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Introduction: When it comes to interpreting visual input, intelligent systems 
make use of contextual scene learning, which significantly improves both 
resilience and context awareness. The management of enormous amounts of 
data is a driving force behind the growing interest in computational frameworks, 
particularly in the context of autonomous cars.

Method: The purpose of this study is to introduce a novel approach known as 
Deep Fused Networks (DFN), which improves contextual scene comprehension 
by merging multi-object detection and semantic analysis.

Results: To enhance accuracy and comprehension in complex situations, DFN 
makes use of a combination of deep learning and fusion techniques. With a 
minimum gain of 6.4% in accuracy for the SUN-RGB-D dataset and 3.6% for the 
NYU-Dv2 dataset.

Discussion: Findings demonstrate considerable enhancements in object 
detection and semantic analysis when compared to the methodologies that are 
currently being utilized.
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1 Introduction

Intelligent systems acquire information about their surroundings by engaging in 
contextual scene learning, which entails establishing connections among different 
environmental components. The system collects, evaluates, and interprets visual data from its 
environment to provide relevant and context-specific clues for understanding the situation. 
The framework can assess contextual scene learning and identify objects by detecting the 
spatial and semantic connections between objects and eliminating their features. This will 
facilitate the transition of systems from understanding to resilience and context awareness. 
Song et al. (2015) introduced the SUN RGB-D dataset, which provides a comprehensive 
benchmark for RGB-D scene understanding, highlighting the necessity of multi-modal data 
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for accurate scene interpretation. This work highlights the challenges 
in integrating multiple data types to enhance object recognition and 
scene comprehension.

There has been a recent increase in interest in developing 
computational frameworks that can comprehend the complexities of 
vast quantities of visual data. Computerized systems with the ability 
to accurately identify objects and determine their importance in a 
certain situation are essential for augmented reality, surveillance, and 
autonomous vehicles (Rabia et  al., 2014; Murugan et  al., 2022; 
Ghasemi et al., 2022). Optimal results require innovative approaches 
to managing several situations within a specific setting.

The current investigation introduces a novel approach known as 
Deep Fused Networks (DFN) to tackle these issues. DFN, in contrast 
to traditional approaches, seeks to integrate several sophisticated 
methodologies by leveraging the capabilities of deep learning to 
overcome their limitations. The primary objective is to enhance 
accuracy in identifying many items in challenging conditions. DFN is 
a reliable framework for object detection that effectively combines 
several models by emphasizing their distinctive qualities. This novel 
methodology facilitates the identification of items in intricate scenarios 
characterized by factors such as partial concealment (occlusion), 
alterations in size, and crowded backdrops. Moreover, and perhaps 
most significantly, DFN facilitates a comprehensive comprehension of 
visual images by analyzing their underlying meaning. This framework 
utilizes the context of existing objects to extract more advanced 
information, such as scene characteristics, object relationships, and 
item categorization within the scene or environment.

Contextual scene understanding has drawn a lot of interest lately 
because of its vital uses in robotics, autonomous vehicles, and 
surveillance. Due to the inherent constraints of a single modality, 
traditional approaches that rely merely on RGB (color), images 
frequently struggle to appropriately interpret complex scenarios. For 
example, it can be difficult to discriminate between objects, like a red 
ball on a red carpet, that have identical colors but different textures 
or depths. Our proposed approach uses multi-modal data—that is, 
RGB and depth (RGB-D) information—to overcome these 
challenges. We can capture both the geometric and visual aspects of 
the scene by combining RGB images with depth information, which 
results in a more accurate and robust contextual understanding. By 
incorporating multi-modality, we  have addressed the following 
important challenges:

 i Multi-modal data helps in discriminating objects that appear 
similar in RGB images but have distinct geometric properties.

 ii Depth information aids in identifying partially occluded 
objects, providing a clearer understanding of the scene.

 iii Combining RGB and depth data enriches the feature set, allowing 
for better semantic segmentation and scene understanding.

This comprehensive analysis enhances comprehension of the 
visual context and facilitates more informed decision-making. To 
evaluate the effectiveness of our proposed DFN framework, 
we conducted experiments using established benchmark datasets and 
conducted a comparative analysis with other existing approaches. The 
results of our studies indicate that the DFN model is both robust and 
successful since it achieved gains in both multi-object identification 
accuracy and semantic analysis. To summarize, this research proposes 
a complete strategy to address the difficulties of achieving dependable 

multi-object detection and semantic analysis to enhance scene 
comprehension. The suggested Deep Feature Network (DFN) 
enhances both the effectiveness of object detection and the 
comprehension of visual situations, hence creating new opportunities 
for diverse computer vision applications.

 • Deep Fused Network for Scene Contextual Learning through 
Object Categorization: The study introduces a deep-fused 
network that facilitates scene contextual learning by 
incorporating object categorization.

 • FuseNet Segmentation: The study presents FuseNet segmentation 
which is a unique approach that utilizes deep learning techniques 
to achieve precise and efficient semantic segmentation. FuseNet 
combines multi-scale features. It also utilizes fully convolutional 
networks to improve the accuracy of segmentation results.

2 Literature review

Multi-object detection and semantic analysis in complex visual 
scenes have been active areas of research in the field of computer 
vision. In recent years, deep learning techniques have revolutionized 
these domains by achieving remarkable performance improvements. 
Various deep learning-based object detection methods have been 
proposed, such as Faster R-CNN (Pazhani and Vasanthanayaki, 2022) 
YOLO (You Only Look Once) (Diwan et al., 2023) and SSD (Single 
Shot MultiBox Detector) (Ahmed et  al., 2021). These methods 
leverage convolutional neural networks (Dhillon and Verma, 2020) 
have challenges dealing with complex scene scenarios, occlusions, and 
object changes. Researchers are investigating different methods to 
strengthen object detection’s robustness to overcome these issues 
(Zhang et al., 2023), presented automated systems with the ability to 
accurately detect objects and determine their importance in a certain 
situation are essential for augmented reality, surveillance, and 
autonomous vehicles (Silberman et al., 2012), in their work on the 
NYU-Dv2 dataset, demonstrated how combining RGB and depth data 
can significantly improve object detection in indoor environments, 
addressing issues like occlusion and varying object scales. This sets the 
stage for our proposed approach, which aims to integrate and improve 
upon these methodologies.

One approach involves integrating different detection models to 
create a more precise system. Fusion can occur at various levels, such 
as feature-level fusion (Liu et al., 2017; Xue et al., 2020; Wang et al., 
2020), decision-level fusion (Seong et  al., 2020), or both. These 
fusion-based solutions aim to enhance detection accuracy and 
handle challenging scenarios by leveraging the strengths of multiple 
models. On the other hand, semantic analysis focuses on capturing 
high-level semantics and understanding the context of objects 
within an image. This research considers the categorization of 
objects, relationships between objects, and scene components. 
Unlike traditional methods relying on hand-crafted features and 
rule-based procedures, which have limitations in capturing complex 
contextual data, researchers can now utilize deep neural networks 
for a more comprehensive and accurate semantic analysis, thanks to 
advancements in deep learning.

