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Next Point-of-Interest (POI) recommendation aims to predict the next POI for

users from their historical activities. Existing methods typically rely on location-

level POI check-in trajectories to explore user sequential transition patterns,

which su�er from the severe check-in data sparsity issue. However, taking into

account region-level and category-level POI sequences can help address this

issue. Moreover, collaborative information between di�erent granularities of

POI sequences is not well utilized, which can facilitate mutual enhancement

and benefit to augment user preference learning. To address these challenges,

we propose multi-granularity contrastive learning (MGCL) for next POI

recommendation, which utilizesmulti-granularity representation and contrastive

learning to improve the next POI recommendation performance. Specifically,

location-level POI graph, category-level, and region-level sequences are first

constructed. Then, we use graph convolutional networks on POI graph to extract

cross-user sequential transition patterns. Furthermore, self-attention networks

are used to learn individual user sequential transition patterns for each granularity

level. To capture the collaborative signals between multi-granularity, we apply

the contrastive learning approach. Finally, we jointly train the recommendation

and contrastive learning tasks. Extensive experiments demonstrate that MGCL is

more e�ective than state-of-the-art methods.

KEYWORDS

multi-granularity information, graph convolutional networks, self-attention networks,

contrastive learning, POI recommendation

1 Introduction

Location-based social networks (LBSNs), a new type of social media, such as Yelp

and Foursquare, are typical LBSNs applications. As a result, a large amount of check-

in data have been accumulated, which provides an excellent opportunity to understand

users’ mobile behaviors. The next POI recommendation predicts where a user will go next,

providing mutual benefits for POI holders and users. Due to its highly practical value,

the next POI recommendation has attracted extensive attention from academia and the

industry community.

Recently, how to improve the performance of next POI recommendation has been

extensively studied (Zhang and Chow, 2015; Wang et al., 2016; Zhao et al., 2019; Afzali

et al., 2021). In the early stages, Markov Chain (MC) (Cheng C. et al., 2013; Cheng H.

et al., 2013; Liu et al., 2013; He et al., 2016) and Matrix Factorization (MF) (Lian et al.,

2014; Zhang et al., 2019; Davtalab and Alesheikh, 2021; Xu et al., 2023) were commonly

employed to model sequential transitions in conventional POI recommendations, treating

user behavior patterns as static. However, conventional methods tend to overlook the

dynamic evolution of user preferences over time and face challenges in handling sparse
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sequential data. This limitation has prompted a shift toward neural

network-based approaches, particularly with the emergence of deep

learning (DL). In recent years, researchers have made a series of

important breakthroughs based on the recurrent neural network

(RNN) model. Innovative initiatives such as the spatiotemporal

recurrent neural network (STRNN) have successfully integrated

time and geographical context information into the model (Liu

et al., 2016; Zhu et al., 2017; Fang and Meng, 2022; Wu et al., 2022).

The key to these methods is to process time series data efficiently.

In this research area, the subsequent studies by Liu et al. (2021) and

Zhao et al. (2022) further extended the Long Short-Term Memory

(LSTM) or Gated Recurrent Unit (GRU) model to better capture

long-term and short-term dependencies (Zhao et al., 2018). This

enh anced approach involves the introduction of specialized spatial

and temporal gates to regulate the flow of contextual information.

As self-attention networks (SAN) show great potential in process

sequential tasks, SAN-based models such as SASRec (Kang and

McAuley, 2018) and TiSASRec (Li et al., 2020), quickly surpassing

the traditional convolutional neural network (CNN) or RNN-

based methods and becoming an advanced model in the field

of sequential recommendation. Recently, some SAN-based works

have further improved the performance of next Point-of-Interest

(POI) proposals by introducing hierarchical grids (Lian et al.,

2020; Cui et al., 2021). This innovative approach aims to fully

exploit geographic information while taking into account non-

adjacent locations and non-contiguous visits, improving model

performance by explicitly incorporating spatial and temporal

proximity. Graph neural network (GNN) (Rao et al., 2022) and

knowledge graph (KG) have garnered more attention on the next

POI recommendation due to the ability to better express entity

relationships (Rao et al., 2022; Wang et al., 2022a,b; Yang et al.,

2022). This evolution in recommendation systems showcases a

continuous effort to refine approaches for handling sequential data

and improving the accuracy of POI recommendations.

Although the above methods have achieved advanced

performance, these methods still face the following issues. First,

most existing studies exploit location-level POI sequences, ignoring

the existence of region-level and category-level POI sequences. As

illustrated in Figures 1A–C, Helen visited location-level POI at l1,

l2, and l3 successively, but Helen may leave a rough footprint, e.g.,

region r4 instead of the precise POI l4, l5, and l6. The accessible

sequence of check-ins will become: “r1 → r2 → r3 → r4”.

Thus, region-level POI are common and essential in real life.

Finally modeling POI category labels are crucial for next POI

recommendation as it improves accuracy and diversity. For

example, if a user has visited museums and art galleries, and our

model determines they are interested in art but not sure what

type of place they want to visit, category label modeling becomes

essential. Without it, we may recommend places they are not

interested in, reducing satisfaction and usability.

Second, following the above innovations, most subsequent

POI recommendation models adopted designs based on the

supervised learning paradigm. The supervision signals of these

models are mainly derived from user interaction data with

POIs, but since the supervision signals are usually sparse,

this may have an impact on the learning of user preferences.

