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Introduction: Unmanned aerial vehicles (UAVs) are widely used in various 
computer vision applications, especially in intelligent traffic monitoring, as they 
are agile and simplify operations while boosting efficiency. However, automating 
these procedures is still a significant challenge due to the difficulty of extracting 
foreground (vehicle) information from complex traffic scenes.

Methods: This paper presents a unique method for autonomous vehicle 
surveillance that uses FCM to segment aerial images. YOLOv8, which is known 
for its ability to detect tiny objects, is then used to detect vehicles. Additionally, 
a system that utilizes ORB features is employed to support vehicle recognition, 
assignment, and recovery across picture frames. Vehicle tracking is accomplished 
using DeepSORT, which elegantly combines Kalman filtering with deep learning 
to achieve precise results.

Results: Our proposed model demonstrates remarkable performance in vehicle 
identification and tracking with precision of 0.86 and 0.84 on the VEDAI and 
SRTID datasets, respectively, for vehicle detection.

Discussion: For vehicle tracking, the model achieves accuracies of 0.89 and 
0.85 on the VEDAI and SRTID datasets, respectively.
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1 Introduction

Rapid economic and demographic expansion generate a dramatic surge in vehicle 
numbers on highways. Hence, complete road traffic monitoring is necessary for acquiring and 
evaluating data, essential for comprehending highway operations within an intelligent, 
autonomous transportation framework (Dikbayir and İbrahim Bülbül, 2020; Xu et al., 2022; 
Yin et al., 2022). Consequently, there’s a compelling need to automate traffic monitoring 
systems. While various image-based solutions have been developed, obstacles exist in 
expanding their capabilities, especially in dynamic contexts where backdrop and objects are 
in flux (Weng et  al., 2006; Di et  al., 2023; Dai et  al., 2024). Traditional approaches like 
background removal and frame differencing struggle when used to photographs acquired 
from mobile platforms owing to background motion, blurring the boundaries between 
background and foreground objects. Hence, improvements in computer vision and image 
processing, covering disciplines such as intelligent transportation, medical imaging, object 
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identification, semantic segmentation, and human-computer 
interaction, present promising paths (Angel et al., 2003; Cao et al., 
2021; Ding et al., 2024).

Semantic segmentation, defining and identifying pixels by class, 
provides a sophisticated method (Schreuder et al., 2003; Sun et al., 
2020; Ren et al., 2024). Unlike current systems confined to binary 
segmentation (e.g., vehicle vs. backdrop), our suggested technique 
utilizes multi-class segmentation, expanding scene knowledge (Ding 
et al., 2021; Gu et al., 2024). Moreover, utilizing aerial data offers 
enormous promise in boosting traffic management. However, 
obstacles such as varying item sizes, wide non-road regions, and 
different road layouts need efficient solutions to exploit mobile 
platform-derived data effectively (Najiya and Archana, 2018; Sun 
et al., 2018; Omar et al., 2021).

In this study, a unique approach for the identification and tracking 
of vehicles is based on aerial images. In our approach, aerial films are 
first transformed into frames for images (Sun et al., 2023). Defogging 
and gamma correction methods are then used for noise reduction and 
bright-ness improvement, respectively, while pre-processing is being 
done on those frames (Qu et  al., 2022; Chen et  al., 2023a; Zhao 
X. et al., 2024). After that, Fuzzy C Mean and DBSCAN algorithm is 
used for segmentation to decrease the background complexity. 
YOLOv8 is applied for recognition of automobiles in each extracted 
frame as it can detect tiny objects successfully. To track several cars 
inside the image’s frames, all identified vehicles have been allocated an 
ID based on ORB attributes. Also, to estimate the traffic density on the 
roadways, a vehicle count has been kept throughout the picture 
frames. The tracking has been done using the DeepSort with Kalman 
filter. Moreover, the provided traffic monitoring systems were verified 
by the tests done on VEDAI, and SRTID datasets. The studies have 
exhibited amazing detection and tracking precision when compared 
to other state-of-the-art (SOTA) approaches.

Some of the prominent contributions of this work include:

 • Our model reduces model complexity by combining 
pre-processing methodologies with segmentation techniques for 
the preparation of frames prior to detection phase.

 • Evaluation of unsupervised segmentation strategies, specifically 
Fuzzy C-Mean (FCM) algorithm and Density-Based Spatial 
Clustering of Applications with Noise (DBSCAN), was 
undertaken, boosting segmentation effectiveness.

 • Significantly enhanced accuracy, recall, and F1 Score in vehicle 
recognition and tracking compared to earlier techniques have 
been obtained.

Implementation of vehicle tracking leveraging the DeepSort 
algorithm, reinforced by an ID assignment and recovery 
module based on ORB, has been successfully accomplished, 
exhibiting remarkable performance proven across two publicly 
available datasets.