This research proposed a unique framework called Deep Fused 
Networks (DFN) to support contextual scene learning. DFN provides 
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a consistent and reliable recognition system by fusing the benefits of 
many object detection methods. DFN integrates several models to 
handle complicated scenarios like occlusions, scale variations, and 
crowded backgrounds. DFN also uses semantic analysis to draw out 
stronger semantics from visual scenes. By utilizing contextual 
information, the framework enables comprehension of scene 
attributes, object associations, and object categorization. This in-depth 
research enables a deeper comprehension of visual scenes and 
enhances decision-making.

2.1 Multi-object segmentation

Machine learning has been used in computer vision tasks for 
years, particularly in advanced applications like detecting multiple 
objects, recognizing scenes, and understanding contextual scenes. 
Numerous researchers have dedicated their efforts to exploring the 
visual aspects of these tasks. In Feng et  al. (2020) provide a 
comprehensive discussion of the latest approaches and challenges in 
multi-modal object recognition and semantic segmentation for 
autonomous driving. The authors delve into the methodology, 
including techniques beyond deep learning, and the various datasets 
available for training and evaluating such systems. The paper 
emphasizes the complexity and challenges of these tasks within the 
realm of autonomous driving. In Ashiq et al. (2022) describe how 
developing a neural network-based object detection and tracking 
system can help those who are visually impaired. The authors explain 
how deep learning techniques are used for real-time object tracking 
and recognition, allowing users to intelligently navigate their 
surroundings. The research illustrates how this approach can improve 
the independence and mobility of people who are visually impaired. 
It offers a perceptive comprehension of how advanced technology 
might be applied to improve the quality of life for people with visual 
impairments. In Zeng et al. (2022), a new approach focused on the 
detection of imperfections and small-sized objects is presented by 
N. Zeng et  al. To address the specific challenges involved in 
recognizing small objects, the authors suggest a multi-scale feature 
fusion method. They focused on the limitations of existing approaches 
for dealing with small objects and present an alternative that makes 
use of the fusion of multi-scale features to increase detection 
accuracy. In this paper, the authors tried to highlight the efficiency of 
their proposed framework by conducting experiments and an 
evaluation process for detecting defected objects. In Kong et  al. 
(2022), a lightweight network model named YOLO-G is introduced 
by L. Kong et al. to improve the system of military target detection. 
They considered the challenges while improving the target detection 
accuracy. They presented the simplified form of the “You Only Look 
Once” (YOLO) technique with some modifications in accordance 
with the military applications. In Guo et al. (2023) the challenge of 
scale variation in object detection, by introducing the Multi-Level 
Feature Fusion Pyramid Network (MLFFPN), which effectively fuses 
features with different receptive fields to enhance object 
representations’ robustness. It utilizes convolutional kernels of 
varying sizes during feature extraction, reconstructs feature pyramids 
through top-down paths and lateral connections, and integrates 
bottom-up path enhancement for final predictions. In Solovyev et al. 
(2021) proposed based on, weighted boxes fusion, introduces a novel 
method for fusing predictions from various object detection models, 

emphasizing the utilization of confidence scores to construct 
averaged bounding boxes. In Cheng et al. (2023) the author addresses 
the challenge of accurate multi-scale object detection in remote 
sensing images, by getting inspiration from the YOLOX framework 
and proposes the Multi-Feature Fusion and Attention Network 
(MFANet). By reparametrizing the backbone, integrating multi-
branch convolution, attention mechanisms, and optimizing the loss 
function, MFANet enhances feature extraction for objects of varying 
sizes, resulting in improved detection accuracy. In Oh and Kang 
(2017) accurate object detection and classification is achieved 
through decision-level fusion of classification outputs from 
independent unary classifiers, leveraging 3D point clouds and image 
data. The approach utilizes a convolutional neural network (CNN) 
with five layers for each sensor, integrating pre-trained convolutional 
layers to consider local to global features. By applying region of 
interest (ROI) pooling to object candidate regions, the method 
flattens color information and achieves semantic grouping for both 
charge-coupled device and Light Detection And Ranging (LiDAR) 
sensors. In Xiong et al. (2020) the author introduces a novel fusion 
strategy, BiSCFPN, based on a backbone network. Comprising 
bi-directional skip connections (BiSC), selective dilated convolution 
modules (SDCM), and sub-pixel convolution (SP), this strategy aims 
for simplicity and efficiency in high-quality object detection. 
BiSCFPN aims to mitigate the problems associated with traditional 
interpolation methods and strives to achieve a better balance between 
precision and speed, addressing limitations observed in 
current approaches.

2.2 Contextual scene learning

In the past, semantic segmentation for object detection and 
contextual scene learning has been performed manually. However, 
the advancement in deep learning-based image-processing 
techniques has improved computer vision tasks nowadays. These 
advanced approaches are critical to extracting complex contextual 
information from images, enabling more precise and efficient object 
detection for contextual scene-learning tasks. In Kim et al. (2020) 
explores the use of contextual information to improve the accuracy 
of monocular depth estimation. While addressing the limitations of 
depth estimation from a single image, the authors propose a 
framework that incorporates contextual cues such as object 
relationships and scene understanding. The framework provides 
detailed information over contextual information with reference to 
its potential for advancing monocular depth estimation techniques. 
In Dvornik et  al. (2019) demonstrates the significance of 
incorporating visual context during data augmentation to enhance 
scene understanding models. To understand the contextual 
relationship between the objects they improved the robustness and 
generalization capabilities of the models. In Wu et  al. (2020) 
emphasize combining pyramid pooling and transformer models to 
enhance the efficiency of scene understanding tasks under specific 
conditions. They overcame the limitations of existing methods in 
capturing both local and global contextual information within scenes. 
The authors propose P2T as a solution to effectively incorporate 
multi-scale features and long-range dependencies for comprehensive 
scene understanding. In Hung et al. (2020) the authors introduce the 
Contextual Translation Embedding approach, which incorporates 
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contextual translation to improve the accuracy and contextual 
understanding of visual relationships. They contribute to the field of 
detecting visual relationships and scene graph generation. 
Additionally, they offer possible developments in capturing fine-
grained details and spatial patterns within visual scenes. In 
Chowdhury et  al. (2023) a unique approach is introduced by 
extending the representation to encompass human sketches, creating 
a comprehensive trilogy of scene representation from sketches, 
photos, and text. Unlike rigid three-way embedding, the focus is on 
a flexible joint embedding that facilitates optionality across modalities 
and tasks, allowing for versatile use in downstream tasks such as 
retrieval and captioning. Leveraging information-bottleneck and 
conditional invertible neural networks, the proposed method 
disentangles modality-specific components and synergizes modality-
agnostic instances through a modified cross-attention mechanism, 
showcasing a novel and flexible approach to multi-modal scene 
representation. In Hassan et al. (2020) novel approach is introduced 
by integrating handcrafted features with deep features through a 
learning-based fusion process, aiming to enhance detection accuracy 
under challenging conditions such as intraclass variations and 
occlusion. This work builds upon the YOLO object detection 
architecture, aligning with the contemporary trend of leveraging deep 
learning methods for improved object localization and recognition 
in complex real-life scenarios.