Existing work attempts to utilize supervised signals to enhance

the quality of user preference learning. For example, CTLTR

(Zhou et al., 2022) is a trip prediction model that uses self-

supervised learning to capture supervised signals to enhance user

preference learning. However, existing methods usually only use

location-level POI check-in trajectories to mine supervised signals,

while ignoring the supervised signals of region-level and category-

level POI sequences.

To this end, we propose a multi-granularity contrastive

learning (MGCL) model for next POI recommendation, which

utilizesmulti-granularity representation and contrastive learning to

improve the next POI recommendation performance. Specifically,

location-level POI graph, category-level, and region-level

sequences are first constructed. Then, we use graph convolutional

networks on POI graph to extract global cross-user sequential

transition patterns. Then, self-attention networks are used to learn

individual user sequential transition patterns for multi-granularity.

To capture the collaborative signals among multi-granularity,

we apply a contrastive learning approach, which uses pairwise

contrastive learning at the location-level, region-level, and

category-level representations. Finally, we joined learning the next

POI recommendation task and the multi-granularity contrastive

learning task. Through extensive experiments on real-world

datasets, the MGCL model consistently outperforms current

leading methods in all aspects. The main contributions of this

study can be summarized as follows:

• To the best of our knowledge, this is the first work to apply

contrastive learning for next POI recommendation, which can

capture the collaborative signals among different granularities

and facilitate mutual enhancement.

• We propose a framework called Multi-granularity Contrastive

Learning for Next POI Recommendation (MGCL). To achieve

better recommendation performance, we also adopt a multi-

task learning approach.

• The effectiveness of the MGCL model was confirmed through

experiments on three real-world datasets, confirming that

our model has made significant progress in improving

recommendation performance.

The subsequent sections of this study are structured as follows:

In Section 2, we commence with a discussion of related work.

Moving on to Section 3, we present our proposed model, MGCL,

designed for next Point-of-Interest (POI) recommendation.

Section 4 provides an overview of the experimental results. Lastly,

in Section 5, we draw conclusions to summarize the study.

2 Related work

In this section, we undertake a comprehensive review of related

work from two distinct perspectives: POI recommendation and

contrastive learning.

2.1 POI recommendation

Next POI recommendation aims to learn the user preference

transition patterns, as well as the spatio-temporal information

relationship between user check-ins, time of check-ins, and
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FIGURE 1

An example of Helen’s multi-granularity POI sequences. (A) An illustration of Helen’s movements across di�erent locations and regions. Each circle

represents a region, with arrows indicating the sequence of her movements. (B) Icons representing di�erent categories of POIs. (C) Multi-granularity

sequences of Helen’s movements.

geographical location. Due to its great commercial value, this

task has attracted much attention. Most of the next POI

recommendation methods are based on Markov Chain (MC)

which focus on iteratively determining the transformation matrix

of the next behavior or deep learning which processes the

recommendation task in a data-driven manner. Specifically,

factorization machines (FMs) (Rendle, 2010) suggest dealing

with the non-adjacent check-in problem in the next POI

recommendation, which is not easy to model with the MC-based

methods. Then, Cheng C. et al. (2013) attempt to incorporate

spatio-temporal information into existing models. Zhang et al.

(2020b) propose a personalized geographical influence modeling

method (PGIM) that jointly learns users’ geographical and

diversity preferences to improve POI recommendations, addressing

limitations in spatial relevance and diversity in existing methods.

Liu et al. (2018) propose a privacy-preserving framework using

partially homomorphic encryption to design two protocols for

trust-oriented POI recommendation. It proves that these protocols

are secure against semi-honest adversaries and demonstrates

through experiments that they achieve privacy preservation with

acceptable computation and communication costs. Compared

with MC-based methods, DL-based methods can usually achieve

better performance.

Next POI recommendation methods based on early deep

learning are RNN-based and their variants. STRNN (Liu et al.,

2016) enhances the spatio-temporal modeling capability of RNN

by using spatio and temporal intervals between successive check-

ins. Time LSTM (Zhu et al., 2017) adds time information to

the long and short memory networks, while STGN (Zhao et al.,

2022) further integrates spatial information by designing space-

time gates. Recently, with the development of Transformers, the

attention mechanism has been widely used in the next POI

recommendation. STAN (Luo et al., 2021) uses the self-attention

network (SAN) to model long-term dependencies in long-term use

check-in sequences. MGSAN (Li et al., 2021b) employs a multi-

granularity representation along with a self-attention mechanism

to characterize Point-of-Interest (POI) sequences at both individual

and collective levels. This dual-level granularity enables the

model to adeptly grasp behavior transition patterns, thereby

enhancing recommendation performance. MCMG (Sun et al.,

2022) utilizes a multi-channel encoder to capture multi-granularity

sequential transition patterns, thereby improving recommendation

performance. We argue that the collaborative signals among

different granularities of POI sequences can facilitate each other

and benefit augment user preference learning.

2.2 Contrastive learning

In recent years, contrastive learning (CL) (Chuang et al.,

2020; Ho and Vasconcelos, 2020; Liu et al., 2023) has shown

potential in solving data sparsity problems in Computer Vision

(CV) (Chen et al., 2020), Graph/Node Classification (G/NC)

(You et al., 2020), and Natural Language Processing (NLP)

(Gao et al., 2021) areas. Contrastive learning methods have been

explored by certain researchers in attempts to be applied to

recommendation systems (Xie et al., 2022). For example, SGL

(Wu et al., 2021) employs a strategy involving the random

removal of edges, vertices, and random walking to create diverse

perspectives of the initial graph. The aim is to maximize the

consistency of identical nodes across these varied views. NCL

(Lin et al., 2022) introduces users (or items) and neighbors from

structural space and semantic space, respectively, and uses them

as positive (or negative) contrastive pairs. To improve the graph

contrastive learning in the recommendation, SimGCL (Yu et al.,

2022) introduces a straightforward contrastive learning approach.

