5:0.95) of the model improves from 0.252 to 0.256 and the mAP 
(0.5) improves from 0.489 to 0.491 with the use of GCC3, which 
proves the importance of global contextual information in 
feature extraction.

By combining the E and M modules, the model performs well in 
optimizing the localization and classification tasks: the Efficient 
Decoupled Head reduces the interference between the classification 
and localization tasks, allowing the model to better focus on their 
respective tasks; the MPDIOU loss function further improves the 
accuracy of the boundary regression by taking into account more 
geometric information, making the prediction of position and 
dimensions more accurate. This combination significantly improves 
the detection performance and accuracy of the model.

The model’s edge regression accuracy and feature extraction 
capability are enhanced by combining the M and G modules: the 
MPDIOU loss function improves the accuracy of edge regression by 
taking geometric information into account, and the GCC3 module 
improves the detection performance by allowing the model to better 
understand and extract feature information in the image through the 
introduction of global contextual information. This combination 
performs particularly well in complex environments, enhancing the 
model’s detection accuracy and reliability in complex scenes.

The feature extraction capability and task-independent 
optimization of the model are enhanced by combining the E and G 
modules. The Efficient Decoupled Head reduces inter-task 
interference, allowing the model to better focus on their respective 
tasks; the GCC3 module enhances the feature extraction capability by 
the introduction of global contextual information. This combination 
enables the model to better identify and locate targets in complex 
contexts, improving detection accuracy and reliability.

TABLE 2 Results of EMG-YOLO ablation experiments.

E M G Image size mAP (0.5:0.95) mAP (0.5) Precision Volume/MB GFLOPS (G)

640 × 640 0.252 0.489 0.554 14.60 16.00

√ 640 × 640 0.254 0.495 0.558 17.11 18.75

√ 640 × 640 0.257 0.497 0.560 17.22 20.23

√ 640 × 640 0.256 0.491 0.555 19.95 21.87

√ √ 640 × 640 0.259 0.507 0.559 23.45 25.71

√ √ 640 × 640 0.260 0.512 0.563 28.14 28.95

√ √ 640 × 640 0.259 0.509 0.561 26.42 27.64

√ √ √ 640 × 640 0.261 0.515 0.569 28.20 29.60
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The above analysis shows that each enhancement module of 
EMG-YOLO has a positive impact on the model performance. They 
can significantly improve the detection accuracy and efficiency of the 
model when used in combination. These improvements make the 
application of EMG-YOLO in edge computing environment more 
effective and reliable.

4.3 Mainstream algorithm comparison 
experiment

To verify the efficiency and effectiveness of this model, an 
experimental comparison is made between EMG-YOLO and 
mainstream algorithms under the same experimental conditions, and 
the selected comparison models are mainly the following: the 
two-stage object detection models with high detection accuracy, 
Faster R-CNN and SSD, EfficientDet, CentreNet (Resnet50). The 
above models are trained and tested in the same environment, and 
the model performance is comprehensively compared using metrics 
such as mean accuracy (mAP), number of parameters and detection 
frame rate (FPS). Table 3 shows that the two-stage object detection 
model Faster R-CNN has lower accuracy than most one-stage object 
detection models, as well as more model parameters and lower 
detection efficiency. Additionally, SSD has lower detection accuracy 
and performs poorly in small object detection scenarios. The results 
are displayed in Table 3.

The experimental results show that the two-stage object detection 
model Faster R-CNN not only has lower accuracy than most 
one-stage object detection models, but also has more model 
parameters and lower detection efficiency. SSD has lower detection 
accuracy and performs poorly in small object detection scenarios in 
the crack dataset. EfficientDet is optimized in terms of model size and 
computational effort. But its detection accuracy is relatively lower. 
Especially when dealing with high resolution images and complex 
scenes. It does not perform as well as the YOLO series of models. 
CenterNet (Resnet50) achieves object detection through keypoint 
detection. Although it performs well in some scenes. However, its 
overall detection accuracy and efficiency are still not comparable to 
YOLOv5 and EMG-YOLO. YOLOv5 performs well in the single-
stage object detection model. It strikes a good balance between 
detection accuracy and speed. However, EMG-YOLO further 
improves its performance through a variety of optimization measures. 
EMG-YOLO shows a clear advantage in detection accuracy over 
YOLOv5, with mAP (0.5) and mAP (0.5:0.95) improving by 2.9 and 
0.9% respectively, and accuracy improving by 2.7%.

