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The super-resolution 
reconstruction algorithm of 
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Aiming at the problems of traditional image super-resolution reconstruction 
algorithms in the image reconstruction process, such as small receptive field, 
insufficient multi-scale feature extraction, and easy loss of image feature 
information, a super-resolution reconstruction algorithm of multi-scale dilated 
convolution network based on dilated convolution is proposed in this paper. First, 
the algorithm extracts features from the same input image through the dilated 
convolution kernels of different receptive fields to obtain feature maps with 
different scales; then, through the residual attention dense block, further obtain 
the features of the original low resolution images, local residual connections are 
added to fuse multi-scale feature information between multiple channels, and 
residual nested networks and jump connections are used at the same time to 
speed up deep network convergence and avoid network degradation problems. 
Finally, deep network extraction features, and it is fused with input features to 
increase the nonlinear expression ability of the network to enhance the super-
resolution reconstruction effect. Experimental results show that compared 
with Bicubic, SRCNN, ESPCN, VDSR, DRCN, LapSRN, MemNet, and DSRNet 
algorithms on the Set5, Set14, BSDS100, and Urban100 test sets, the proposed 
algorithm has improved peak signal-to-noise ratio and structural similarity, and 
reconstructed images. The visual effect is better.
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1 Introduction

Single Image Super-Resolution (SISR) is a pivotal image processing technique within the 
field of computer vision. It finds widespread application in various domains such as satellite 
remote sensing (Yue et al., 2023; Zhao et al., 2023), medical imaging (Qiu et al., 2023; Wang 
et al., 2023), and facial recognition (Klemen and Vitomir, 2020; Hou et al., 2023), with its 
primary objective being to reconstruct a high-resolution (HR) image from its corresponding 
low-resolution (LR) counterpart.

Currently, single-image super resolution reconstruction techniques are categorized into 
three types: interpolation-based methods (Wang et al., 2023; Wu et al., 2023), reconstruction-
based methods (Fu et al., 2023; Zhang et al., 2023), and learning-based methods (Zhang et al., 
2020; Li et al., 2021, 2023; Zhou et al., 2021; Min et al., 2023; Zhao et al., 2023). Among these, 
due to the significant potential demonstrated by deep learning in the realm of computer vision, 
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learning-based super-resolution algorithms have emerged as the 
dominant research direction. In 2014, Dong et al. (2014) first applied 
deep learning to super-resolution reconstruction, introducing a super-
resolution algorithm using convolutional neural networks (Super-
Resolution Convolutional Neural Network, SRCNN), achieving 
end-to-end learning. However, due to conducting only three 
convolutional operations, this algorithm was limited in the amount of 
image information it could extract. Addressing this issue, Chao et al. 
(2015) later proposed a fast convolutional neural network-based 
super-resolution reconstruction algorithm (Fast Super-Resolution 
Convolutional Neural Network, FSRCNN), which employed a 
deconvolution layer instead of bicubic interpolation in the upsampling 
process, and deepened the network from 3 layers to 8 layers. Following 
this, many researchers have dedicated efforts to developing algorithms 
with improved reconstruction outcomes. Timofte et  al. (2017) 
introduced a super-resolution reconstruction algorithm based on a 
deep residual neural network (Accurate Image Super-Resolution 
Using Very Deep Convolutional Networks, VDSR), which 
incorporated the concept of residuals into SR, reducing the complexity 
of the network and allowing it not only to capture local features but 
also to grasp more global characteristics. However, as the network’s 
depth increased, there was a decrease in training speed. In response 
to this, Lim et  al. (2017) presented an enhanced deep residual 
network-based super-resolution algorithm (Enhanced Deep Residual 
Networks for Single Image Super-Resolution, EDSR), which, by 
eliminating the BN (Batch Norm) layer, accelerated network 
convergence. Subsequently, with the advent of the generative 
adversarial network framework, Ledig et al. (2017) proposed a super-
resolution reconstruction algorithm based on generative adversarial 
networks (Super-Resolution Generative Adversarial Network, 
SRGAN), incorporating this framework into SR to utilize perceptual 
loss and adversarial loss as the loss functions, thereby rendering the 
reconstruction results more lifelike. Li et al. (2018) proposed a multi-
scale residual network-based super-resolution algorithm (Multi-scale 
Residual Network for Image Super-Resolution, MSRN), which 
leverages multi-scale feature fusion and local residual learning to fully 
exploit the features of images.