The article is structured into the following sections: Section 2 
dives into the literature on traffic analysis. Section 3 goes over the 
proposed technique in great depth. Section 4 describes the 
experimental setting, offering empirical insights into the system’s 
performance. Section 5 reviews the system’s performance and 
considers its advantages and disadvantages. Section 6. Discuss the 
work’s limitations. Section 7 is the conclusion, which summarizes the 
main results and proposes future research and development goals.

2 Literature review

Over the last several years, academics have aggressively excavated 
into constructing traffic monitoring systems. They have examined the 
behaviors of their systems utilizing multiple picture sources, including 
static camera feeds, satellite images, and aerial data (Li J. et al., 2023; 
Wu et al., 2023). Typically, the full photos undergo first preprocessing 
to exclude non-essential components beyond cars, followed by feature 
extraction (Hou et  al., 2023a). Different strategies depend on 
techniques such as image differencing, foreground extraction, or 
background removal, especially when the Region of Interest (ROI) is 
well-defined and suitably sized within the images (Shi et al., 2023; Zhu 
et al., 2024). Aerial imaging can cause the size of vehicles to vary based 
on the height of image acquisition. Because of this, semantic 
segmentation techniques have become popular for detection and 
tracking applications. It is also common to use additional stages such 
as clustering and identifier assignment to improve results. Deep 
learning algorithms have become popular in recent years for object 
recognition, showing better performance in handling complex 
situations (Wang et al., 2024; Yang et al., 2024). To provide an overview 
of current models and approaches, the linked research is classified into 
machine-learning and deep learning-based traffic system analyses.

2.1 Machine learning-based traffic scene 
analysis

Machine learning has been extensively used in computer vision-
related jobs for a long time, particularly in traffic control and 
monitoring. To find the cars in the images (Rafique et  al., 2023), 
introduced a vehicle recognition model based on haar-like 
characteristics with an AdaBoost classifier. In Drouyer and de Franchis 
(2019), a method for monitoring traffic on highways using medium 
resolution satellite images is shown. The backdrop image difference 
approach was used to identify the items in motion after a median filter 
was applied to the images after road masking for the elimination of 
irrelevant regions. Next, the gray level of the resultant image was 
computed. The last phase used a thresholding strategy to identify 
large, bright spots as autos. According to the authors in Hinz et al. 
(2006), motion detection algorithms are in-effective because aerial 
images include motion in both the foreground and background. 
Therefore, an approach based on morphological operations, the Otsu 
partitioning method, and bottom-hat and top-hat transformations 
was applied for detection. After extracting the Shi Tomasi features, 
clusters were formed based on displacement and angle trajectories. 
The automobiles vanished behind the backdrop clusters. Each vehicle’s 
robust feature vector was used for tracking. To achieve excellent 
precision, they used several feature maps. Vehicle detection has been 
accomplished utilizing two distinct methods in separate research 
(Chen and Meng, 2016). While the other approach employed HSV 
color characteristics in conjunction with the Gray Level Co-occurrence 
Matrix (GLCM) to identify cars, the first methodology used features 
from the Accelerated Segment Test (FAST) and HOG features. Vehicle 
tracking is achieved via the use of Forward and Backward 
Tracking (FBT).

The background subtraction approach is used by Aqel et al. (2017) 
to identify moving automobiles. Morphological adjustments are 
carried out to reduce the incidence of false positives. Ultimately, the 
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invariant Charlier moments are used to achieve categorization. The 
method’s applicability to a variety of traffic circumstances is limited by 
the usage of standard image processing methods. Additionally, the 
automobiles that are not moving will be  removed using the 
background subtraction approach, which will lower the true positives. 
Another traffic monitoring strategy has been provided by Mu et al. 
(2016). The model selected the area with a high Absolute Difference 
(SAD) value as a moving vehicle after computing the image difference. 
Vehicles have been found and matched across many picture frames 
using SIFT. The authors of Teutsch et al. (2017) used a novel technique 
for stacking images. The image registration process was limited to tiny 
autos, and the warping approach was used to blur any stationary 
backdrops close to moving vehicles. The main goal of this algorithm 
is to remove distracting backdrop features from images so that only 
the vehicle is visible when the surrounding region is smoothed out. 
These systems have a high temporal complexity, and these approaches 
were distinguished by their complicated properties. These methods 
incur high computational costs. Furthermore, the model’s 
generalizability is weakened as scene complexity rises.