In contrast to employing a graph augmentation mechanism,

the method opts for the addition of uniform noise to the

embedding space for generating contrasting views. CL4SRec (Xie

et al., 2022) innovatively incorporates contrastive learning into

sequential recommendation. It achieves this by introducing three

random data augmentation strategies, which are employed to

generate contrastive sequences based on the original sequences

for the first time in this context. DuoRec (Qiu et al., 2022)

engages in contrastive learning at the model level as a strategy

to alleviate the degradation of representation. CTLTR (Zhou

et al., 2022) is a trip prediction model that uses self-supervised

learning to capture supervised signals to enhance user preference

learning. However, existing methods usually only use location-level

POI check-in trajectories to mine supervised signals, while
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ignoring the supervised signals of region-level and category-level

POI sequences.

3 Problem statement

Let U = {u1, u2, ..., u|U|}, L = {l1, l2, ..., l|L|}, R =
{r1, r2, ..., r|R|}, C = {c1, c2, ..., c|C|} represent the sets of users,

locations (Points of Interest - POI), regions, and categories,

respectively. A check-in track (u, l, t, g, r, c ) indicates that user u

visited a POI l in region r at time t, where l is geocoded by g

(longitude, latitude), and the category is c. The POI trajectory of

user u is denoted as Lu = {Lut1 , L
u
t2
, ..., Lutk}. The corresponding

region and category check-in trajectories are denoted as Ru =
{Rut1 ,R

u
t2
, ...,Rutk} and Cu = {Cu

t1
,Cu

t2
, ...,Cu

tk
}. Given Lu, Ru, and

Cu, our objective is to predict the next location ltk+1
for user u at

time tk+1.

4 The proposed methodology

In this section, we elaborate on the proposed model,

multi-granularity contrastive learning (MGCL), for next POI

recommendation. The overall representation of our MGCL

framework is shown in Figure 2. Specifically, MGCL has the

following parts: (1) Location-level representation layer aims to

capture global across-user and local individual sequential transition

patterns through location granularity sequences. (2) Region-level

representation layer aims to learn about the sequential transition

patterns based on region granularity sequences of local individual

users. (3) Category-level representation layer aims to learn about

the sequential transition patterns based on category granularity

sequences of local individual users. (4) Contrastive learning

layer aims to capture the collaborative signals between different

granularities and enable POI representation to achieve high-quality

representation by multi-granularity modeling. (5) The prediction

layer aims to predict the next POI. We will introduce each layer

in detail.

4.1 Location-level representation layer

This layer aims to capture global across-user and local

individual sequential transition patterns through location

granularity sequences.

4.1.1 POI representation via GCN
At first, we generate a directed graph of POI according to the

check-in trajectories of all users, which can model the sequential

pattern of all users globally, and then capture the collaborative

signal across users. After getting the constructed directed POI

graph, we use GCN to obtain the POI representation,

H(z+1) = ReLU(D̃
−1

ÃH(z)W(z)), (1)

Here, ReLU denotes the activation function, Ã = A + I; A ∈
R
|L|×|L| is the in-degree adjacency matrix; I is the identity matrix

representing the self-connection of each node; D̃ ∈ R
|L|×|L| is the

diagonal in-degree matrix with D̃ii =
∑

jÃij; H
(z) ∈ R

|L|×d is the

POI embedding matrix in the z-th layer; d is the embedding size;

H(0) is the initialized POI embedding matrix; W(z) ∈ R
d×d is a

layer-wise trainable weight matrix.

4.1.2 Location-level POI representation
The goal of the next POI recommendation is to predict for a

single user where to go in the next time. Therefore, the location-

level, that is, the POI check-in sequence within a user, also plays

a crucial role in user preference modeling. To this end, we model

local user sequential transition patterns with the self-attention

network (SAN). On the one hand, SAN can model the context

information among non-continuous check-in data and adaptively

aggregate it according to the corresponding weight. On the other

hand, SAN can model the context information of the current POI.

After GCN, the POI in the check-in track of user u is

expressed as Hu =
[

hut1 , h
u
t2
, ..., hutk

]

, where h ∈ R
d is the

output of the last layer of GCN. To distinguish different positions

of POI in the check-in trajectory, we sum the embedding of

position p with the above POI representation. In addition, in the

next POI recommendation task, the temporal and spatial context

information is very important. Therefore, we use these two factors

to enhance the representation of POI embedding. The enhanced

POI is represented as follows:

H̃u =











hut1Wh + du1Wd,l + tu1Wt,l + p1
hut2Wh + du2Wd,l + tu2Wt,l + p2

...

hutkWh + du
k
Wd,l + tu

k
Wt,l + pk











, (2)

where W is the learnable weight matrix; du
k

∈ R
d is the

representation of distance du
k
from lutk−1

to lutk ; d
u
1 = 0; tu

k
∈ R

d

is the representation of temporal context; and pk ∈ R
d is the

position representation.