Despite the considerable reconstruction results achieved by the 
aforementioned deep learning-based image super-resolution 
algorithms, there remain several issues. Most of these algorithms 
attempt to improve reconstruction outcomes by increasing the 
network’s width and depth but struggle to extract deep-layer image 
information. Moreover, as the network deepens, problems such as the 
loss of high-frequency information and increased training time 
emerge during the computation process of each layer of the network. 
Additionally, for super-resolution algorithms, extracting complete and 
rich feature information from low-resolution (LR) images is crucial. 
Treating the extracted features from each channel equally limits the 
network’s expressive capability and fails to adequately highlight details 
such as image edges and textures.

To address the above issues, this paper proposes a multi-scale 
dilated convolution residual network, which mainly includes residual 
attention dense block and multi-scale residual module. Initially, an 
Residual Attention-Dense Block (RADB) is designed, composed of a 
densely connected block and a channel attention block, which can 
fully learn the features of the original low resolution image. 
Subsequently, on top of the RADB, a Dilated Multi-Scale Residual 
Module (DMRM) is constructed, capable of extracting more scales of 

low-resolution image information, improving the problem of small 
receptive fields, and enhancing cross-channel learning capability, thus 
better integrating extracted multi-scale features. Finally, a multi-level 
dilated convolution residual network based on dilated convolution is 
constructed through residual nesting, addressing the loss of significant 
detail information after multi-layer transmission and aiding in 
gradient flow. Moreover, sub-pixel convolution was employed for 
upsampling to reduce the complexity of the network.

Our contributions can be summarized as follows:

 1 We propose a multi-scale dilation convolution residual network 
for image super-resolution, which learns the mapping 
relationship between low resolution images and high-
resolution images and achieves good results in image super-
resolution task.

 2 To address the insufficient extraction of high-frequency 
information in images, we  designed a Residual Attention-
Dense Block (RADB) to learn features from the original 
low-resolution images. This enhances the network’s ability to 
discern and learn both high and low-frequency information 
from low-resolution images.

 3 To address the limitations of convolutional receptive fields and 
the issue of potential information loss when extracting features 
through a single channel, we designed a Dilated Multi-Scale 
Residual Module (DMRM) based on dilated convolutions on 
top of the RADB. This module aims to extract multi-scale 
information from low-resolution images while preserving the 
integrity of high-frequency information.

 4 Extensive experiments have shown that our method performs 
well in image super-resolution task.

2 Related word

2.1 Dilated convolution

Dilated convolution was initially utilized for semantic 
segmentation, where it demonstrated notable effectiveness in practical 
applications and was subsequently adopted across various domains 
within computer vision. Chen et al. (2014) are among the first to apply 
the concept of dilated convolution to address issues in image 
segmentation. Common image segmentation algorithms typically 
employ pooling and convolutional layers to increase the receptive 
field, which results in a reduction of the feature map dimensions. 
Subsequently, upsampling is used to restore the image size. This 
process of reducing then enlarging the feature maps decreases spatial 
resolution. Hence, there arises a need for an operation that can 
increase the receptive field while maintaining the size of the feature 
map, thereby substituting the roles of downsampling and 
upsampling operations.

Unlike standard convolution, dilated convolution introduces a 
superparameter known as the “dilation rate,” which defines the spacing 
between each element of the convolutional kernel. By setting different 
dilation rates, the receptive field of dilated convolution varies, enabling 
the capture of multi-scale image information. This characteristic 
distinguishes the receptive field of standard convolution from that of 
dilated convolution (with a dilation rate of 3), The introduction of 
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dilated convolution allows for broader contextual understanding 
without loss of detail, proving essential for enhancing detail and 
accuracy in tasks such as image segmentation and super-resolution as 
illustrated in Figure 1.

2.2 Channel attention

In the process of image reconstruction, high-frequency 
information is vitally important. However, the majority of 
convolutional neural network-based methods for super-resolution 
image reconstruction treat the features in the channels equally, failing 
to distinguish between the low-frequency and high-frequency 
information across channels. Generating distinct attention for each 
channel’s features is a crucial step. Typically, convolutional layers have 
a limited receptive field and can only extract features within this field, 
unable to utilize the contextual information beyond it. Meanwhile, 
low-resolution images are rich in both low-frequency and high-
frequency information; low-frequency information usually represents 
flatter areas, whereas high-frequency information is filled with edges, 
textures, and other details. For this purpose, global average pooling 
(Zhang et  al., 2018) is utilized to transform the global spatial 
information within each channel into channel descriptors, by setting 
weights to denote the relevance between the channel and key 
information, as demonstrated in Figure 2. In this, HGP represents the 
process of adaptive average pooling, W1 and W2 represent the weights 
of the channel upsampling and downsampling layers respectively, and 
f  denotes the operation of the Sigmoid function, 1 1× ×C represents 
the Height × Width × Channels, r  represents the dimension 
compression ratio.