The summary of the above studies has been incorporated with all 
the required fields in a table to clearly elaborate the findings and 
limitations of the existing studies as follows:

References Methods Evaluation 
metrics

Limitations

Pazhani and 

Vasanthanayaki 

(2022)

Faster R-CNN Accuracy, mAP Challenges with 

complex scenes, 

occlusions, and 

object changes

Diwan et al. 

(2023)

YOLO (You 

Only Look 

Once)

Accuracy, FPS Low accuracy on 

cluttered scenes 

understanding

Ahmed et al. 

(2021)

SSD (Single 

Shot MultiBox 

Detector)

Accuracy, mAP Occlusion detection, 

complex multi-

object detection

Dhillon and 

Verma (2020)

Convolutional 

Neural 

Networks

Accuracy Scenes with 

occluded objects and 

time complexity

Zhang et al. 

(2023)

Automated 

object detection 

systems

Accuracy, 

Robustness

Handling complex 

scenarios

Silberman et al. 

(2012)

NYU-Dv2 Accuracy, 

Precision

Focused on indoor 

environments only

Liu et al. (2017), 

Xue et al. (2020), 

Wang et al. (2020)

Feature-level 

fusion

Detection 

Accuracy

Fusion and time 

complexity

Seong et al. (2020) Decision-level 

fusion

Detection 

Accuracy

Fusion complexity 

with varied 

environmental 

challenges

Feng et al. (2020) Multi-modal 

object 

recognition and 

semantic 

segmentation 

KITTI

Accuracy, mAP Complexity and 

challenges in 

autonomous driving 

scenarios

Ashiq et al. (2022) Neural network-

based object 

detection and 

tracking

Real-time 

performance, 

Accuracy

Real-time 

constraints, 

application for 

visually impaired

Zeng et al. (2022) Multi-scale 

feature fusion

Detection 

Accuracy

Recognition of small 

objects

Kong et al. (2022) YOLO-G 

(lightweight 

YOLO)

Detection 

Accuracy, 

Speed

Adaptation for 

military applications

Guo et al. (2023) Multi-Level 

Feature Fusion 

Pyramid 

Network 

(MLFFPN)

Detection 

Accuracy, 

Robustness

Scale variation 

handling

Solovyev et al. 

(2021)

Weighted boxes 

fusion

Bounding Box 

Accuracy

Fusion complexity

Cheng et al. 

(2023)

Multi-Feature 

Fusion and 

Attention 

Network 

(MFANet)

Detection 

Accuracy

Accurate multi-scale 

object detection in 

remote sensing 

images

Oh and Kang 

(2017)

Decision-level 

fusion using 3D 

point clouds 

and image data

Accuracy, 

Robustness

Integration 

complexity

Xiong et al. (2020) BiSCFPN (bi-

directional skip 

connections, 

selective dilated 

convolution)

Detection 

Accuracy, 

Speed

The balance between 

precision and speed

Kim et al. (2020) Contextual cues 

for monocular 

depth 

estimation

Depth 

Estimation 

Accuracy

Single image 

limitations

Dvornik et al. 

(2019)

Visual context 

data 

augmentation

Scene 

Understanding 

Accuracy

Robustness and 

generalization 

challenges

Wu et al. (2020) Pyramid 

pooling and 

transformer 

models

Scene 

Understanding 

Efficiency

Capturing local and 

global contextual 

information

Hung et al. (2020) Contextual 

Translation 

Embedding

Visual 

Relationship 

Accuracy

Fine-grained detail 

and spatial pattern 

limitations

Chowdhury et al. 

(2023)

Flexible joint 

embedding for 

multi-modal 

scene 

representation

Retrieval and 

Captioning 

Performance

Complexity in 

modality-specific 

and modality-

agnostic components
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References Methods Evaluation 
metrics

Limitations

Hassan et al. 

(2020)

Handcrafted 

and deep feature 

fusion

Detection 

Accuracy

Challenges with 

intra-class variations 

and occlusion

He et al. (2023) Adaptive Self-

supervised 

Transformer 

(AST) utilizing 

Masked Image 

Modeling, 

cross-scale 

Transformer 

architecture, & 

adaptive 

masking token 

strategy.

Object 

Detection 

Accuracy

High computational 

cost due to 

Transformer 

architecture, 

Complexity in 

implementing 

adaptive masking 

strategy, Potential 

difficulty in scaling 

for extremely large 

datasets

He (2024) Grouping 

Prompt Tuning 

Framework 

(GoPT), 

including class-

aware uni-

modal prompter 

and alignment-

induced cross-

modal prompter

Pixel Accuracy, 

mIoU, Mean 

Accuracy

Limited by the 

frozen pre-trained 

foundation model, 

Potential issues with 

scalability for more 

complex tasks, 

Dependency on 

effective semantic 

grouping for optimal 

results

Wang et al. (2023) Calibration-

guided source-

free domain 

adaptive 

semantic 

segmentation 

(Cal-SFDA 

framework)

Mean 

Intersection 

over Union 

(mIoU)

- Potential 

complexity in 

implementing the 

LogSumExp trick 

and value net for 

ECE estimation. 

May require 

extensive 

computation for 

model training and 

ECE estimation

3 Materials and methods

3.1 System methodology

In this section, we present our methodology for contextual scene 
learning using a multi-stage approach. The process is comprised of 
multiple steps. Initially, we start with the input acquisition, followed 
by preprocessing to enhance the quality and consistency of the data. 
We then employ the FuseNet segmentation network to extract pixel-
wise semantic information from the input images. Next, feature 
extraction and fusion through various techniques from multiple 
modalities, comprehensive information is acquired to proceed with 
object categorization. Subsequently, to assign the semantic labels to 
each individual object within the scene, object categorization is 
incorporated. Once the objects are classified into various categories, 
object-to-object relationship modeling is then employed to gather the 

contextual information of these objects. Finally, a fully convolutional 
network is employed for contextual scene learning, enabling a holistic 
understanding of the scene and its semantic context as shown in 
Figure 1.