To capture the sequential dependencies at the user’s local level,

we input the augmented POI representation H̃
u
into the SAN. It is

calculated as follows:

Sul = softmax(
(H̃uW

Q
l
)(H̃uWK

l
)T

√
d

)(H̃uWV
l ), (3)

where Su
l

∈ R
k×d is the augmented representation of POI in

Lu through the SAN; WQ
l
,WK

l
,WV

l
∈ R

d×d are the query, key,

and value projection matrices; and
√
d to prevent the value of the

input softmax from being too large, the partial derivative tends to

approach 0.

Applying feed-forward networks (FFNs) to Su
l
can make the

model non-linear, as follows:

Ful = ReLU(Sul W1 + b1)W2 + b2, (4)

where Fu
l
is the augmented POI representation in Lu through the

FFN;W is the learnable weight matrix, and b is the bias vector.
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FIGURE 2

Illustration of the MGCL model that includes location-level, region-level, and category-level representation layers, followed by the contrastive

learning and prediction layer.

4.2 Region-level representation layer

The purpose of this layer is to learn about the sequential

transition patterns based on region granularity sequence of local

individual users.

4.2.1 Region-level POI representation
The sequential transformation patterns at the region-level

are similar to the location-level, which are also affected by two

factors, temporal and spatial. Hence it is crucial to take these two

factors into account, so the enhanced regional-level preference

representation Ru is as follows:

Ru =











rut1Wr + d′u1Wd,r + tu1Wt,r + p1
rut2Wr + d′u2Wd,r + tu2Wt,r + p2

...

rutkWr + d′ukWd,r + tu
k
Wt,r + pk











, (5)

where rutk ∈ R is the representation of Rutk inRu and R ∈ R
|R|×d is

the region representation matrix. d′uk ∈ R
d is the representation of

distance d′uk between rutk−1
and rutk ; d

′u
1 = 0.

We then feed Ru into the SAN and FFN:

Sur = softmax(
(RuWr

Q)(RuWr
K)T√

d
)(RuWr

V ), (6)

where Su,ir ∈ R
d×d is the refined representation of regions in Ru

through the SAN. Applying FFN to Sur can make the model non-

linear. We can obtain Fur as the refined representation of regions in

Ru.

Fur = ReLU(SurW3 + b3)W4 + b4, (7)

where Fur is the enhanced representation inRu through the FFN.

4.3 Category-level representation layer

The purpose of this layer aims to learn about the sequential

transition patterns based on category granularity sequence of local

individual users.

4.3.1 Category-level POI representation
Category information can reflect the user’s intention to a certain

extent, and the change in the POI category represents the dynamic

shift in the user’s intention. Similarly, it also has an obvious

sequential transition pattern, and the sequential changes at the

category-level are affected by the time factor. Hence it is crucial to

consider this factor. Therefore, the augmented representation of the
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categories sequences Cu is as follows:

Cu =











cut1Wc + tu1Wt,c + p1
cut2Wc + tu2Wt,c + p2

...

cutkWc + tu
k
Wt,c + pk











, (8)

where cutk ∈ C is the representation of Cu
tk
in Cu and C ∈ R

|C|×d is

the category representation matrix.

We then feed Cu into the SAN and FFN:

Suc = softmax(
(CuWc

Q)(CuWc
K)T√

d
)(CuWc

V ), (9)

where Suc ∈ R
d×d is the refined representation of category in

Cu through the SAN. Applying FFN to Suc can make the model

non-linear.

Fuc = ReLU(SucW5 + b5)W6 + b6, (10)

where Fuc is the refined representations of categories in Cu through

the FFN.

4.4 Contrastive learning layer

To facilitate the transfer of patterns across multiple

granularities, we introduce a contrastive learning approach

that conducts contrastive learning for Point-of-Interest (POI)

representation across any two granularities.

4.4.1 Contrastive learning
Following Sections 4.1, 4.2, and 4.3, we can create three

granularity POI representation based on location-level, region-

level, and category-level sequences. The key step in contrastive

learning is to select high-quality positive sample pairs and negative

sample pairs. In most cases, positive sample pairs emphasize the

consistency of the same item in different views, while negative

sample pairs focus more the inconsistency between different

items. In this study, we select the same POI representation from

the different granularities as positive samples. We select the

different POI representations from the mini-batch as negative

samples. Once positive and negative sample pairs are identified,

we employ the InfoNCE (Noise-Contrastive Estimation) contrast

loss function to maximize the consistency of positive sample pairs

and minimize the consistency between negative sample pairs. The

specific formulation of the contrastive loss function is as follows:

Llr = −
∑|U|

u=1log

exp(sim(Fu
l
, Fur ))

exp(sim(Fu
l
, Fur ))+

∑

u−∈N− exp(sim(Fu
l
, Fu

−
l
)))

,
(11)

Llc = −
∑|U|

u=1log

exp(sim(Fu
l
, Fuc ))

exp(sim(Fu
l
, Fuc ))+

∑

u−∈N− exp(sim(Fu
l
, Fu

−
l
)))

,
(12)

Lrc = −
∑|U|

u=1log

exp(sim(Fur , F
u
c ))

exp(sim(Fur , F
u
c ))+

∑

u−∈N− exp(sim(Fur , F
u−
r )))

,
(13)

where sim(·) is the cosine similarity function, |U| is the number

of users. Llr , Llc, and Lrc are location-level and region-level

contrastive learning loss functions, location-level and category-

level contrastive learning loss functions, and region-level and

category-level contrastive learning loss functions, respectively.N−

is the set of negative sample pairs within the mini-batch.