2.2 Deep learning-based traffic scene 
analysis

Traffic monitoring has always included manual techniques and 
in-car technology. Nonetheless, deep learning is more effective than 
traditional methods when it comes to image processing. An 
automobile recognition method based on the You Look Only Once 
(YOLOv4) deep learning algorithm has been presented by Lin and 
Jhang (2022). Another study Bewley et al. (2016) employed the Faster 
R-CNN as the target detector and developed a tracking method 
(SORT) for real-time systems based on the Hungarian matching 
algorithm and the Kalman filter to track several targets at once. The 
SORT tracker does not take the monitored object’s appearance 
characteristics into account. A technique for detecting automobiles 
using an enhanced YOLOv3 algorithm is proposed by Zhang and Zhu 
(2019). To increase the detection method’s accuracy, a new structure 
is added to the pre-trained YOLO network during training. YOLOv3, 
on the other hand, is among the most ancient. Using the most recent 
designs may enhance the detection result. Miniature CNN 
architecture, as described by Ozturk and Cavus (2021), is a vehicle 
identification model that relies on Convolutional Neural Networks 
(CNNs) in conjunction with morphological adjustments. The 
computational cost of this post-processing is high. Moreover, different 
aerial image databases show different levels of accuracy. A method for 
real-time object tracking and detection was reported by the authors in 
Alotaibi et al. (2022). An enhanced RefineDet-based detection module 
is included in the model. Additionally, the twin support vector 
machine model and the harmony search technique are employed for 
classification. Pre-processing of the data is absent from the model, 
which might lower the model’s total computing complexity. A vehicle 
identification model based on deep learning is shown in Amna et al. 
(2020). Convolutional Neural Networks (CNN) are used by the model 
to recognize vehicles, while radar data is used to determine the target’s 
location. A two-stage deep learning model is developed in different 
research (He and Li, 2019). In addition to detecting cars, the model 
also recognizes them again in subsequent frames, which is a crucial 
component of tracking. As opposed to traditional appearance and 

motion-based characteristics, the re-identification is mostly reliant on 
vehicle tracking context information.

There is always room for development in the field of automated 
traffic monitoring systems, despite the substantial research that has 
been done in this area. To get effective results, efficient and specialized 
designs are needed for the recognition of automobiles in aerial images, 
particularly in situations with heavy traffic. Machine learning 
techniques are insufficient to distinguish between objects whose pixels 
exhibit motion. As a result, we use deep learning strategies to raise the 
precision of vehicle tracking and detection.

3 Materials and methods

3.1 System methodology

This section details the planned traffic monitoring system. System 
architecture overview is provided in Figure 1. This work offers a vehicle 
recognition and tracking system based on semantic segmentation. 
Firstly, the videos are turned into frames and pre-processing processes, 
i.e., defogging for noise reduction are done to the images. Then 
Gamma correction is employed for adjustment of image intensity for 
enhanced detection. FCM and DBSCAN segmentation was done on 
the filtered images for separation of foreground and back-ground 
items. YOLOv8 is applied for vehicle detection. ORB attributes are 
used for the assignment of unique ID. Vehicles were traced over several 
frames of images using a Deepsort. For finding each tracked vehicle, 
ORB key point description combined with trajectories approximation 
are used to recover IDs. Further information on each module is given 
in the ensuing subsections.

3.2 Images pre-processing

To eliminate superfluous pixel information from the resulting image, 
noise reduction is necessary since the extra pixel’s complicate recognition 
(Rong et al., 2022; Xiao et al., 2023). For best performance, any filter 
using defogging methods is applied to noise (Gao et al., 2020; Tang et al., 
2024). The defogging technique measures the amount of noise in each 
pixel of the picture and then removes it in the following ways.

 G x X x Y x Z p x( ) = ( ) ( ) + − ( )( )1

where pixel location is denoted by x, fog density by Z, and 
transmission map by Y(x). Figure 2 represents defogged images:

The denoised image’s intensity is then adjusted using gamma 
correction (Huang et  al., 2018; Zhao L. et  al., 2024) since a high 
brightness allows for the most effective detection of the area of 
interest. The gamma correction power-law is provided as follows:

 Vo TVI= γ

where VI is the non-negative value with power γ of the input, 
which may vary from 0 to 1, and T is a constant, usually equals to 1. 
Vo stands for the final image. The plotted denoised, intensity adjusted. 
Figure 3 shows the gamma-corrected images.
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3.3 Semantic segmentation

In many computer vision applications, including autonomous 
vehicles, medical imaging, virtual reality, and surveillance systems, 

image segmentation is essential. Images are divided into homogeneous 
sections using segmentation methods. Every area stands for a class or 
object. To improve item recognition on complicated backdrops, 
we compared two segmentation techniques.

FIGURE 1

Flowchart demonstrating the proposed traffic surveillance system proposed system architecture.