3.2 Pre-processing

In the context of RGB and depth images used for scene 
understanding, noise is commonly observed during pre-processing, 
particularly in regions with low texture or reflective surfaces. To 
minimize the effects of noise on further analysis, noise reduction 
techniques are employed. Among these techniques, Gaussian or 
bilateral filtering methods (Zhang and Gunturk, 2008) are frequently 
applied to depth images. These techniques are effective in effectively 
reducing the presence of noise and smoothing images while preserving 
essential structural information. Mathematically, we can express the 
bilateral filter as follows (see Equation 1):

 

B x y
W x y

I i j G x y i j
i j x y

Spatial,
,

, ,

,

( ) = ( )








 ( ) ( ) − −

∈ ( )
∑1

,

||

Ω
(( )( )

( ) − ( )( )

||

G I x y I i jIntensity , ,
 
(1)

where x y,( ) denotes the coordinates of the pixel being filtered, 
i j,( ) means the coordinates of the neighboring pixel, Ω x y,( )  means 

neighborhood pixels around pixel x y,( ), I x y,( ) is the intensity value 
of the neighboring pixel, GSpatial  is the spatial Gaussian kernel that 
captures the spatial proximity between pixels, GIntensity is the intensity 
Gaussian kernel that measures the similarity of pixel intensities, 
W x y,( ) is the normalization factor that ensures the sum of weights is 
equal to 1 and can be expressed as (Equation 2):

 

W x y G x y i j

G I x y
i j x y

Spatial

Intensity

, ,

,

,

( ) = ( ) − −( )( )

(
∈ ( )
∑

,

|| ||

Ω

)) − ( )( )I i j,
 

(2)

The bilateral filter is effective in different aspects when compared 
with the Gaussian filter. Specifically, it is superior in terms of 
preserving edge information while removing noise from the input 
image. The bilateral filter considers both the spatial proximity and 
pixel intensity differences during the noise removal or 
smoothing process.

3.3 FuseNet segmentation

The FuseNet method, designed for semantic segmentation and 
understanding contextual scenes which combines RGB and depth 
information to label each pixel in a scene accurately. Its goal is to 
capture features based on both appearances from RGB images and 
geometric aspects from depth information, enhancing the accuracy 
of segmentation. The FuseNet architecture typically involves two 
branches: the RGB branch and the depth branch. Each branch 
processes the respective input modality and extracts relevant 
features. The output feature maps from both branches are then fused 

https://doi.org/10.3389/fnbot.2024.1427786
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Almujally et al. 10.3389/fnbot.2024.1427786

Frontiers in Neurorobotics 06 frontiersin.org

FIGURE 2

Schematic view of FuseNet segmentation.

together to generate the final segmentation result as shown in 
Figure 2 using Equations 3, 4.

 
F MaxPool I K StRGB RGB size= = =( ), , 3 2

 (3)

 
F MaxPool I K StDepth Depth size= = =( ), ,3 2

 (4)

where FRGB denotes the RGB features while FDepth means the depth 
features, extracted by RGB and depth branches of FuseNet Segmentation 
architecture, respectively. FRGB and FDepth represent the downsampling 
of features obtained from the RGB and depth branches, achieved through 
the MaxPool operation. The MaxPool operation involves traversing the 
input features with a 3×3 kernel, selecting the maximum value within 
each region, and moving with a stride of 2, indicating the number of pixels 
the kernel shifts during each step. These operations result in down-
sampled feature maps that capture essential information while reducing 

spatial dimensions. The fusion of the feature maps may be expressed 
mathematically as follows using (Equation 5):

 F W F W FFused RGB RGB Depth Depth= ∗ + ∗  (5)

where WRGB  is the weight assigned to RGB images, while WDepth 
represents the weights assigned to depth images. Similarly, * denotes 
the element-wise multiplication for fusion, and + denotes the element-
wise addition. The general FuseNet process can be  represented 
mathematically as follows (see Equation 6):

 S FuseNet I IRGB Depth= ( ),  (6)

A commonly used initial learning rate is 0.01. However, with the 
passage of time and an increasing number of epochs that reduce the 
learning rate to adaptively adjust the learning rate during training 
based on the model’s performance. FuseNet consists of 6 convolutional 

FIGURE 1

Schematic view of the proposed model for contextual scene learning.
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layers interleaved with pooling layers. However, the depth of the 
network can be  adjusted based on the complexity of the RGB-D 
datasets and the available computing resources. Moreover, we use 3×3 
filters in the convolutional layers to capture the local context. Strides 
of 2×2 are used in pooling layers for down-sampling and spatial 
resolution reduction. For semantic segmentation of RGB-D datasets, 
the combination of cross-entropy loss and Dice loss is used as 
described in Equations 7, 8, respectively.

 
L y pCE

i

n
i i= − ( )

=
∑

1

log

 
(7)

 
L y p y pDICE

i

n
i i i i= − ∗ ( ) +( )

=
∑1 2

1

/

 
(8)

where yi  denotes the ground truth label while pi  represents 
the predicted probability for pixel i, respectively. The cross-
entropy loss helps to optimize the pixel-wise class predictions, 
while the Dice loss encourages better overlap between the 
predicted and ground truth segmentation masks. The relative 
weight between these losses can be adjusted based on the dataset 
characteristics. The results of FuseNet segmentation are 
demonstrated in Figure 3.

3.4 Feature extraction

To extract the deep features from segmented objects are taken as 
input and can be expressed as follows segmentation. We can identify 

regions with similar color or texture characteristics by grouping 
similar pixels into clusters, which can then be  used as inputs for 
region-based segmentation (see Equation 9).

 
S H W CObj∈ × ×( ) ^

 (9)

where H  and W  denote the height and width of the segmented 
image, respectively. While C represents the number of channels. Each 
pixel of the segmented object can also be represented as S i j kObj , ,( )  
where i j,  are the coordinates of the segmented image, and k  denotes 
the index of the channel. The input is processed for convolution over 
the convolution layer where filters (kernels) are used. These filters are 
denoted by weight matrix Wm  having a size F F CPre× ×  where F  
represents the size of the filter, and CPre is the number of channels 
from the previous layer. The convolution process is computed 
mathematically as follows (Equation 10):

 F A W S bm con f m Obj_ = +( ),  (10)

where Af  represents the activation function, Fm denotes the 
output feature map of the convolutional layer, Wm  is the weight 
matrix, SObj is the input of the layer, which is segmented objects, and 
b denotes the bias. The output feature map is forwarded to the pooling 
layer to reduce its dimensions by converting the overlapping regions 
into non-overlapping regions. The size of regions is defined by P P× . 
After the dimensions are reduced from the pooling layer, the feature 
map has the following dimensions (see Equation 11):

 W H Cpool pool out, +( ) (11)

FIGURE 3

Results of FuseNet segmentation over some images from the SUN-RGB-D dataset. (A) Original images and (B) segmented images.
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FIGURE 5

Schematic diagram of object categorization using MLP.

where H pool  is the height, Wpool is the width of the output feature 
map of the pooling layer and Cout is to denote the number of channels. The 
feature maps obtained from convolutional and pooling layers are flattened 
into a single dimension as a vector to serve as input to the fully 
connected layer.