Ultimately, contrastive learning by minimizing the loss

function as follows:

Lcl = Llr + Llc + Lrc. (14)

4.5 Prediction layer

In this layer, we integrate the representations of multi-

granularity as the final POI representation, and the user preferences

are summarized as follows:

ftk = fltk + frtk + fctk , (15)

where fltk , f
r
tk
, fctk ∈ Fu

l
, Fur , F

u
c , which are the representations of

multi-granularity.

The POI representation at time tk is given, we can predict the

next POI by:

ŷ
l
tk+1

= softmax(H(Z)(ftk )
⊤), (16)

where ŷltk+1
represents the scores over all candidate POI, and Z is

the number of GCN layers.

Therefore, the loss function for the next POI prediction is

calculated as follows:

Ll = −
∑

log(ŷltk+1
)+ (1− ŷltk+1

)log(ŷltk+1
), (17)

where yltk+1
is the one-hot vector of the ground-truth POI ltk+1

at

time tk+1.

Meanwhile, the two auxiliary tasks to predict the next region

and category:

ŷ
r
tk+1

= softmax(R(frtk )
⊤), ŷctk+1

= softmax(C(fctk )
⊤), (18)

where ŷrtk+1
are the prediction scores of all candidate regions; where

ŷ
c
tk+1

are the prediction scores of all candidate categories.

Therefore, the loss functions of the two auxiliary tasks are as

follows:

Lr = −
∑

log(ŷ
r
tk+1

)+ (1− ŷrtk+1
)log(ŷrtk+1

), (19)

Lc = −
∑

log(ŷ
c
tk+1

)+ (1− ŷctk+1
)log(ŷctk+1

), (20)

where yrtk+1
are one-hot vectors of the ground truth region rtk+1

at

time tk+1; y
c
tk+1

are one-hot vectors of the ground truth region ctk+1

at time tk+1.

Ultimately, the recommendation task loss function is defined

as:

Lnpr = Ll + Lr + Lc. (21)

Finally, we jointly optimize the above tasks as below:

L = Lnpr + λLcl. (22)

where λ is the weight to balance the two tasks loss.
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4.6 Time complexity

Time complexity refers to the time it takes to execute an

algorithm. The item graph is the largest graph, and the time

complexity is the upper limit. The time consumption of our

model is primarily attributed to two main components. The first

component constructs the multi-dimensional graph embedding

layer. Constructing the global graph requires traversing each edge,

which has a time complexity of O(E). Calculating the edge weights

in the graph takes O(I2), and the GCN computation also takes

O(I2). The second component involves the temporal self-attention

layer. For each channel, updating the item embedding has a time

complexity of O(n2d). Consequently, the overall time complexity

of our model is O(E+ I2 + I2 + n2d).

5 Experiments

In this section, we initially provide a comprehensive overview

of the dataset, the baseline models employed for comparison, the

evaluation metrics applied in the experiments, and the specifics of

our experimental setup. Subsequently, we showcase and analyze

the experimental results of our model in comparison to the

baseline model, delving into the primary reasons behind these

outcomes. Following this, we undertake an ablation study on

the key components of our model. Lastly, a detailed analysis is

performed on the main parameters within the MGCL model.

To address specific inquiries, we conduct experiments aimed at

providing insights into the following questions:

RQ1: Can MGCL demonstrate superior performance

compared to the baseline models in the next Point of Interest

(POI) recommendation task?

RQ2:What impact do the various components of MGCL have

on its overall performance?

RQ3:How does the performance of MGCL vary with changes

in the key hyperparameters?

5.1 Datasets

To assess the recommendation efficacy of MGCL, we opt for

experimentation on three real-world public datasets. The selected

datasets include Singapore (SIN), Foursquare check-in records

from Calgary (CAL), and Phoenix (PHO). For each user, the check-

in records are temporally partitioned by day and subsequently

organized in the chronological order. The dataset is then divided

into training, validation, and test sets with a ratio of 8:1:1.

Additionally, users with fewer than three interactions in the dataset

are excluded. Table 1 provides detailed information on these three

public datasets.

5.2 Baselines

We conducted comparisons between MGCL and the

following models:

TABLE 1 Dataset statistics.

Dataset CAL PHO SIN

Users 435 2,946 8,648

POI 3,013 7,247 33,712

Check-ins 13,911 47,980 355,337

Categories 293 344 398

Regions 9 9 9

Density 1.06% 0.22% 0.12%

(1) POP relies on item popularity, suggesting items to users by

arranging them based on their popularity.

(2) BPR (Rendle et al., 2009) is a personalized ranking

algorithm grounded in Bayesian inference. It is employed

in recommendation systems to acquire insights into user

preferences regarding items, specifically in terms of their

ranking order.

(3) ST-RNN (Liu et al., 2016) is an approach that

employs recurrent neural networks to model and predict

spatio-temporal data, capturing both spatial and temporal

dependencies on the information.

(4) ATST-LSTM (Huang et al., 2021) is a next POI prediction

model that embeds temporal and spatial information multi-

modally.

(5) SASRec (Kang and McAuley, 2018) is a sequential

recommendation model that uses self-attention networks.

(6) LightGCN (He et al., 2020) is a collaborative filtering

recommendation model that does not use item feature

information and non-linear activation.

(7) SGRec (Li et al., 2021a) is a next POI predictionmodel that

uses GAT to capture sequential transition patterns of global all

users and local single users.