FIGURE 2

Defogging results over the (A) original image of VEDAI dataset (B) defogged image (C) original image of SRTID dataset (D) defogged image.
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3.3.1 FCM segmentation
Segmentation is widely employed in a variety of computer vision 

applications. This is a fundamental stage. Segmentation methods 
separate images into homogeneous sections (Huang et al., 2019; Hao 
et al., 2024). Each area denotes an item or class. We used the Fuzzy 
C-Mean segmentation technique. FCM is a clustering method in 
which each picture pixel might belong to two or more groups. Fuzzy 
logic (Chong et al., 2023; Zheng et al., 2024) refers to pixels that belong 
to more than one cluster. Because we  are working with many 
complicated road backdrops including several items and 
circumstances, segmentation approaches based on explicit feature 
extraction and training are unable to deliver a generic solution. For 
this purpose, we used FCM, a non-supervised clustering algorithm. 
During the FCM segmentation process, the objective function is 
optimized across numerous rounds. Throughout the iterations, the 
clustering centers and membership degrees were continually updated 
(Rehman and Hussain, 2018). The FCM method separates a finite 
collection of N items (S=𝑠1, 𝑠2, 𝑠𝑛) into C clusters. Each component 
of 𝑣𝑖 (i = 1, 2…, N) is a vector of d dimensions. We design a technique 
to divide s into C clusters using cluster centers 𝑢1, 𝑢2, and so on in the 
centroid set u (Xiao et  al., 2024; Xuemin et  al., 2024). The FCM 
approach uses a representative matrix (g) to represent the membership 
of each element in each cluster. The matrix 𝑔 may be  defined 
using equation:

 
g i z i N z C,( ) ≤ ≤ ≤ ≤, ;1 1

where 𝑔 (𝑖, 𝑧) represents the membership value of the element 𝑠𝑖 
having cluster center 𝑣𝑧. While calculating performance index Jfcm, and 
it is used to calculate the weighted sum of the distance between cluster 
center and components of the associated fuzzy cluster.
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where m indicates the number of clusters, N signifies the number 
of pixels, 𝑠𝑖 is the 𝑖𝑡h pixel, 𝑣𝑧 is the 𝑧th cluster center, and 𝑏 represents 
the blur exponent. The degree of membership function must meet the 
conditions specified in the equation below.
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Each time the membership function matrix is updated 
using equation:
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The membership matrix (bizb ) is between [0,1], and the distance 
between cluster centroid (𝑣𝑖) and pixel (𝑠𝑧) is supplied by diz2( ). The 
cluster centroid is determined by equation:
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A pixel receives a high membership value as it gets closer to the 
belonging cluster center and vice versa. Figure 4 depicts the results of 
the FCM segmentation.

3.3.2 Density-based spatial clustering (DBSCAN)
DBSCAN, or density-based spatial clustering, is a popular method 

in machine learning and data analysis (Khan et al., 2014; Deng et al., 
2022). In contrast to conventional clustering techniques that need 
preset cluster numbers, DBSCAN utilizes a data-centric methodology. 
It uses data density and closeness to its advantage to detect variable-
sized and irregularly formed clusters within complicated datasets 
(Bhattacharjee and Mitra, 2020; Liu et al., 2023). Initially, core points 
are determined based on having the fewest surrounding data points 
within a certain distance. These core locations are then expanded into 
clusters by adding nearby data points that satisfy density requirements 
(Chen et al., 2022; Zhang et al., 2023). Noise is defined as any data 
point that does not fit into a designated cluster or core point.

 N x x X dist x xi j i jε ε( ) = ∈ ( ) ≤{ }| ,

FIGURE 3

Pre-processed image using gamma correction over the (A) VEDAI dataset (B) SRTID dataset.
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where N xiε ( ) represent the neighborhood of a point xi, x Xj ∈  
denotes all points x j belonging to the dataset X , dist x xi j,( ) calculates 
the distance between points, ε  is a threshold distance parameter, 
defining the maximum distance for points to be considered neighbors 
(see Figure 5).

 
C x X N x MinPtsi i= ∈ ( ) ≥{ }|| ε

 x X N x x Ci j j∈ ( ) ∈|| ,ε and  X x x xn= { }…1 2, , .. .

where xi is the epsilon neighborhood of x j and x j is the core point.
The FCM and DBSCAN segmentation methods were evaluated in 

terms of computational cost and error rates determined 
using equations.

 Error Rate accuracy= −1

FCM surpasses DBSCAN owing to its adeptness in managing 
datasets with varied cluster shapes and sizes. By adding fuzzy 
membership degrees, FCM addresses the ambiguity inherent in data 
point assignments, resulting in more adaptive and improved 
clustering. Furthermore, FCM enables increased control over cluster 
boundaries via parameterization, allowing for exact alterations to 
better fit the specific properties of the data. Table 1 exhibits FCM’s 

better efficacy and accuracy in picture segmentation on VEDAI and 
SRTID datasets. Considering both computation time and error rates, 
FCM shines, making its findings the preferable option for following 
tasks such as vehicle recognition, ID allocation, recovery, counting, 
and tracking.