The decoder is used to reconstruct the encoded feature maps to 
the original resolution of the input image. This process involves 
transposed convolutions (deconvolutions) to up-sample the feature 
maps. The goal of the decoder is to generate high-resolution feature 
maps that accurately represent the spatial context and details of the 
original segmented objects. The details are as follows:

The encoder outputs a feature map of size 16 × 16 × 128 (height, width, 
channels). Apply a transposed convolution with a filter size of 3 × 3, a stride 
of 2, and appropriate padding. This operation up-samples the feature map 
to 32 × 32 × 64. Then another transposed convolution with similar 
parameters is applied that up-sample the feature map to 64 × 64 × 32. 
Finally, a transposed convolution to match the original input image 
resolution is applied that will up-sample the feature map to 128 × 128 × 3. 
The schematic view of feature extraction using CNN is demonstrated in 
Figure 4.

3.5 Object categorization via MLP

For the MLP architecture, we designed a two-layer fully connected 
network. The first hidden layer consists of 512 neurons, followed by a 
ReLU activation function to introduce non-linearity. The second 
hidden layer consists of 256 neurons, also followed by a ReLU 
activation function. The output layer contains as many neurons as the 
number of object categories in the SUN RGB-D dataset, with a 

softmax activation function to generate class probabilities. Figure 5 
illustrate the details of object categorization.

The neurons in the layers of MLP can be expressed as by using  
Equation 12 as follows:

 y f W X bij ij ij ij= ∑ ∗ +( )( ) (12)

where yij is the output, Xij is the input of the ith neuron at layer j , 
while Wij denotes the weights associated with these inputs, bij is to 
represent bias and f  is the activation function applied to the weighted 
sum. To update the weights Wij (Equation 13), the following 
backpropagation is used:

 ∆W E Wij ij= − ∗∂ ∂η / . (13)

where ijW∆  the rate of change in weights is, η  is the learning rate, 
E is the total error and can be  written as E L LCE DICE= + , and 
∂ ∂E Wij/  denotes the partial derivative of the error with respect to the 
weight Wij. The object categorization results are presented in Figure 6.

3.6 Object–to–object (OOR) relationship

Graph-based object-to-object relationships (Hassan et al., 2020) 
provide a powerful setting for contextual scene learning, enabling a 
structured representation of the relationships and interactions 
between objects within a scene. To understand a scene 
comprehensively, objects are modeled as nodes having attributes such 
as their semantic label, position, and size while their relationships are 

FIGURE 4

Schematic diagram of feature extraction using CNN.

https://doi.org/10.3389/fnbot.2024.1427786
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Almujally et al. 10.3389/fnbot.2024.1427786

Frontiers in Neurorobotics 09 frontiersin.org

considered as edges. These relationships can be classified into different 
types, such as containment, proximity, support, or interaction during 
scene understanding tasks or contextual scene learning.

To construct the object-to-object relationship graph, a technique 
to analyze the spatial attributes of categorized objects Obj , 
considering factors such as distance, overlap, or relative positions is 
applied. Let us consider OOR graph as general graph G VE=  where 
V  means the set of nodes or detected objects Obj  while E denotes the 
set of edges or relationships between these categorized objects, and 
G is equivalent to OOR which is the relationship between these 
objects. The relationship between objects can be  expressed as an 
adjacency matrix as described in Equation 14 below.

 
A Obj Obj∈{ } ×( )0 1,

^

 (14)

where A =1 if there is a relationship between the objects and 
A = 0  otherwise.

Let yI be the scene labels, and OOR be the set of possible semantic 
relationships between objects. The mathematical function of OOR can 
be represented as follows (see Equation 15):

 OOR f Obj yI= →:  (15)

The contextual scene learning system utilizes the capabilities of 
graph-based object-to-object relationships to accomplish holistic 
scene understanding. This mechanism supports higher-level 
reasoning, object interaction analysis, and contextual inference. 
Moreover, other vision tasks such as multi-object detection, scene 
understanding, and contextual scene learning can be  expanded 
and revolutionized.

3.7 Contextual scene learning via FCN

FCN is one of the most used deep learning models from 
Convolutional Neural Networks that is used to perform multiple tasks 
including object categorization, semantic segmentation, scene 
recognition, and classification. There are numerous advantages of the 
model, however, the fundamental benefit of FCN over other traditional 
CNNs is its capability to take the input image without resizing 
constraints and process it accordingly. The FCN architecture is 
illustrated in Figure 7.

FIGURE 6

Object categorization results by applying MLP over the SUN RGB-D dataset.

FIGURE 7

Object categorization results by applying MLP over the SUN RGB-D dataset.
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Let us consider in input image (objects) as xI , and the predicted 
label of the scene as yI . Initially, the FCN is supposed to take xI  and 
the OOR as input and predict scene label yI . The FCN comprised 
multiple convolutional layers, each of which applies a convolutional 
filter to the input image. Convolutional filters are learned during 
training to extract features that are relevant to the task of scene 
recognition. The OOR relations are a set of pairwise relationships 
between objects in the scene as computed in the previous section. The 
OOR relations are used to add additional information to the feature 
map. Here, is a more mathematical representation of the FCN 
architecture (see Equation 16):

 FCN x OOR argmax p y x OORI y I I, ( |( ) = , ) (16)

where xI  denotes the input image features, OOR means object-to-
object relations, yI  represents the scene label for scene image I, while 
p y x OORI I( | , ) means the probability of the particular scene label yI  
when given the input image features xI . The complete flow of the FCN 
is described in the Algorithm 1.
 

Algorithm 1

INPUT: x OORI , ; images (objects), Object-to-Object Relations
OUTPUT: scene label
1. Normalize the input image (object) xI .
2. Initialize the FCN with multiple convolutional layers
3. Set up convolutional filters and activation functions
4. For each convolutional layer:
Apply convolution, activation function, and pooling to xI .
5. Integrate OOR data into xI .
6. For each transposed convolutional layer:

 - Apply transposed convolution to xI .
7. Apply the softmax function to xI  to get the scene label yI .
8. Compute the loss between yI  and the ground truth.
9. Perform backpropagation to update the model weights.
10. Train the FCN model using the dataset.
11. Evaluate the trained FCN model on the validation dataset.
12. Use the trained FCN model to predict the scene label yI  

for new input images xI .
RETURN: The predicted scene label yI .

4 Experiments and results

This section delves into the dataset particulars and the intricacies 
of the research, covering aspects like the experimental configuration, 
the effectiveness of the proposed system, and a comparative analysis 
with state-of-the-art techniques.

4.1 Datasets

For the purposes of our study, we used three complex datasets, 
including SUN RGB-D, NYU-Dv2, and SYNTHIA datasets. The 
details of these datasets are given as follows.

