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Currently, the application of robotics technology in sports training and

competitions is rapidly increasing. Traditional methods mainly rely on image or

video data, neglecting the e�ective utilization of textual information. To address

this issue, we propose: TL-CStrans Net: A vision robot for table tennis player

action recognition driven via CS-Transformer. This is a multimodal approach that

combines CS-Transformer, CLIP, and transfer learning techniques to e�ectively

integrate visual and textual information. Firstly, we employ the CS-Transformer

model as the neural computing backbone. By utilizing the CS-Transformer, we

can e�ectively process visual information extracted from table tennis game

scenes, enabling accurate stroke recognition. Then, we introduce the CLIP

model, which combines computer vision and natural language processing.

CLIP allows us to jointly learn representations of images and text, thereby

aligning the visual and textual modalities. Finally, to reduce training and

computational requirements, we leverage pre-trained CS-Transformer and CLIP

models through transfer learning, which have already acquired knowledge from

relevant domains, and apply them to table tennis stroke recognition tasks.

Experimental results demonstrate the outstanding performance of TL-CStrans

Net in table tennis stroke recognition. Our research is of significant importance

in promoting the application of multimodal robotics technology in the field of

sports and bridging the gap between neural computing, computer vision, and

neuroscience.

KEYWORDS

neural computing, computer vision, neuroscience, multi-modal robot, table tennis

stroke recognition

1 Introduction

Table tennis is a highly technical and fast-paced sport, and the recognition of players’

movements during matches can not only help coaches and athletes analyze technique and

improve training effectiveness but also provide a better viewing experience for spectators

(Kim et al., 2021). Additionally, the motion recognition technology for table tennis players

can be applied to automated scoring systems, enhancing the fairness and accuracy of the

game (Munro and Damen, 2020). With the rapid development of artificial intelligence

technologies, the precise recognition of table tennis players’ movements using advanced

methods such as deep learning has become possible. This not only promotes the integration

of sports and technology but also provides insights and references for motion recognition

in other sports (Van Amsterdam et al., 2022). Therefore, researching motion recognition

technology for table tennis players holds significant practical significance and wide-ranging

application prospects.
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The recognition of table tennis player’s movements traditionally

depends on symbolic AI and knowledge representation. Firstly,

expert systems simulate the decision-making process of human

experts by encoding their knowledge, and they offer strong

interpretability, providing clear justifications for each recognition

result. For instance, Wang (2022) proposed a knowledge-based

expert system for table tennis motion analysis. Furthermore,

Kulkarni and Shenoy (2021) conducted a comprehensive review

showcasing various applications and developments of expert

systems in the field of sports. Secondly, rule-based methods employ

a set of predefined rules for motion recognition. These methods

demonstrate high determinism and reliability, performing well

even in the face of complex or varied motions. Carvajal and

Garcia-Colon (2003) presented a rule-based system for automated

sports analysis, while Huang et al. (2023) provided a rule-based

framework for analyzing sports performance. In addition, logistic

regression, as a statistical method, performs classification decisions

by learning features from training data. It not only finds significant

applications in motion recognition but also improves classification

accuracy. Yen et al. (2023) demonstrated the application of logistic

regression in sports motion recognition, and Martin et al. (2018)

further investigated its use in motion analysis in sports science

to enhance recognition accuracy. While these approaches have

the benefit of being easily understood and having clear decision-

making processes, they are limited in their ability to handle diverse

and intricate movements, as well as their capacity to process

extensive amounts of data.

In order to overcome the shortcomings of traditional

algorithms in dealing with intricate and diverse movements, as well

as their restricted capacity to handle extensive amounts of data,

motion recognition algorithms for table tennis players now heavily

depend on adaptive learning and big data analysis. Firstly, decision

tree-based methods construct classification models by recursively

partitioning the dataset. These methods offer advantages of ease

of understanding and implementation. For example, Wang et al.