3.4 Vehicle detection

YOLOv8 is utilized for vehicle recognition and radiates as an 
excellent single-shot detector capable of identifying, segmenting, and 
classifying with fewer training parameters (Chen et al., 2023b; Wang 
et al., 2023). According to the CSP principle, the C2f module replaces 
the C3 module to align with the YOLOv8 backbone, increasing 
gradient flow information while keeping YOLOv5 compliant. The C2f 
module combines C3 with ELAN in a unique manner, drawing on 
YOLOv7’s ELAN methodology, ensuring YOLOv8 compatibility (). 
The SPPF module at the backbone’s end employs three consecutive 5 
× 5 Maxpools before concatenation in each layer to reliably identify 
objects of varied sizes with lightweight efficiency (Sun et al., 2019; Li 
S. et al., 2023; Yi et al., 2024).

YOLOv8 integrates PAN-FPN in its neck portion, which improves 
feature fusion and data use at different sizes (Mostofa et al., 2020; Xu 
et al., 2020). The neck module combines a final decoupled head 
structure, many C2f modules, and two up samplings (Song et al., 2022; 
Wu and Dong, 2023). YOLOv8’s neck is like YOLOx’s head idea, 

FIGURE 4

Segmentation using FCM over (A) VEDAI dataset and (B) SRTID dataset.

FIGURE 5

Segmentation using DBSCAN over (A) VEDAI dataset and (B) SRTID dataset.
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which combines confidence and regression boxes to increase accuracy. 
It operates as an anchor-free model, detecting the object center 
directly, lowering box predictions, and speeding up the Non-Maximum 
Suppression (NMS) process, an important post-processing step (Li 
et al., 2024). Figure 6 shows automobiles spotted using YOLOv8.

3.5 ID allocation and recovery based on 
ORB features

Prior to tracking each identified vehicle in the subsequent image 
frames, an ID based on ORB traits was assigned to each detected 
vehicle. A quick and effective feature detector is ORB (Chien et al., 
2016; Chen et al., 2022). FAST (Features from Accelerated Segment 
Test) key point detector is used for key-point detection. It is a more 
sophisticated version of the BRIEF (Binary Robust Independent 
Elementary Features) description. It is also rotationally and scale-
invariant. Equation is used to get a patch moment (Luo et al., 2024; 
Yao et al., 2024).

 n x y l u vst
s t= ∑ ( ),

where x and y are the image pixels’ relative intensities, represented 
by the values s and t. These moments may be utilized to find the center 
of mass using equation:

 
N m

m
m
m

= 10

00

01

00

,

where the equation defines path orientation:

 θ = ( )atan m m01 10,

The identified cars in the subsequent frames were compared using 
the extracted ORB features, and if a match was discovered, the ID was 
restored; if not, the vehicle was recorded in the system with a new ID 
(Cai et  al., 2024). ID is restored across frames and ORB feature 
description is applied to the extracted cars; results are shown in 
Figure 7.

3.6 Vehicle counting

Using YOLOv8’s vehicle detections, we  incorporated vehicle 
counts in every image frame to conduct a thorough analysis of the 
traffic situation (Tian et al., 2022; Yang et al., 2023). Using a counter, 
each seen vehicle was painstakingly recorded under equation. Road 
traffic density at different times may be measured by counting the 
number of cars within each frame (Minh et al., 2023). This data is 
essential for enabling quick responses to unforeseen events like traffic 
jams or other circumstances that might impair traffic flow (Wu et al., 
2019; Peng et al., 2023).

 
Vehicle Count =

=
∑
i

N
T

1

where, T denotes the vehicle detections within a single frame, with 
the corresponding output visualized in Figure 8.

3.7 Vehicle tracking

We utilized the DeepSORT tracker to observe the movements of 
vehicles frame by frame. DeepSORT is a tracking approach that makes 
use of deep learning characteristics with the Kalman filter to track 
objects based on their appearance, motion, and velocity (Bin Zuraimi 
and Kamaru Zaman, 2021; Sun G. et al., 2022). Using the Mahalanobis 

TABLE 1 Error rate comparison of DBSCAN and FCM.