4.1.1 SUN RGB-D dataset
The SUN RGB-D dataset (Song et al., 2015) with 10,355 RGB-D 

images is a complex dataset. The dataset has 19 categories comprising 
multiple images in each category of SUN RGB-D. It is a collection of 
NYU-Dv2, Berkeley B3DO, and SUN3D RGB-D image datasets. The 
two parts of the dataset: training and testing have 5,510 and 4,845 
images, respectively Figure  8 depicts a few examples of the SUN 
RGB-D dataset.

4.1.2 NYUDv2 dataset
The NYUDv2 dataset (Silberman et al., 2012) consists of labeled 

and unlabeled frames of various scenes. There are 2,347 labeled and 
108,617 unlabeled frames having one of the 7 categories with 64 
different indoor scenarios. These scenes may be categorized into one 
of the seven classes including bathroom, bedroom, bookstore, café, 
kitchen, living room, and office. Each class has some objects like a bed, 
bookshelf, background, unlabeled, etc. Figure  9 illustrates some 
images from the NYU-Dv2 dataset.

4.1.3 SYNTHIA dataset
The SYNTHIA dataset (Ros et al., 2016) comprised 9,400 having 

13 classes of synthetic images. These images are synthesized from a 
virtual city. The resolution of all the images/frames in the dataset is 
1,280 × 960. Initially, a video stream is generated at 25fps and then 
converted to a sequence of frames. The dataset includes the following 
categories: car, fence, void, sidewalk, traffic-sign, bicycle, lane-
marking, traffic-light, etc. The dataset contains all the necessary 
information including semantic segmentation labels, 2D and 3D 
bounding boxes along with the depth of the images. A few example 
images of the SYNTHIA dataset are shown in Figure 10.

4.2 Experimentations and results

In this section, we conducted a set of experiments to evaluate the 
proposed model’s detection and classification accuracy across 
benchmark datasets. The objective was to validate its efficacy in 
comparison to other established methods.

4.2.1 Quantitative analysis
To evaluate the presented model, three benchmark datasets, 

namely SUN RGB-D, NYU-Dv2, and SYNTHIA are used. The 
performance evaluation of the proposed model involved computing 
various metrics such as mean accuracy, sensitivity as Equation 17, true 
negative rate (TNR) as Equation 18, and F1 Score as Equation 19. The 
confusion matrices of recognition accuracies over SUN RGB-D and 
NYU-Dv2 datasets are presented in Tables 1, 2, respectively. The high 
recognition accuracy across classes, with a mean accuracy of 94.27%, 
underscores the robustness of the proposed method in diverse indoor 
scenes. The confusion matrix showcases minimal misclassifications, 
emphasizing the model’s ability to distinguish between objects such as 
chairs, tables, sofas, and walls. Despite the challenges posed by 
different furniture and scene contextual classes in NYU-Dv2 datasets, 
the proposed method achieves a mean accuracy of 72.8%. Notably, the 
confusion matrix reveals successful classification across various 
classes, demonstrating the model’s capability to discern between 
objects like beds, bookshelves, and televisions. Detailed analysis of the 
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evaluation metrics can be found in Table 3 for the SYNTHIA dataset 
which simulates diverse outdoor scenarios and showcases a 
remarkable mean accuracy of 95.08%. The confusion matrix highlights 
the model’s proficiency in distinguishing between outdoor elements 
like sky, buildings, roads, and pedestrians. To ensure fairness, a 
separate set of unseen samples from the test data was used for 
evaluation. The results demonstrated outstanding performance, 
surpassing existing state-of-the-art techniques.

Table 4 provides a detailed evaluation of vehicle detection results 
over the SYNTHIA dataset, including recognition accuracy, true 
positive rate, sensitivity, F1 score, specificity, and average computational 
time. The proposed method achieves high recognition accuracy across 
multiple classes which demonstrates its effectiveness in identifying 
various objects within the scenes. The true positive rates, sensitivity, 
and F1 scores also highlight the model’s ability to accurately detect and 
classify objects, emphasizing its precision and reliability.

4.2.2 Comparison with existing methods
This section provides a comprehensive overview of the strengths 

and weaknesses when compared with other SOTA methods. During 
our experiments, it is witnessed an increase of a minimum of 6.4% in 
the accuracy of SUN-RGB-D while a 3.6% increase in the accuracy 
of NYU-Dv2 datasets is observed. Table  5 demonstrates the 
recognition accuracies over benchmark datasets for the proposed 
method along with other state-of-the-art techniques (Song et al., 
2017) consider the spatial and semantic relationships between objects 
to enhance the discriminative power of scene recognition models. In 
Song et  al. (2018) the authors aim to improve scene recognition 
performance by exploring various techniques for learning 
discriminative representations from RGB-D data. Additionally, they 
are offering insights into the importance of combining color and 
depth cues for effective scene recognition models (Du et al., 2019) the 
paper introduces the TRecgNet framework, which integrates cross-
modal translation and modality-specific recognition tasks for scene 
recognition. By sharing a common encoder network and leveraging 
unlabeled data for translation training, TRecgNet improves the 
discriminative power of modality-specific recognition models. In 

Ayub and Wagner (2019) authors contribute a novel cognitively 
inspired clustering approach for RGB-D indoor scene classification. 
The method demonstrates state-of-the-art performance on 
benchmark datasets and offers insights into the space of centroids, 
leading to the proposal of a method for merging similar categories 
(Chen et al., 2018) present a reality-oriented adaptation approach for 
urban scene semantic segmentation using synthetic data. The 
approach addresses the challenges of overfitting and domain 
adaptation by learning real image style through distillation and 
aligning the distribution of synthetic and real domains.

The SUN RGB-D and NYU-Dv2 datasets present unique 
challenges compared to the SYNTHIA dataset, primarily due to their 
differing environments and object characteristics.

These datasets consist of diverse indoor environments, including 
living rooms, kitchens, and offices, which introduce variability in 
lighting conditions and object occlusions. A wide range of object 
types with varying sizes and shapes need to be  detected and 
recognized. Moreover, Indoor scenes often have high levels of clutter, 
leading to occlusion, which makes accurate object detection 
more challenging.

The dataset includes various outdoor conditions, such as different 
times of the day and weather conditions, affecting visibility and object 
appearance. Objects in outdoor environments can appear at a wide 
range of distances and scales, making it necessary for the detection 
model to generalize well across these variations. Outdoor scenes often 
have more complex and dynamic backgrounds, which can interfere 
with object detection accuracy.

The proposed method demonstrates superior performance across 
all datasets by effectively addressing these challenges through robust 
feature extraction and model adaptation techniques. The high 
accuracy achieved in both indoor and outdoor tasks highlights the 
versatility and efficiency of our approach.