3 Proposed method

3.1 Overall network architecture

To address issues encountered in the image reconstruction 
process such as limited receptive field range, insufficient extraction of 
multi-level features, and the easy loss of image feature information, 
this paper designs a multi-level residual attention network based on 
dilated convolution. The schematic of this network framework is 
shown in Figure 3. The framework of the network consists of three 
parts: shallow feature extraction, deep feature extraction, and image 

reconstruction. The shallow feature extraction consists of a 
convolution layer with a 3 3×  kernel; deep feature extraction is 
composed of 10 Dilated Multi-Scale Fusion Residual Groups 
(DMRG), each containing three dilated multi-Scale residual modules 
(See 2.2 for details) and one 3 3×  convolution layer; and image 
reconstruction is made up of an upsampling module and a 1 1×  
convolution layer.

Assuming ILR  and IHR represent the input low-resolution image 
and the reconstructed high-resolution image, respectively, initially, the 
initial convolution layer extracts the initial features F0  from the 
low-resolution image, as shown in Equation 1:

 F f ILR0 0= ( ) (1)

Here, f0 denotes the operation of the initial convolution layer. 
Subsequently, deeper features are extracted from the initial features F0 
through multiple multi-scale fusion residual groups. The extracted 
deep features are then combined with the initial features through 
global residual connections to obtain the fused feature Ff , as shown 
in Equation 2:

 
F F f D D D Ff f G g= + ( )( )( )( )( )( )( )0 1 0   

 
(2)

Here, DG  represents the operation of the multi-channel fusion 
residual group, and f f  represents the operation of the intermediate 
convolutional layer. Next, the upsampling module upsamples the 
fused features Ff , as shown in Equation 3:

 F f Fup up f= ( ) (3)

Here, fup represents the upsampling operation, and Fup represents 
the obtained upsampled features. Finally, the reconstruction 
convolutional layer frec  reconstructs the upsampled features, as 
shown in Equation 4:

 I f FHR rec up= ( ) (4)

3.2 Dilated multi-scale residual module

Convolutional operations with convolution kernels of different 
sizes can extract multi-scale features of images. Based on this, this 
paper proposes a Dilated Multi-Scale Residual Module (DMRM) to 
fully learn image features, as shown in Figure  4. Specifically, 
we parallelly adopt dilated convolution with expansion rates of 1, 3, 
and 5 (as shown in Figure 5) to learn multi-scale features of images 
firstly. And dilated convolution can expand the receptive field 
without generating a large number of parameters. Then, we use the 
designed Residual Attention-Dense Block (See 2.3 for details) on 
each branch to further learn image features and gradually add 
residual connections to enhance model performance. Finally, 
we employ convolution and residual concatenation operations to 
further learn features.

FIGURE 1

The difference between standard disclosure and empty disclosure 
(expansion rate  =  3).
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3.3 Residual attention-dense block

To address issues such as insufficient feature extraction and 
loss of details in low-resolution images, this paper designs an 
Residual Attention Dense Residual Block (RADB), as shown in 
Figure 6.

This module consists of a Dense Residual Block (DRB) and a 
Channel Attention (CA). Firstly, we use three basic blocks composed 
of convolution and ReLU activation function to form dense residual 
block and to obtain feature map FC . Subsequently, through the 
concatenation and a 1 1×  convolution operation, the features extracted 
by each convolutional layer are merged and the channel data is 
simplified. It generates feature map FD . Finally, we  use channel 
attention to learn the features of different channels, while utilizing 
residual connections to enhance model performance.