Comparative analysis of related models shows that Faster R-CNN, 
as a two-stage detection model, requires considerable computational 
resources for region proposal and classification steps. This makes it 
inefficient on edge computing devices. Additionally, its large number 
of parameters results in poor performance in scenarios that demand 
high processing speed and real-time response. In road crack detection, 
rapid response and efficient computation are critical, which Faster 
R-CNN struggles to meet.

EMG-YOLO addresses these issues by incorporating an Efficient 
Decoupled Head and GCC3 module, significantly reducing 
computational resource requirements and enhancing detection speed, 
making it particularly suitable for edge computing devices. Moreover, 
the MPDIOU loss function improves detection accuracy, solving the 
problem of accuracy degradation on edge devices that Faster 
R-CNN faces.

While SSD models are faster, their performance in detecting small 
objects is suboptimal. Road cracks are typically small and complex, 
and SSD’s detection accuracy is insufficient to effectively identify these 
fine cracks, resulting in overall poor detection performance.

EMG-YOLO significantly enhances the model’s ability to detect 
small objects and improve accuracy. By reducing interference between 
classification and localization tasks and optimizing feature map 
utilization, the training computational burden is lessened. 
Additionally, EMG-YOLO’s enhanced feature extraction capability 
ensures high-accuracy detection even in complex environments, 
addressing SSD’s shortcomings.

EfficientDet has optimized model size and computational 
efficiency, yet its detection accuracy in high-resolution images and 
complex scenarios remains inadequate. Road crack detection demands 
high-precision feature extraction and classification, where 
EfficientDet’s capabilities are relatively limited.

EMG-YOLO, through global context modeling, strengthens 
feature extraction capabilities, maintaining high-accuracy detection 
in complex environments. Compared to EfficientDet, EMG-YOLO 
demonstrates better adaptability and performance on edge 
computing devices.

CenterNet (Resnet50) employs keypoint detection for object 
detection and performs well in certain scenarios. However, its 
effectiveness in detecting complex and diverse cracks is limited. 
CenterNet’s balance between processing speed and accuracy is inferior 
to YOLOv5 and EMG-YOLO, resulting in less satisfactory 
performance in practical applications.

YOLOv5 excels in single-stage object detection with good 
detection speed and accuracy. However, EMG-YOLO further 
optimizes feature extraction and localization precision by integrating 
an Efficient Decoupled Head (E), MPDIOU loss function (M), and 

TABLE 3 Comparison of detection results between EMG-YOLO and other five methods.

Model Image size mAP (0.5:0.95) mAP (0.5) Precision Volume/MB GFLOPS (G)

Faster R-CNN 640 × 640 0.258 0.450 0.493 108.3 275.6

SSD 640 × 640 0.203 0.401 0.439 92.1 217

EfficientDet 640 × 640 0.200 0.396 0.434 25.7 6.2

CenterNet (Resnet50) 640 × 640 0.215 0.451 0.494 124.9 108

YOLOv5 640 × 640 0.252 0.489 0.554 14.6 16

EMG-YOLO 640 × 640 0.261 0.515 0.569 28.2 29.6
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GCC3 module (G), making it superior in road crack detection. The 
Efficient Decoupled Head reduces interference between classification 
and localization tasks, the MPDIOU loss function improves bounding 
box regression accuracy, and the GCC3 module enhances global 
context information in feature extraction. These improvements 
collectively elevate EMG-YOLO’s detection performance.

4.4 Comparative algorithmic experiments 
in edge computing devices

To tangibly demonstrate the model’s improved performance on 
edge computing devices, we deploy it on the Jetson Xavier NX edge 

device and compare its performance to that of the YOLOv5 model. 
The foundational parameters of the edge computing devices are 
detailed in Table 4.

Due to the limited resources of edge computing devices, model 
performance may be affected. Both YOLOv5 and EMG-YOLO have 
been optimized for edge computing, making them more suitable for 
comparison in such environments. Other more complex or 
unoptimized models may not run efficiently on edge computing 
devices, rendering experimental results less meaningful. Among the 
models compared, YOLOv5 performs optimally. EMG-YOLO is an 
improved model based on YOLOv5, and directly comparing these 
two models can more clearly demonstrate the effectiveness of the 
improvements. Introducing other models would complicate the 

TABLE 4 List of basic parameters of edge computing devices.