Datasets Error rate

DBSCAN FCM

VEDAI 0.32 0.20

SRTID 0.37 0.23

FIGURE 6

Vehicle Detection over (A) VEDAI and (B) SRTID datasets marked with red boxes via the YOLOv8 algorithm.
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distance metric between the Kalman state and the freshly obtained 
measurement, (Li et al., 2018; Sun Y. et al., 2022) the motion 
information is merged as described in equation:

 k i j k v S k vj i i j i
1 1( ) −( ) = −( ) −( ),

T

where k 𝑗 is the jth bounding box detection and (vi, Si) is the ith 
track distribution projection into space measurement. The appearance 
information has been computed using the smallest cosine distance, as 

provided by equation, between the ith and jth detections in 
appearance space.

 
k i j t t rj k

i
k
i

i
2

1
( ) ( ) ( )( ) = − ∈{ },

T
min | 

where tj and tk
i( ) represent the appearance and associated 

appearance descriptor, respectively. The extracted appearance and 
motion information is combined as given in equation:

A

B

C

FIGURE 7

ID assignment and restoration: (A) ID assigned to each vehicle based on ORB features; (B) features matching across frames; (C) ID restored for the 
same vehicle in succeeding frame.

FIGURE 8

Density estimation by using vehicle count displayed at the left corner of each image.
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 c k i j k i ji j, = ( ) + −( ) ( )( ) ( )λ λ1 2
1, ,

where c is the corresponding weight. The appearance features 
are produced by a pre-trained CNN model that contains two 
convolution layers, six residual layers linked to a dense layer, one 
max pooling layer, and l2 normalization (Kumar et al., 2023; Mi 
et al., 2023). The DeepSORT algorithm’s tracking mechanism is 
shown in Figure 9 (Singh et al., 2023). In Figure 10, the tracking 
result is shown.

3.8 Vehicle trajectory estimation

In addition to the previously computed density, 
we approximated the path traveled by each tracked vehicle. The 
trajectories taken by a vehicle may be utilized to construct vehicle 
detection (Adi et al., 2018; Bozcan and Kayacan, 2020). It may also 
be used to identify trajectory conflicts and accidents if it is further 
developed. The route is plotted if the vehicle is tracked (Chen and 
Wu, 2016; Wang et  al., 2022). To approximate the trajectories, 
we used geometric coordinates from observed rectangular boxes. 
DeepSORT was used for location estimation and coordinate 
retrieval (Leitloff et al., 2014; Sheng et al., 2024). The center points 
of estimated locations, which represent individual vehicle IDs, 
were noted on a separate image, and then linked to 
construct trajectories.

The approach feeds detection coordinates into the DeepSORT 
tracker, which predicts vehicle placements in the following frame. 
Vehicle IDs are retrieved using ORB features; if the number of matches 
exceeds the threshold, relevant IDs are allocated, and new entries are 
assigned new IDs (Hou et al., 2023b). Rectangular coordinates and 
midpoints are used to trace vehicle routes. Algorithm 1 provides the 
exact processes for estimating the trajectory.

4 Experimental setup and datasets

4.1 Experimental setup

PC running x64-based Windows 11, with an Intel Core i5-12500H 
2.40GHz CPU, 24GB RAM and other specifications is used to perform 
all the experiments. Spyder was used to acquire the results. The system 
employed two benchmark datasets, VEDAI and SRTID, to calculate 
proposed architecture’s performance. In this section, concise 
discussion of the dataset used for vehicle identification and tracking 
system is done, as well as the results of several tests undertaken to 
examine the proposed system along with its assessment in comparison 
to numerous existing state-of-the-art traffic monitoring models.

4.2 Dataset description

In the subsequent subsection, we  provide comprehensive and 
detailed descriptions of each dataset used in our study. Each dataset is 
thoroughly introduced, highlighting its unique characteristics, data 
sources, and collection methods.

4.2.1 VEDAI dataset
The VEDAI dataset (Sakla et  al., 2017) is a standard point of 

reference for tiny target identification, specifically aerial images 
vehicle detection. This dataset comprises roughly 1,210 images of two 
distinct dimensions such as 1,024 × 1,024 pixels and 512 × 512 pixels. 
Both near-infrared and visible light spectra environment photos are 
acquired in this collection. The cars in acquired aerial shots feature 
incredibly tiny dimensions, lighting/shadowing shifts, various 
backdrops, multiple forms, scale variations, and secularities or 
occlusions. Moreover, it comprises nine separate kinds of automobiles, 
including aircraft, boats, camping cars, automobiles, pick-ups, 
tractors, trucks, vans, and other categories.

4.2.2 Spanish road traffic images dataset
The dataset consists of 15,070 images in.png format, followed by 

an equal number of files with the txt extension containing descriptions 
of the objects found in each image. There are 30,140 files including 
images and information. The images were shot at six separate places 
along urban and interurban highways, with motorways being deleted. 
The images include 155,328 identified vehicles, including automobiles 
(137,602) and motorbikes (17,726) (Bemposta Rosende et al., 2022).