Let the input and output of the RADB be denoted as Fk−1 and 
Fk , respectively. The dense residual block can be  expressed by 
Equation 5:

 
F W F F Fc c k c= [ ]( )− −σ 1 1 1, , ,

 (5)

Here, F F Fk c− −[ ]1 1 1, , ,  represents the concatenation of feature 
maps, producing G0 1+ −( )×c G  feature maps (where Wc  is the 
growth rate, set to 32  in this paper), Wc  is the weight of the 
convolutional layer, σ  is the operation of the ReLU function, and Fc is 
the feature map after the convolutional layer. The extracted features 
from each layer are then fused, with the result shown in Equation 6:

 
F H F F F FD k c CD , , , ,= [ ]( )−1 1 

 (6)

Here, HD represents the convolution operation with a kernel size 
of 1, and FD denotes feature fusion. The fused features are then fed 
into the channel attention module, where they undergo adaptive 
average pooling followed by data dimensionality reduction, reducing 
the dimension of the fused features to their original size by 1 / r(where 
r is the dimension compression ratio, taken as r =16). Subsequently, 
the features are processed through ReLU and Sigmoid function 
operations. Finally, the resulting feature information is fused with the 
original feature information, and this process is represented by 
Equations 7–9:

 

z H F

H W
F i j

GP D

i

H

j

W
D

= ( )

=
×

( )
= =
∑∑1

1 1

,

 

(7)

 s f W W z= ( )( )sigmoid UP DOWNδ  (8)

 F F s Fk k D= + ⋅−1  (9)

Here, HGP represents adaptive average pooling, fsigmoid  denotes 
the operation of the Sigmoid function, WUP and WDOWN represent the 
weights of the channel upsampling and downsampling layers 

FIGURE 2

Channel attention mechanism.

FIGURE 3

Multi-level attention network structure based on dilation convolution.
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respectively, s indicates the result of the Sigmoid function operation, 
and Fk  represents the final output.

4 Experimental results and analysis

4.1 Datasets

This paper selects the publicly available DIV2K (Timofte 
et  al., 2017) dataset for training, which contains 800 training 
images. The low-resolution (LR) images used for training are 

obtained by bicubic downsampling of high-resolution (HR) 
images. Data augmentation is performed using rotations of 90°, 
180°, 270°, and horizontal flipping. The LR images are cropped 
into image blocks of size 32 32× , and the HR images are also 
cropped into blocks of size 32 32s s× , where s  represents the 
scaling factor.

To evaluate the effectiveness of the model proposed in this paper, 
four widely used benchmark datasets are utilized for model 
performance assessment: Set5 (Zeyde et al., 2010), Set14 (Kingma and 
Ba, 2014), BSDS100 (Arbelaez et al., 2010), and Urban100 (Huang 
et al., 2015). Among these, the Set5 and Set14 datasets contain images 

FIGURE 4

The structure of dilated multi-scale residual module.

FIGURE 5

Schematic diagram of spatiotemporal convolution receptive field with dilation rate  =  1, 3, 5.

FIGURE 6

The structure of attention dense residual block.
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of animals and plants; the BSDS100 dataset contains images of urban 
architecture, which have abundant edge information and pose greater 
reconstruction challenges.

4.2 Experimental environment and 
parameter settings

The network training platform used is Ubuntu 18.04, with the 
programming framework being Pytorch 1.2. The processor is an 
Intel Core i9-9900K, and the graphics card is an RTX 2080Ti with 
11G of video memory; system memory is 64G. The network utilizes 
the Adam (Kingma and Ba, 2014) algorithm for optimization, with 
the momentum decay rates set to u = 0 9.  and v = 0 99. , step size 
η = 0 001. , and a numerically stable small constant ε = −

10
8 . The 

reasons for choosing η = 0 001.  are: A learning rate of 0.001 
typically strikes a good balance between convergence speed and 
stability. This value is sufficiently high to ensure rapid initial 
learning, yet low enough to prevent significant oscillations or 
divergence during training. The reasons for choosing u = 0 9.  are: 
The default value of 0.9 provides a reasonable balance between 
considering recent gradient information and long-term trends. 
This value helps the optimizer effectively capture gradient 
directions while maintaining robustness against noisy updates. The 
reasons for choosing v = 0 99.  are: A high value such as 0.999 
ensures that the second moment estimates (which capture gradient 
variance) are stable and less sensitive to short-term fluctuations. 
This helps maintain consistent update step sizes and prevents the 
optimizer from making overly aggressive updates. The reasons for 
choosing ε = −

10
8  are: A small ε  value is used to prevent division 

by zero during parameter update steps. This ensures numerical 
stability without significantly affecting the optimizer’s behavior. 
The overall network loss function is governed by the L1 function. 
The entire network is trained for 100 epochs, with a learning rate 
of 0.0001 and a batch size of 32.