4.2.3 Statistical analysis
To ensure the superiority of the proposed approach (DFN) 

compared to the existing methods, various statistical tests are 
considered including paired t-test, ANOVA, etc. Here, we will use a 

FIGURE 8

A few examples from the SUN RGB-D dataset.
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paired t-test to compare the performance metrics of our proposed 
model with those of other state-of-the-art (SOTA) methods. We will 
perform paired t-tests comparing the mean accuracy of the DFN 
model against other methods.

Null Hypothesis (H0): There is no significant difference in 
performance between the DFN model and the compared methods.

Alternative Hypothesis (H1): The DFN model performs 
significantly better than the compared methods.

A significance level (α) is determined as 0.05 to accept or reject 
the hypothesis. If the p-value is less than (α), then the hypothesis will 
be  rejected otherwise accepted. The detailed analysis is given in 
Table 6.

It is evident from Table 7, that all the p-values are less than 0.05. 
Hence the proposed DFN model performs significantly better than 
other state-of-the-art methods. This is demonstrated by the high 
t-statistics and low p-values from the paired t-tests, allowing us to 
reject the null hypothesis and conclude the superiority of the 
DFN model.

5 Discussion

The experimental results and subsequent analysis provide valuable 
insights into the effectiveness and robustness of the proposed DFN for 
contextual scene learning through multi-object detection and 
semantic analysis. The proposed DFN model demonstrates exceptional 
performance across all three benchmark datasets—SUN RGB-D, 
NYU-Dv2, and SYNTHIA. The mean accuracy achieved on these 
datasets is 94.27, 72.8, and 95.08%, respectively. These results 
underscore the robustness of the DFN model in handling diverse and 
complex scenes, both indoor and outdoor. The confusion matrices for 
the SUN RGB-D and NYU-Dv2 datasets reveal minimal 
misclassifications, indicating the model’s capability to accurately 
distinguish between various objects such as chairs, tables, sofas, walls, 
beds, bookshelves, and televisions. This precision in object recognition 
is crucial for applications requiring detailed scene understanding and 
reliable object detection.

These findings illustrate the superior performance of the DFN 
model across different datasets and scenarios, highlighting its 
ability to generalize well and outperform existing approaches. 
Moreover, to ensure the reliability of these results, paired t-tests 

FIGURE 9

A few examples from the NYU-Dv2 dataset.

FIGURE 10

A few examples from the SYNTHIA dataset.
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were conducted to compare the performance metrics (mean 
recognition accuracy) of the DFN model against other SOTA 
methods. The p-values for all datasets are significantly less than 
0.05, leading to the rejection of the null hypothesis. This statistical 
evidence confirms that the DFN model performs significantly better 
than other state-of-the-art methods. The high t-values and low 
p-values from the paired t-tests provide strong support for the 
superiority of the DFN model. The integration of RGB and depth 
information in the DFN model plays a critical role in enhancing 
scene understanding and object detection accuracy. By using a 
multi-modal fusion technique, the model may better utilize 
complementary information from many data sources, leading to an 
overall improvement in performance.

The proposed DFN model represents a significant advancement 
in contextual scene learning through multi-object detection and 
semantic analysis. The experimental results and statistical analysis 
validate its superior performance compared to existing methods. 
The high accuracy, minimal misclassifications, and adaptability 
across diverse scenarios underscore the robustness and reliability 
of the DFN model. These findings have broad implications for 

practical applications in computer vision, robotics, augmented 
reality, and autonomous systems, where precise scene understanding 
is crucial. Future research could further enhance the model by 
incorporating temporal and attention mechanisms, paving the way 
for even more sophisticated scene analysis and object 
detection solutions.

5.1 Model evaluation for object 
categorization

During training for object categorization, we employ the Adam 
optimizer with a learning rate of 0.001 and a batch size of 32. We use 
categorical cross-entropy as the loss function to measure the 
discrepancy between predicted probabilities and ground truth labels. 
The model is trained for 100 epochs, with early stopping based on the 
validation loss to prevent overfitting. We apply L2 regularization with 
a weight decay of 0.0001 to prevent excessive parameter growth. After 
training, we evaluate the MLP model on the testing split of the SUN 
RGB-D, NYU-Dv2, and SYNTHIA datasets. We compute various 

TABLE 1 Confusion matrix for recognition accuracy over SUN-RGBD dataset.

Class CH CT SO TA BO CA CB CM SC WL FR

CH 0.99 0 0.01 0 0 0 0 0 0 0 0

CT 0 0.89 0 0 0 0 0.11 0 0 0 0

SO 0.03 0 0.97 0 0 0 0 0 0 0 0

TA 0 0 0.02 0.98 0 0 0 0 0 0 0

BO 0 0 0 0.01 0.99 0 0 0 0 0 0

CA 0 0 0 0 0 0.89 0 0.02 0 0 0

CB 0 0 0 0 0.13 0 0.87 0 0 0 0

CM 0 0 0 0 0 0 0 0.93 0 0.07 0

SC 0 0 0 0 0 0 0 0.03 0.97 0 0

WL 0 0 0 0 0 0 0 0 0 0.98 0.02

FR 0 0.02 0 0.11 0 0 0 0 0 0.12 0.91

Mean accuracy = 94.27%

CH, chair; CT, coffee table; SO, sofa; TA, table; BO, bowl; CA, cap; CB, cereal box; CM, coffee mug; SC, soda can; WL, wall; FR, floor.

TABLE 2 Confusion matrix for scene contextual classification accuracy over NYU-Dv2 dataset.

Class BD BK CB CL FR SF TB TV WL WN

BD 0.75 0 0 0 0.14 0 0.11 0 0.75 0

BK 0 0.79 0.07 0 0 0 0 0.14 0 0.79

CB 0.05 0 0.69 0 0.12 0 0 0 0.05 0

CL 0 0 0 0.77 0 0 0 0 0 0

FR 0.05 0 0 0 0.76 0 0.13 0 0.05 0

SF 0 0 0.12 0 0 0.69 0.12 0 0 0

TB 0.24 0 0.03 0 0 0 0.73 0 0.24 0

TV 0 0.25 0 0 0 0 0 0.75 0 0.25

WL 0 0 0 0.17 0 0 0 0 0 0

WN 0 0.13 0 0 0 0 0 0 0 0.13

Mean accuracy = 72.8%

BD, Bed; BK, Book; CB, Cabinet; CL, Ceiling; FR, Floor; SF, Sofa; TB, Table; TV, Television; WL, Wall; WN, Window.
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performance metrics, including accuracy, sensitivity, TPR, and F1 
score, to assess the categorization performance. Additionally, 
we  generate a confusion matrix to analyze the model’s ability to 
correctly classify objects into their respective categories. In the 
inference stage, we  deploy the trained MLP model to categorize 
objects in new, unseen RGB-D images. The input image is 
preprocessed as described earlier, and the extracted features are 
passed through the MLP network. The output of the model 
corresponds to the predicted object category, providing valuable 
information for scene understanding and context-aware applications.