4.2.3 VAID dataset
The VAID collection consists of six vehicle image categories: 

minibus, truck, sedan, bus, van, and automobile. The images were 
taken at a height of 90–95 meters above the ground by a drone under 
a variety of lighting circumstances. The photographs, which were 
captured at a resolution of 2,720 × 1,530 and at a frame rate of 23.98 
frames per second, show the state of the roads and traffic at 10 
locations in southern Taiwan, encompassing suburban, urban, and 
educational environments (Lin et al., 2020).

4.2.4 UAVDT dataset
UAVDT dataset: Comprising 80,000 representative frames, the 

UAVDT dataset (Du et  al., 2018) includes UAV imagery of cars 

ALGORITHM 1 Trajectory estimation of tracked 
vehicles
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FIGURE 10

Tracking results using DeepSORT tracker across the image frames (A) Vehicle dectection only (B). Multiple-object detection (0  =  Vehicles, 1  =  Bike, 
2  =  Pedestrians in frames).

FIGURE 9

Steps of vehicle tracking using DeepSORT algorithm.
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chosen from 10-h long recordings. Bounding boxes with up to 14 
different attributes (e.g., weather, flying altitude, camera view, 
vehicle category, occlusion, etc.) completely annotate the photos. 
Each of the three sets—training, val, and testing consists of 5,000, 
1,658, and 3,316 images, all 1,024 × 540 pixels. The photographs 
from the same video have comparable backdrops, camera 
viewpoints, and lighting (for those recorded at the same time 
of day).

4.3 Experiment I: semantic segmentation 
accuracy

The DBSCAN and FCM algorithms were compared and assessed 
in terms of segmentation accuracy and computational time. DBSCAN 
requires training on a bespoke dataset, increasing the model’s 
computing cost as compared to FCM. Furthermore, FCM produced 
superior segmentation results than DBSCAN, therefore we utilized the 
FCM findings for future investigation. Table 2 shows the accuracy of 
both segmentation strategies.

4.4 Experiment II: precision, recall, and F1 
scores

The effectiveness of vehicle detection and tracking has been 
assessed using these evaluation metrics, namely Precision, Recall, and 
F1 score as calculated by using equations below:

 
Precision =

∑
∑ + ∑

TP
TP FP

 
Recall =

+
TP

TP FN

 
F1

2
Score

Precision Recall

Precision Recall
=

×( )
+( )

Table 3 shows vehicle detection’s precision, recall, and F1 scores 
on the segmented images, while Table 4 shows vehicle detection’s 
precision, recall and F1 scores on the raw images. True Positive 
indicates how many cars are effectively identified. False Positives 
signify other detections besides cars, whereas False Negatives shows 
missing vehicles count. The findings indicate that this suggested 
system can accurately detect cars of varying sizes.

In case of tracking, the number of cars successfully tracked is 
indicated as True Positive, whereas False Positive is the vehicles count 
falsely recorded, and False Negative represents untracked vehicles 
count. Table 4 shows the vehicle tracking method’s precision, recall, 
and F1 scores (Figure 11).

4.5 Experiment

4.5.1 ID assignment and ID recovery
We used two new metrics to assess the ID assignment and 

recovery module, as shown in equations. The AID is the accurate ID 
rate, which is the proportion of correct ID numbers assigned to 
automobiles (Table 5).

 

AIDRate = =

=

∑
∑
i
N

i

i
N

i

AIDs

ID
1

1

TABLE 2 Accuracies comparison of DBSCAN and FCM segmentation.

Datasets Segmentations accuracy

DBSCAN FCM

VEDAI 0.65 0.83

SRTID 0.68 0.79

VAID 0.62 0.72

UAVDT 0.65 0.75

TABLE 3 Precision, recall, and F1 Score for vehicle detection via YOLOv8 
over segmented and raw images.

Datasets Precision Recall F1 score

VEDAI 

(segmented)

0.86 0.84 0.85

SRTID (segmented) 0.84 0.83 0.83

VAID (segmented) 0.85 0.82 0.83

UAVD (segmented) 0.81 0.82 0.81

VEDAI (raw) 0.83 0.80 0.81

SRTID (raw) 0.79 0.81 0.79

VAID (raw) 0.81 0.78 0.79

UAVDT (raw) 0.76 0.77 0.76

TABLE 4 Precision, recall, and F1 score for vehicle tracking via DeepSORT.

Datasets Precision Recall F1 score

VEDAI 0.87 0.88 0.87

SRTID 0.83 0.82 0.82

VAID 0.88 0.85 0.86

UAVDT 0.84 0.83 0.83

TABLE 5 Precision, recall, and F1 score for vehicle tracking via DeepSORT 
and ByteTrack.