(8) DuoRec (Qiu et al., 2022) engages in contrastive learning

at the model level as a strategy to alleviate the degradation of

representation.

(9) MCARNN (Liao et al., 2018) is a multi-task learning

framework that leverages both next Point-of-Interest (POI)

prediction and next activity prediction to enhance overall

prediction performance.

(10) iMTL (Zhang et al., 2020a) considers spatial, temporal,

POI category information and multi-task for next POI

prediction.

(11) MCMG (Sun et al., 2022) is a next POI prediction

framework with multi-granularity information and

multi-task.

5.3 Evaluation metrics

To showcase the comprehensive effectiveness of our model,

we employ two widely used evaluation metrics in next Point-of-

Interest (POI) prediction, namely, Hit Ratio (HR) and Normalized

Discounted Cumulative Gain (NDCG), with K = {5, 10}. HR

assesses the accuracy of the recommendations, while NDCG

is a position-aware metric that assigns greater weights to

higher positions.
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TABLE 2 Comparisons between three datasets.

Methods
CAL PHO SIN

HR@5 HR@10 NDCG@5 NDCG@10 HR@5 HR@10 NDCG@5 NDCG@10 HR@5 HR@10 NDCG@5 NDCG@10

POP 0.0622 0.0913 0.0375 0.0463 0.016 0.0223 0.0114 0.0131 0.0125 0.0293 0.0106 0.0151

BPR 0.0862 0.1046 0.0467 0.0793 0.0487 0.0585 0.0256 0.0304 0.0352 0.0525 0.0222 0.0380

ST-RNN 0.1469 0.1731 0.1225 0.1508 0.1240 0.2028 0.0802 0.1229 0.0959 0.1370 0.0655 0.0794

ATST-LSTM 0.2027 0.2898 0.1684 0.2236 0.1579 0.2377 0.1033 0.1385 0.1296 0.1933 0.1027 0.1476

SASRec 0.3077 0.4108 0.2646 0.2723 0.2807 0.3325 0.2021 0.2101 0.2301 0.2885 0.1301 0.1524

LightGCN 0.2954 0.3731 0.1868 0.2076 0.2563 0.3151 0.1881 0.2194 0.2165 0.2691 0.1263 0.1335

SGRec 0.3879 0.4854 0.2894 0.3112 0.2897 0.3401 0.2048 0.2249 0.2310 0.2953 0.1530 0.1739

DuoRec 0.3311 0.4503 0.2386 0.2777 0.2464 0.3315 0.1566 0.1789 0.2329 0.3254 0.1617 0.1914

MCARNN 0.2451 0.3286 0.2015 0.2693 0.1905 0.2726 0.1264 0.1617 0.2018 0.2692 0.1169 0.1591

iMTL 0.2216 0.3104 0.2031 0.2545 0.1830 0.2747 0.1301 0.1632 0.1505 0.1801 0.1051 0.1423

MCMG 0.4426 0.5333 0.3431 0.3743 0.3027 0.3843 0.2211 0.2489 0.2498 0.3338 0.1729 0.1987

CLMG 0.5166 0.6093 0.3946 0.4114 0.3496 0.4275 0.2520 0.2742 0.2668 0.3564 0.1881 0.2169

Improve 16.72% 14.25% 15.01% 9.91% 15.49% 11.24% 13.98% 10.16% 6.81% 6.77% 8.79% 9.16%

The bold values represent the results obtained in this study, while the italicized values represent the best baseline results.
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HR is used to measure whether the recommendation system

successfully hits the items that the user actually likes in the

candidate recommendation list given by the user. HR is usually

defined as follows:

HR@K = 1

M

∑M
i=1 hits(i), (23)

where M represents the number of users. hits(i) indicates whether

the predicted item for the i-th user is among the top-K items,

taking a value of 1 if it is and 0 otherwise. HR underscores

the precision of model recommendations, with a higher value

indicating better performance.

NDCG is an indicator used to evaluate the performance

of recommendation systems. It takes into account the ranking

information of items in the recommendation list and the user’s

preference for the items. NDCG is defined as follows:

DCG@k =
k

∑

i=1

2reli − 1

log2(i+ 1)
, (24)

IDCG@k =
k

∑

i=1

2relsortedi − 1

log2(i+ 1)
, (25)

NDCG@k = DCG@k

IDCG@k
, (26)

DCG@k represents the cumulative gain of items in the first k

positions in the recommendation list. reli is the user’s preference

for the i-th item, usually using a binary flag (for example, 1

means the user likes it, 0 means he does not like it) or a real

value to represent the user’s preference for the item. IDCG@k

represents the cumulative gain of items in the first k positions

under ideal circumstances. It is the cumulative gain after the

ideal ranking of the user’s true preferences. NDCG@k is the

normalized value between DCG@k and IDCG@k, which is used

to compare the evaluation results of different recommendation

lists. The purpose of normalization is to eliminate the impact of

different recommendation list lengths on the evaluation results.

NDCG takes into account the user’s preference for items and

the ranking information of items in the recommendation list.

Therefore, compared with some simple evaluation indicators (such

as HR), it reflects the performance of the recommendation system

more comprehensively.

5.4 Parameter settings

In this study, the value of our learning rate is set at 0.0001 and

the value of the training batch is 512. The embedding size for CAL

dataset is 180, the embedding sizes for PHO dataset and SIN dataset

are 120. The contrastive learning of weight hyper-parameter λ is

searched from 0 to 1.0 with step size 0.02; The number of heads

nh, blocks nb for SAN, and the number of layers nl for GCN are

searched in {1, 2, 3, 4}.