4.3 Evaluation criteria

This paper utilizes two objective evaluation metrics to verify 
experimental results: Peak Signal to Noise Ratio (PSNR; Fei et al., 
2007) and Structural Similarity (SSIM; Wang et  al., 2004). The 
calculation method for PSNR is as follows (Equations 10, 11):

 
MSE

H W
X i j Y i j

i

H

j

W
=

×
( ) − ( )( )

= =
∑∑1

1 1

2
, ,

 
(10)

 
PSNR

MSE

n

= ×
−( )

10

2 1
2

lg

 
(11)

Where MSE  represents the mean squared error between the 
current image X i j,( ) and the reference image Y i j,( ), H  and W  are the 
height and width of the image respectively, n is the number of bits per 
pixel, typically 8. PSNR is measured in dB, where a higher value 
indicates less distortion and better reconstruction quality.

SSIM is also a measure of image quality, evaluating the 
reconstruction effect of images from three aspects: brightness, contrast, 
and structure. Its calculation formula is as follows (Equation 12):

 

SSIM =
+


 


 +

 




+ +








 +

2 1 2

2 2
1

2 2

µ µ σ

µ µ σ σ

f f f f

f f f f

C C

C

 

 

++








C2

 

(12)

Where f  represents the real high-resolution image, f
∧

 represents 
the reconstructed high-resolution image, ∝f  and ∝f

  represent the 
average grayscale values of the real and reconstructed high-resolution 
images, σ f  and σ f

  respectively denote the variances of the real and 
reconstructed high-resolution images, σ f f

  represents the covariance 
between the real and reconstructed high-resolution images, C1 and C2 
are constants.

4.4 Comparative experiments

4.4.1 Objective result evaluation
To thoroughly validate the effectiveness and superiority of the 

proposed algorithm, it was compared with seven other super-
resolution algorithms: Bicubic, SRCNN (Dong et al., 2014), FSRCNN 
(Chao et al., 2015), VDSR (Timofte et al., 2017), DRCN (Kim et al., 
2016), LapSRN (Lai et  al., 2017), MemNet (Tai et  al., 2017), and 
DSRNet (Tian et al., 2023). The reconstruction results were evaluated 
on four standard test sets: Set5, Set14, BSDS100, and Urban100, with 
magnification factors of 2×, 3×, and 4×.

The comparison results are presented in Table  1, where bold 
indicates the best results and underlined values denote the second-
best results. Through numerical comparison, it is evident that the 
proposed algorithm achieves significantly higher average PSNR and 
SSIM values compared to other state-of-the-art methods. Specifically, 
on the Set14 dataset, compared to the second-best results, the 
proposed algorithm demonstrates an improvement of 0.25 dB, 0.06 dB, 
and 0.01 dB in PSNR for magnification factors of 2×, 3×, and 4×, 
respectively. On the Urban100 dataset, compared to the second-best 
results, the proposed algorithm achieves a PSNR improvement of 
0.67 dB, 0.13 dB, and 0.03 dB for magnification factors of 2×, 3×, and 
4×, respectively. Through horizontal comparison, we found that as the 
magnification factor increases, the reconstruction effectiveness of our 
algorithm on the Set5 dataset becomes increasingly pronounced. This 
suggests that our method is particularly well-suited for reconstructing 
images of both portraits and natural landscapes.

4.4.2 Subjective effect evaluation
Further subjective evaluation of the visual effects is conducted. 

Figure 7 presents the visual reconstruction results of the proposed 
algorithm and other comparative algorithms at a 4× magnification 
factor on the Set14, BSDS100, and Urban100 datasets.

For the image “barbara” in the Set14 dataset, the reconstruction 
images produced by other comparative algorithms exhibit severe 
blurriness, making it difficult to distinguish between adjacent edges of 
books. In contrast, the images reconstructed by the proposed 
algorithm can clearly discern the edges between adjacent books; For 
the image “8,023” in the BSDS100 dataset, the textures between bird 
feathers in the reconstruction images produced by other comparative 
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algorithms vary in degrees of blurriness. However, the proposed 
algorithm almost perfectly restores the textures between bird feathers; 
For the image “img005” in the Urban100 dataset, in the area at the top 
of the building, compared to the reconstruction quality of MemNet, 
the images reconstructed by the proposed algorithm not only avoid 
geometric distortions but also construct more regular textures.