Jetson Xavier NX technical parameters

AI performances 21TOPS Vision accelerator 7 way VLIW vision processor

GPU 384-core NVDIA Volta GPU and 48Tensor cores Camera MIPI CSI-2 × 2(15bit Flex connector)

CPU 6-core NVIDIA Carmel ARMv8.2 64-bit CPU Video decoding 2 × 4kp30|6 × 1080p60|14 × 1080p60|32 × 1080p30

RAM 8G128-bit LPDDR4x 51.2GB/S Display 2multi-mode DP 1.4/eDP 1.4/HDMI 2.0

EMG-YOLO YOLOv5
FIGURE 4

Comparison results in shaded environments.
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EMG-YOLO YOLOv5 
FIGURE 5

Comparison effect in foggy environment.

comparison results, making it difficult to highlight the advantages of 
EMG-YOLO over YOLOv5. By maintaining consistent experimental 
conditions and comparing only these two models, variable control is 
improved, ensuring the reliability and consistency of the experimental 
results. This approach helps avoid additional variable interference 
caused by model complexity or other factors, thereby ensuring the 
accuracy of the experimental conclusions. The comparison chart of 
specific experimental results is shown below.

Visualization Results Analysis:In shadow, foggy, and nighttime 
environments, the extraction of features becomes challenging due to 
complex backgrounds and varying lighting conditions. The Efficient 
Decoupled Head separates classification and localization tasks, 
allowing each to focus on its specific features, thereby reducing 
information confusion and task interference. In shadowy 
environments (Figure 4), EMG-YOLO is able to more accurately 
identify crack edges and shapes, whereas YOLOv5 exhibits noticeable 
omissions and false detections under similar conditions. This 
validates the effectiveness of the Efficient Decoupled Head in complex 
environments, enhancing the model’s robustness and 
detection accuracy.

The MPDIOU loss function optimizes bounding box regression by 
considering geometric information of the bounding box. In foggy 
environments (Figure  5), reduced visibility makes bounding box 
localization more difficult. EMG-YOLO maintains high detection 
accuracy under these conditions, accurately regressing the position and 
size of cracks. This demonstrates that the MPDIOU loss function can 
provide more accurate regression results when handling highly 
overlapping and geometrically diverse bounding boxes, reducing the 
likelihood of missed and false detections, thus improving the 
model’s accuracy.

The GCC3 module enhances feature extraction capabilities by 
incorporating global contextual information. In nighttime 
environments (Figure 6), background noise and low light conditions 
increase the difficulty of feature extraction. Through the GCC3 
module, EMG-YOLO better captures the relationship between global 
and local features, identifying crack features in complex backgrounds. 
In contrast, YOLOv5’s detection performance is significantly poorer 
under low light conditions. This indicates that the GCC3 module 
provides stronger feature representation capabilities in complex 
environments, enabling the model to detect cracks more accurately.
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5 Conclusion

In this article, a road crack detection algorithm EMG-YOLO is 
proposed. It aims to solve the problem of data quality degradation 
caused by the direct connection of edge devices to the sensors, as well 
as the additional computational pressure on the model caused by the 
noise interference, which in turn results in the degradation of the 
model’s accuracy. The algorithm makes a series of improvements on 
the infrastructure of YOLOv5, including the integration of the GCC3 
module to enhance the feature extraction capability, the adoption of 
MPDIOU instead of the traditional IOU loss function to improve the 
positioning accuracy, and the introduction of the Efficient decoupling 
header to optimize the network structure. These improvements 
enable the deployment of EMG-YOLO on edge computing devices 
not only to improve the accuracy of real time detection, but also to 
reduce the demand for computing resources. This means that in real 
world applications, EMG-YOLO can operate efficiently and provide 
reliable detection results, whether it is an inspection task on city 
roads, rural highways or remote areas. Therefore, the superior 
performance of EMG-YOLO on edge computing devices makes it a 

competitive solution for the current road crack detection task. 
Meanwhile, there are still some shortcomings in this paper, which 
need to be followed up with further research, the model does not take 
into account the robustness of the model for complex environments, 
and there is a leakage problem for the model for complex 
environments such as darkness, fog, etc., which will be a problem to 
be solved in the future.
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Comparison effect in night environment.
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