5.5 Performance comparison (RQ1)

To validate the overall performance of the MGCL model, we

conducted a comparison with state-of-the-art recommendation

methods. The results are presented in Table 2. Based on the table,

the following conclusion can be drawn:

The POP and BPR models are classic non-sequential models,

which have achieved the worst recommendation effect on all

datasets, and the main reason is that they do not have the order

information of the modeled sequence.

ATST-LSTM and ST-RNN models are RNN-based, which

achieved better experimental performance than classic non-

sequential models because they can effectively model the sequential

transition patterns of users. SASRec achieves better experimental

results than the above models in most cases. This is because the

SAN can effectively capture contextual information while capturing

sequential transition patterns. LightGCN and SGRec are GNN-

based models that consider the global POI check-in trajectories. It

demonstrates the effectiveness of GNNs in capturing global cross-

user high-order information. SGRec achieves strong experimental

results by fusing POI category information.

DuoRec is a CL-based model that shows better performance

compared to SASRec. This may be because contrastive learning,

as a regularization objective, can deal with the data sparsity

issue and improve the performance of the model. MCARNN,

iMTL, and MCMG are MTL-based models that achieve strong

experimental results, which demonstrate the positive effect of

multi-task prediction on the next POI prediction task.

MGCL demonstrates superior performance across all three

datasets when compared to all baseline models, showcasing a

relative improvement ranging from 6 to 15%. This notable

enhancement in performance can be attributed to several key

factors: First, the adoption of multi-granularity modeling proves

advantageous as it enables the model to effectively capture

sequential patterns at various levels of granularity. This approach

allows for a more nuanced understanding of the underlying data

structures, leading to improved predictive capabilities. Second, the

integration of contrastive learning within the model addresses the

challenge of data sparsity, contributing to enhanced robustness.

Contrastive learning mechanisms facilitate effective learning even

in scenarios with limited data, thereby improving the model’s

ability to generalize and make accurate predictions. Finally,

the implementation of multi-task learning proves beneficial for

the primary task. By jointly training the model on multiple

related tasks, the shared knowledge and representations contribute

to improved performance on the main task of next POI

recommendation. This collaborative learning approach enhances

the overall effectiveness of the model by leveraging complementary

information from different tasks. In summary, the success of

MGCL can be attributed to its multi-faceted approach, combining

multi-granularity modeling, contrastive learning, and multi-task

learning to address specific challenges in the recommendation task,

resulting in substantial performance gains across diverse datasets.

5.6 Ablation study (RQ2)

In this section, we conduct an ablation study on the key

components of our framework. Tables 3–5 present the performance

of the MGCL model and its variants, which fall into three main

categories:

Frontiers inNeurorobotics 09 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1428785
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Z
h
u
e
t
a
l.

1
0
.3
3
8
9
/fn

b
o
t.2

0
2
4
.1
4
2
8
7
8
5

TABLE 3 Performance of the CL-based variants.

Methods
CAL PHO SIN

HR@5 HR@10 NDCG@5 NDCG@10 H@5 H@10 NDCG@5 NDCG@10 HR@5 HR@10 NDCG@5 NDCG@10

MGCL 0.5166 0.6093 0.3946 0.4114 0.3496 0.4275 0.2520 0.2742 0.2668 0.3564 0.1881 0.2169

MGCL-gccl 0.4901 0.6093 0.3921 0.4173 0.3351 0.4203 0.2215 0.2486 0.2613 0.3508 0.1812 0.2100

MGCL-grcl 0.4901 0.5695 0.3679 0.3928 0.3315 0.4239 0.2272 0.2511 0.2649 0.3518 0.1848 0.2121

MGCL-crcl 0.5166 0.5828 0.3864 0.4085 0.3279 0.4221 0.2079 0.2399 0.2598 0.3497 0.1809 0.2106

MGCL-cl 0.4426 0.5333 0.3431 0.3743 0.3027 0.3843 0.2211 0.2489 0.2498 0.3338 0.1729 0.1987

TABLE 4 Performance of the MG-based variants.

Methods
CAL PHO SIN

HR@5 HR@10 NDCG@5 NDCG@10 H@5 H@10 NDCG@5 NDCG@10 HR@5 HR@10 NDCG@5 NDCG@10

MGCL 0.5166 0.6093 0.3946 0.4114 0.3496 0.4275 0.2520 0.2742 0.2668 0.3564 0.1881 0.2169

MGCL-c, cl 0.4095 0.4935 0.3216 0.3509 0.1681 0.2135 0.1781 0.2006 0.2230 0.2980 0.1454 0.1672

MGCL-r, cl 0.3878 0.4673 0.3168 0.3457 0.1030 0.1308 0.0551 0.0621 0.2072 0.2769 0.1342 0.1543

MGCL-cr, cl 0.1872 0.2256 0.1132 0.1235 0.0651 0.0827 0.0385 0.0434 0.0900 0.1203 0.0585 0.0673
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(1) CL-based variants: This section aims to verify the

contribution of contrastive learning to the MGCL method.

• MGCL-lccl: Removing the contrastive learning component

between location-level and category-level POI representation.

• MGCL-lrcl: Removing the contrastive learning component

between location-level POI representation and region-level

POI representation.