The superior reconstruction capability of the proposed method is 
attributed to the RADB and DMRM. The RADB effectively extracts 
similar features between images, while the DMRM comprehensively 
integrates image information between feature maps, preserving more 
high-frequency information.

4.5 Ablation study

To ensure the fairness of the experiments, all training batches were 
conducted for 400 epochs, and the average PSNR values for a scaling 
factor of 4 on the Set5 dataset were compared. The best results are 
highlighted in bold.

4.5.1 The impact of dilated convolutions and the 
RADB module

To verify the effectiveness of dilated convolutions and the RADB 
module, we compared the proposed algorithm with versions of the 
algorithm that excluded the dilated convolutions and the RADB 
module, respectively. As shown in Table 2, the PSNR value without 
dilated convolutions and the RADB module was 31.42 dB. When using 
dilated convolutions, the PSNR value increased to 31.68 dB, 
representing an improvement of 0.26 dB. With the addition of the 
RADB module, the PSNR value increased to 31.81 dB, an improvement 
of 0.39 dB. When both dilated convolutions and the RADB module 
were used, the PSNR value increased to 31.96 dB, an improvement of 
0.54 dB. This demonstrates that the dilated convolutions and RADB 
module used in this study effectively extract feature information, 
significantly enhancing the network’s learning ability.

4.5.2 The impact of dilated convolution kernels
To verify the effectiveness of selecting different dilated convolution 

kernels, we compared kernels of sizes 1, 3, 5 with kernels of sizes 1, 1, 

TABLE 1 Comparison of reconstruction results under baseline data.

Method Scale
Set5 Set14 BSDS100 Urban100

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic 2 33.66/0.9299 30.24/0.8688 29.56/0.8431 26.88/0.8403

SRCNN 2 36.66/0.9524 32.45/0.9067 31.36/0.8879 29.50/0.8946

FSRCNN 2 37.00/0.9559 32.75/0.9098 31.51/0.8939 29.88/0.9020

VDSR 2 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.77/0.9140

DRCN 2 37.63/0.9588 33.08/0.9118 31.85/0.8942 30.75/0.9133

LapSRN 2 37.52/0.9591 33.08/0.9130 31.08/0.8950 30.41/0.9101

MemNet 2 37.78/0.9597 33.28/0.9142 32.08/0.8978 31.31/0.9195

DSRNet 2 37.61/0.9584 33.30/0.9145 31.96/0.8965 31.41/0.9209

Ours 2 37.98/0.9606 33.55/0.9179 32.11/0.8989 32.08/0.9278

Bicubic 3 30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349

SRCNN 3 32.75/0.9090 29.28/0.8209 28.41/0.7863 26.24/0.7989

FSRCNN 3 33.18/0.9140 29.37/0.8240 28.50/0.7937 26.41/0.8161

VDSR 3 33.98/0.9212 29.77/0.8314 28.82/0.7976 27.14/0.8279

DRCN 3 33.82/0.9226 29.76/0.8311 28.80/0.7963 27.15/0.8276

LapSRN 3 33.16/0.9140 29.43/0.8242 28.53/0.7910 27.43/0.8080

MemNet 3 34.09/0.9248 30.00/0.8350 28.96/0.8001 27.56/0.8376

DSRNet 3 33.92/0.9227 30.10/0.8378 28.90/0.8003 27.63/0.8402

Ours 3 34.12/0.9249 30.16/0.8410 28.97/0.8021 27.76/0.8410

Bicubic 4 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577

SRCNN 4 30.48/0.8628 27.49/0.7503 26.90/0.7101 24.52/0.7221

FSRCNN 4 30.71/0.8657 27.59/0.7535 26.98/0.7150 24.62/0.7280

VDSR 4 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524

DRCN 4 31.53/0.8854 28.02/0.7670 27.23/0.7233 25.14/0.7510

LapSRN 4 31.54/0.8811 28.19/0.7720 27.32/0.7280 25.21/0.7560

MemNet 4 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630

DSRNet 4 31.71/0.8874 28.38/0.7760 27.43/0.7303 25.65/0.7693

Ours 4 31.96/0.8931 28.39/0.7820 27.49/0.7343 25.68/0.7730
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1; 3, 3, 3; and 5, 5, 5. The results are shown in Table 3. From Table 3, it 
can be concluded that the kernel sizes of 1, 3, 5 are optimal. This study 
differs from previous super-resolution algorithms that use dilated 
convolutions to achieve a large receptive field. To avoid the drawback 
of not fully covering all pixels, this study adjusts the dilation rates to 
nearly fully cover the receptive field, thereby allowing the network to 
achieve a larger perceptual field. This helps the algorithm to extract 
non-local similar features and restore clear images.