Datasets Precision Recall F1 
score

Tracking 
success 

rate

VEDAI 0.89 0.90 0.89 88.1%

SRTID 0.85 0.84 0.84 84.2%

VAID 0.90 0.87 0.88 87.5%

UAVDT 0.86 0.85 0.85 85.2%
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FIGURE 11

Tracking performance comparison of DeepSORT and ByteTrack across datasets.

where N is the total number of vehicles. AIDsi denotes the overall 
number of ID assignments made to the true vehicles, and IDi denotes 
all of them. The Recovery Rate represents the percentage of true 
IDs recovered.

 
Recovery Rate = =∑i

N
iTReCovers

ReCovers
1

where the total number of dissimilar vehicles is represented by 
N. TReCoversi represents the number of true recoveries and ReCovers 
is the all-existing recoveries (Table 6).

4.6 Experiment IV: vehicle detection and 
tracking comparison with SOTA models

In this experiment, we have drawn a comparison of proposed 
model with other popular algorithms. Table  7 represents a 
comparison between our presented detection algorithm and 
other methods.

TABLE 6 AIDRate and recovery rate for ID assignment recovery 
algorithm.

Datasets AIDRate (%) Recovery rate (%)

VEDAI 68 65

SRTID 63 59

VAID 59 55

UAVDT 65 60

TABLE 7 Accuracy comparison of the proposed approach with SOTA 
vehicle detection models.

Methods Accuracy %

VEDAI SRTID VAID UAVDT

AVD NET 

(Mandal et al., 

2020)

51.95 62.10 60.75 58.20

YOLOv5 (Hou 

S. et al., 2023)

75.54 73.20 74.30 72.10

Haar-like 

features (Nguyen 

and Tran, 2018)

77.0 65.00 64.50 62.00

D2Det (Cao 

et al., 2020)

73.40 56.92 68.10 64.30

R-FCN (Zhang, 

2020)

68.90 73.0 69.80 70.20

SSD (Smith and 

Johnson, 2020)

71.00 70.30 81.0 74.50

R-FCN (Kim 

and Park, 2021)

72.50 70.90 75.0 73.20

NDFT (Cao 

et al., 2020)

63.50 62.80 64.00 52.03

YOLOv6 

(Kumar and 

Singh, 2023)

74.07 71.20 72.80 74.07

YOLOv7 (Patel 

and Reddy, 

2023)

76.80 74.50 75.60 72.0

Proposed 

method

79.4 77.7 83.1 77.2
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Table 8 depicts the comparison of proposed tracking algorithm. 
Proposed model model performs better than other state-of-
the-art methods.

5 Discussion/research limitation

For smart traffic monitoring based on aerial images, the suggested 
model is an efficient solution. While catering to high-definition aerial 
images, object detection is one of the most difficult problems. To get 
efficient results, we devised a technique that combines multi-label 
semantic segmentation with deepsort tracking. However, the 
suggested technique has significant limitations. First and foremost, the 
system has only been evaluated with RGB shots acquired during the 
daytime. Analyzing video or pictorial datasets in low-light conditions 
or at night can further confirm this proposed technique as a lot of 
researchers already have succeeded with such datasets. Furthermore, 
our segmentation and identification system have problems with 
partial or complete occlusions, tree-covered roadways, and 
similar items.

6 Conclusion

This study presents a novel approach to recognizing and tracking 
vehicles in aerial image sequences. Before proceeding with the 
detection phase, the model preprocesses aerial images to remove noise. 
To decrease complexity, the FCM approach is used for segmentation of 
all the images. The YOLOv8 algorithm is used for vehicle detection. It 
identifies vehicles by giving them a unique ID that contains ORB 
elements to aid recovery. DeepSORT tracks cars across frames and 
predicts their travel patterns. The suggested approach generated 
encouraging results across both datasets. The suggested system must 
be trained with additional vehicle classes. In addition, further elements 
may be added to increase vehicle recognition and tracking accuracy. In 
the future, we  want to add additional features and dependable 
algorithms to the proposed model system to boost its efficiency and 
make it standard for all traffic scenarios.
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TABLE 8 Accuracy comparison of the proposed approach with SOTA vehicle tracking models.

Methods Accuracy %

VEDAI SRTID VAID UAVDT

Faster R-CNN (du Terrail and Jurie, 2018) 83.50 78.0 81.0 79.5

Correlation filter tracking (Liu et al., 2019) 76.0 72.5 70.0 74.0

SIFT features (Mu et al., 2016) 72.5 75.10 73.0 71.0

HIOU (Hua and Anastasiu, 2019) 70.0 77.0 69.5 71.5

Kalman filter (Poostchi et al., 2017) 68.0 66.5 65.0 67.5

CNN (Alotaibi et al., 2020) 69.4 71.0 82.0 70.0

Affinity network (Cao et al., 2022) 73.2 74.0 71.5 74.0

MaSiamRPN (Sun et al., 2023) 82.0 79.1 83.0 84.0

Proposed method 88.6 82.2 84.6 86.1
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