• MGCL-crcl: Removing the contrastive learning component

between category-level POI representation and region-level

POI representation.

• MGCL-cl: Removing the contrastive learning component.

The results are shown in Table 3. From the table, we

can draw the following conclusions: First, MGCL-cl has the

worst performance compared to other variants, which proves

that contrastive learning plays an important role in the next

POI recommendation. Since contrastive learning can capture

collaborative signals between multi-granularity and facilitate

mutual enhancement, the model can obtain a higher-quality POI

representation. Second, removing different contrastive learning

components, all achieve varying degrees of decline relative to

our MGCL model. MGCL-lccl can dig out cooperative signals

between location-level and category-level sequences, MGCL-lrcl

can dig out cooperative signals between location-level and region-

level sequences, MGCL-crcl can mine category-level sequences

and region-level co-signaling between sequences. When the above

components are removed separately, the effect of the model is

reduced to varying degrees. From the experimental results, we can

see that contrastive learning between any two granularities can

enhance the POI representation.

(2) MG-based variants: This subsection aims to verify the

contribution of different granularities of information to the MGCL

model. (When verifying the importance of multi-granularity

information, the contrastive learning module is also removed.)

• MCMG-cl, c: Removing the category-level component and

using region-level and location-level components for the next

POI recommendation;

• MCMG-cl, r: Removing the region-level component and using

location-level and category-level components for the next POI

recommendation;

• MCMG-cl, cr: Removing the category-level and region-level

components and using the location-level component for the

next POI recommendation.

From Table 4: the variant approach shows the weakest

recommendation performance when both category-level and

region-level components are excluded. Within the various

configurations, MGCL-cl, cr stands out with a more significant

decline in performance compared to MGCL-cl, c and MGCL-cl, r,

highlighting the vital roles played by both region and category

modeling. It is important to note the superior performance of

MGCL-cl, c over MGCL-cl, r, indicating that the accuracy of next

POI recommendations relies more heavily on region information

than on category information. This underscores the importance

of considering geographical context in refining recommendation

systems for POI.
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FIGURE 3

Impact of contrastive learning weight λ. (A) CAL. (B) PHO. (C) SIN.

FIGURE 4

Impact of hyper-parameters on (HR, NDCG)@5. (A1, B1) The impact of heads of SA. (A2, B2) The impact of blocks of SA. (A3, B3) The layers of GCN.

(3) MT-based variants: This section aims to verify the

contribution of multi-tasks to the MGCL method.

• MGCL-rtask: Removing the region recommendation task;

• MGCL-ctask: Removing the category recommendation task;

• MGCL-rctasks: Removing the region and category

recommendation tasks.

Table 5 illustrates the performance of next POI

recommendations, and the experimental findings demonstrate a

consistent decline in recommendation performance when various

components are removed. The model encompasses three distinct

recommendation tasks, and the least favorable results in predicting

the next POI emerge when both the prediction area and category

tasks are excluded. Intriguingly, it is observed that omitting the

prediction area task yields better recommendation performance

than excluding the prediction category task. This highlights

the pivotal role of the prediction area task component within

our model, emphasizing its significance in achieving optimal

recommendation outcomes.

5.7 Parameter sensitivity analysis (RQ3)

In this section, we investigate our model’s sensitivity in relation

to several key hyper-parameters, Figures 3–5 depict the results of

the parameter sensitivity analysis on next POI recommendation.

Figure 3 depicts the experimental results for different λ values,

where λ serves as the weight controlling the intensity of contrastive

learning. Its range spans from 0 to 0.1, with a step size of

0.02. The figure reveals that as the value of λ increases, the

recommendation performance shows continuous improvement.
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FIGURE 5

Impact of hyper-parameters on (HR, NDCG)@10. (A1, B1) The impact of heads of SA. (A2, B2) The impact of blocks of SA. (A3, B3) The layers of GCN.

However, beyond a certain threshold, the recommendation

performance begins to decline. Specifically, for the CAL and

PHO datasets, the optimal performance is achieved at λ =
0.08, while the SIN dataset attains the best recommendation

performance at λ = 0.02. This highlights the significance of

correctly choosing weight hyperparameters, as opting for values

that are either too large or too small can lead to performance

degradation.

Figures 4, 5 offer the following observations: (1) With the

increasing number of heads and blocks in the self-attention

network, the performance of MGCL gradually decreases. This

phenomenon may be attributed to the cumulative error becoming

larger as the attention heads and blocks increase, resulting in a

decline in model performance. (2) A similar trend is observed

when the number of Graph Convolutional Network (GCN) layers

increases. Excessive blocks and layers can lead to the overfitting

problem, contributing to the degradation of MGCL’s performance.

6 Conclusion

In this study, we present a framework called Multi-Granularity

Contrastive Learning (MGCL) for Next POI Recommendation.

Our framework utilized multi-granularity and contrastive learning

to improve the overall prediction accuracy. Experiment results

show that MGCL significantly outperforms baseline methods.

In future studies, we plan to delve deeper into enhancing the

privacy aspects of our framework. Additionally, we are keen on

incorporating textual information, such as users’ reviews and

POI attributes. Analyzing users’ reviews can provide valuable

insights into their preferences and sentiments, contributing to

a more nuanced understanding of user behavior. Furthermore,

exploring different modalities of data, such as images associated

with POI or temporal patterns in user behavior, could offer new

dimensions for model enhancement. Integrating these diverse

data sources may lead to a more comprehensive and effective

recommendation system.
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