4.5.3 Assessment of LPIPS indicators
To further illustrate the effectiveness of the proposed 

algorithm, we compared its super-resolution reconstruction results 

at different scales with those of DRCN, LapSRN, and MemNet on 
the Set5, Set14, BSD100, and Urban100 test datasets using the 
Learned Perceptual Image Patch Similarity (Zhang et al., 2018) 
(LPIPS) evaluation metric, as shown in Table 4. LPIPS is primarily 
used to measure the difference between two images and is more 
aligned with human perception compared to traditional methods 
such as PSNR and SSIM. A lower LPIPS value indicates greater 
similarity between the two images, while a higher value indicates 
a larger difference.

As shown in Table 4, the proposed algorithm achieves the best 
LPIPS evaluation results for super-resolution at different scales on 
the Set5, Set14, BSD100, and Urban100 test datasets. For example, 

B100(8023)

HR Bicubic SRCNN FSRCNN 

VDSR DRCN MemNet Ours

Set14(barbara)

HR Bicubic SRCNN FSRCNN 

VDSR DRCN MemNet Ours

Urban100(img005)

HR Bicubic SRCNN FSRCNN 

DRCN DRCN MemNet Ours
FIGURE 7

Comparison of visual effects at 4 × magnification under the standard test set. Adapted with permission from “On Single Image Scale-Up Using Sparse-
Representations” (https://link.springer.com/chapter/10.1007/978-3-642-27413-8_47) and Github address: https://github.com/jbhuang0604/SelfExSR? 
tab=readme-ov-file#introduction.
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with a scaling factor of 2, the LPIPS values of the proposed 
algorithm are lower by 0.0003, 0.0006, 0.0008, and 0.0018, 
respectively, compared to the second-best results. This indicates 
that the images reconstructed by the proposed algorithm are more 
aligned with human perception, exhibiting better perceptual 
quality and minimal distortion.

5 Conclusion

This paper proposes a super-resolution reconstruction 
algorithm based on dilated convolution for addressing issues such 
as limited receptive field, insufficient multi-scale feature extraction, 
and loss of image feature information in the process of image 
super-resolution reconstruction. The algorithm introduces an 
residual attention-dense block, which employs dense residual 

block and channel attention to fully learn the features of the 
original low resolution images. In addition, this paper proposes the 
dilated multi-scale residual module to extract multi-scale features, 
using dilated convolutions with different expansion rates. 
Additionally, a residual nested network is utilized to fully exploit 
image features at different depths, leading to significant 
improvements in super-resolution performance. Experimental 
results demonstrate that the proposed algorithm outperforms 
other super-resolution algorithms such as Bicubic, SRCNN, 
ESPCN, VDSR, DRCN, LapSRN, MemNet and DSRNet.
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TABLE 4 Average LPIPS values of different SR algorithms.

Method Scale Set5 Set14 BSD100 Urban100

LPIPS LPIPS LPIPS LPIPS

DRCN

2

0.0563 0.0946 0.1471 0.0678

LapSRN 0.0566 0.0943 0.1442 0.0642

MemNet 0.0551 0.0924 0.1436 0.0615

Ours 0.0548 0.0898 0.1398 0.0597

DRCN

3

0.1259 0.2090 0.2824 0.1577

LapSRN 0.1260 0.2082 0.2820 0.1564

MemNet 0.1241 0.2074 0.2808 0.1547

Ours 0.1218 0.2009 0.2760 0.1466

DRCN

4

0.1761 0.2893 0.3774 0.2365

LapSRN 0.1752 0.2881 0.3768 0.2336

MemNet 0.1714 0.2841 0.3710 0.2235

Ours 0.1707 0.2815 0.3685 0.2186

TABLE 2 The impact of dilated convolutions on reconstruction 
performance.

Algorithm PSNR (dB)

Dilation convolution RADB

31.42

✓ 31.81

✓ 31.68

✓ ✓ 31.96

TABLE 3 The impact of different dilated convolution kernels on 
reconstruction performance.

Dilation rate PSNR

1,1,1 31.54

3,3,3 31.85

5,5,5 31.47

1,3,5 31.96
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