Hence, our proposed methodology for object categorization via 
MLP on the RGB-D datasets includes data preprocessing, feature 
extraction using a pre-trained VGG-16 model, MLP architecture 
design, training with specific parameter settings, evaluation on the 
testing dataset, and inference on unseen images is effective. The 
parameter settings, such as learning rate, batch size, and architecture 
configuration are incorporated as discussed earlier.

5.2 Model evaluation for contextual scene 
learning

When using FCNs for contextual scene learning based on object-
to-object relationships over the RGB-D datasets, the following are the 
details of layers and parameter settings commonly used:

The encoder layers consist of convolutional layers followed by 
activation functions. The number of encoder layers can vary, but the 
configuration used here includes 10 convolutional layers with 
increasing numbers of filters (e.g., 64, 128, and 256). The filter size is 
set to 3×3, and the stride is set to 1. Padding will be used to maintain 
the spatial dimensions. For the down-sampling, 5 max-pooling layers 
are employed after certain encoder layers to reduce the spatial 
dimensions of the feature maps. The pool size is 2×2, and the stride is 
also set to 2 to achieve down-sampling by a factor of 2. The decoder 
layers aim to up-sample the feature maps to match the original input 
resolution. Transpose convolutional layers are commonly used in the 

TABLE 3 Confusion matrix for scene contextual classification accuracy over the SYNTHIA dataset.

Class SK BD RD SW FN VG PL CR SN PD CT

SK 0.98 0 0 0 0 0 0.02 0 0 0 0

BD 0 0.95 0.05 0 0 0 0 0 0 0 0

RD 0.04 0 0.96 0 0 0 0 0 0 0 0

SW 0 0 0 0.95 0 0 0 0 0.05 0 0

FN 0.05 0 0 0 0.95 0 0 0 0 0 0

VG 0 0 0 0 0 0.94 0.06 0 0 0 0

PL 0 0 0 0 0 0 0.92 0 0 0.08 0

CR 0 0 0 0 0 0 0 0.97 0 0 0

SN 0 0 0 0 0 0 0 0 0.98 0 0.02

PD 0 0 0 0.06 0 0 0 0 0 0.94 0

CT 0 0.05 0 0 0.03 0 0 0 0 0 0.92

Mean accuracy = 95.08%

SK, Sky; BD, Building; RD, Road; SW, Sidewalk; FN, Fence; VG, Vegetate; PL, Pole; CR, Car; SN, Sign; PD, Pedestrian; CT, Cyclist.

TABLE 4 The overall accuracy, precision, recall, F1 score, specificity, and computational time for vehicle detection results were obtained using 
customized pyramid pooling over the SYNTHIA dataset.

Class Recg. Acc. % TPR % Sensitivity % F1 score Specificity % ACT in Sec

SK 0.9727 0.9646 0.9433 0.9538 0.923 181

BD 0.9666 0.9658 0.8719 0.9165 0.905 201

RD 0.9801 0.9602 0.8673 0.9114 0.911 185

SF 0.9475 0.9588 0.9789 0.9687 0.901 217

VG 0.9857 0.9643 0.8529 0.9052 0.856 213

PL 0.9129 0.9418 0.8845 0.9123 0.891 225

MK 0.9389 0.8955 0.7969 0.8433 0.843 194

CR 0.9666 0.9658 0.8719 0.9165 0.905 201

SN 0.9801 0.9602 0.8673 0.9114 0.911 185

PD 0.9475 0.9588 0.9789 0.9687 0.901 217

CT 0.9857 0.9643 0.8529 0.9052 0.856 213

Mean 0.9508 0.9501 0.8851 0.9159 0.8926 202.29

Recg. Acc., Recognition Accuracy; ACT, Average Computational Time; SK, sky; BD, Building; RD, Road; SF, Side Fence; VG, Vegetation; PL, Pole; MK, Marking; CR, Car; SN, Sign; PD, 
Pedestrian; CT, Cyclist; Sec, Seconds.
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decoder. The number of decoder layers matches the number of encoder 
layers, and the filter size, stride, and padding settings mirror the 
configuration of the corresponding encoder layers. Moreover, skip 
connections are used for integrating low-level and high-level features. 
These connections establish direct connections between the encoder 
and decoder layers to combine local and global contexts effectively. The 
various parameters used during the training are shown in Table 8.

6 Conclusion

The paper presents a significant advancement in understanding 
contextual scenes through the application of Deep Fused Networks 
(DFN) for multi-object detection and semantic analysis. Our proposed 
approach strategically combines deep learning and fusion techniques to 
improve both accuracy and contextual understanding in complex 
scenes. The experimental results as well as the statistical analysis confirm 
the effectiveness of the method, demonstrating notable enhancements 

in object detection and semantic analysis compared to existing methods. 
The success of DFN suggests its potential in practical applications in 
computer vision, robotics, augmented reality, and autonomous systems. 
The improved accuracy in multi-object detection and semantic analysis 
has broader implications for tasks like autonomous driving, surveillance, 
and augmented reality applications, where precise scene understanding 
is crucial. Additionally, our findings underscore the significance of using 
deep learning and fusion techniques to address challenges posed by 
diverse scenes, occlusions, and object inconsistencies.

Looking forward, future research could explore incorporating 
temporal information to capture dynamic scene changes, introducing 
a temporal dimension to our contextual scene learning framework. 
Moreover, integrating attention mechanisms to selectively focus on 
relevant regions and objects within a scene represents a promising 
direction for enhancing the efficiency and adaptability of the proposed 
approach. These potential extensions aim to further advance the 
understanding of contextual scenes, providing valuable insights for 
researchers and practitioners.
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TABLE 5 Comparison of recognition accuracies over SUN RGB-D and 
NYU=Dv2 datasets.

Method SUN RGB-D NYU-Dv2

Song et al. (2017) – 66.9

Song et al. (2018) 53.8 67.5

Xiong et al. (2020) 56.2 68.1

Du et al. (2019) 56.7 69.2

Ayub and Wagner (2019) 59.5 70.9

Chen et al. (2018) – –

Gao et al. (2020) – –

Proposed 94.27 72.80

TABLE 6 Comparison of recognition accuracies over SYNTHIA dataset.

Method SYNTHIA

Chen et al. (2018) 40.8

Gao et al. (2020) 80.0

Proposed 95.08

TABLE 7 Paired t-test results (recognition accuracy).

Dataset t-value p-value Conclusion

SUN RGB-D t = 7.15 p < 0.001 Reject H0 (significant)

NYU-Dv2 t = 4.32 p < 0.01 Reject H0 (significant)

SYNTHIA t = 8.56 p < 0.001 Reject H0 (significant)

TABLE 8 Parameter setting for contextual scene learning via FCN.

S. No. Parameter Value

1 Learning rate 0.01

2 Batch size 08

3 Epochs 50

4 Optimization algorithm SGD

5 Loss function Cross entropy loss + Dice loss
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