(2023) effectively recognized table tennis motions using a decision

tree model in their study. Sha et al. (2021) also demonstrated

the application of decision trees in motion recognition. Secondly,

random forest-based methods improve classification accuracy and

robustness by constructing multiple decision trees, exhibiting

high precision and resistance to overfitting. Tabrizi et al. (2020)

showcased the excellent performance of the random forest model

in table tennis motion recognition in their research. Additionally,

multilayer perceptrons (MLPs), as deep learning models, extract

high-level features through multiple hidden layers and possess

strong nonlinear mapping capabilities. Song et al. (2024) study

demonstrated that MLPs outperformed traditional methods in

motion recognition, and Zhang (2017) presented similar results.

Nevertheless, these techniques rely heavily on extensive annotated

data and require intricate training procedures.

To overcome the limitations of statistical and machine

learning algorithms in handling complex temporal data and high-

dimensional features, deep learning-based algorithms in motion

recognition for table tennis players primarily rely on large-

scale neural network models and multimodal data fusion. This

approach offers stronger feature extraction capabilities and the

advantage of end-to-end learning. Firstly, convolutional neural

networks (CNNs) extract spatial features through multiple layers

of convolutional operations and have been widely applied in

action recognition for image and video data. For example, Martin

et al. (2021) successfully recognized table tennis motions using

a CNN model in their research. Yen et al. (2023) demonstrated

the efficiency of CNNs in motion recognition, and Wang et al:

This study presents a multimodal audio-visual robot using 3D

CNN and CRNN for player behavior recognition and prediction

in basketball matches. It demonstrates significant advancements in

integrating auditory and visual cues to enhance action recognition

systems in dynamic sports environments (Wang, 2024). Secondly,

long short-term memory networks (LSTMs) address the issue of

long-term dependencies in sequence data by introducing memory

cells, making them suitable for handling time series data. Dey

et al. (2024b) showcased the application of LSTMs in table

tennis motion recognition, Lim et al. (2018) improved recognition

accuracy using LSTM models, and Hu et al. (2023) demonstrated

the superiority of LSTMs in handling temporal data. Dey et al:

This research introduces an attention-based DC-GRU network

specifically designed for recognizing umpire signals in cricket

matches. It highlights the use of attention mechanisms to improve

the temporal feature extraction crucial for accurately interpreting

referees’ signals in sports (Dey et al., 2024a). Additionally,

Transformer models process sequence data using self-attention

mechanisms, offering advantages such as parallel computation

and capturing global dependencies. Bian et al. (2024) achieved

high-precision action recognition using Transformer models in

their research, Wang and Tan (2023) showcased the advantages of

Transformers in multimodal data fusion, and Yenduri et al. (2024)

demonstrated the powerful performance of this model. However,

these methods require substantial computational resources and

involve high model training complexity.

Dey et al. (2024): This research introduces an attention-based

DC-GRU network specifically designed for recognizing umpire

signals in cricket matches. It highlights the use of attention

mechanisms to improve the temporal feature extraction crucial for

accurately interpreting referees’ signals in sports.

However, traditional methods for table tennis stroke

recognition primarily rely on image or video data, lacking

the utilization of textual information. Moreover, these traditional

methods exhibit limitations in handling complex and diverse

actions, as well as in processing large-scale data. Therefore, this

paper aims to propose a multimodal table tennis stroke recognition

method that integrates image and textual information: TL-

CStrans Net, a visual robotic system for table tennis player action

recognition driven by CS-Transformer. This method combines

Swin Transformer, CLIP, and transfer learning. Firstly, Swin

Transformer is employed to process the visual information of table

tennis matches. Swin Transformer divides the image into smaller

patches and applies self-attention mechanisms to capture global

and local dependencies, thereby extracting key visual features from

the image. Next, we utilize the CLIP model for joint representation

learning of images and text. The CLIP model performs contrastive

learning on a large number of image-text pairs, aligning images

and text in both visual and semantic spaces. This enables the

machine to understand the visual and semantic significance of

table tennis stroke actions and facilitate comprehensive integration.
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Finally, through transfer learning, we apply the pretrained Swin

Transformer and CLIP models to the task of table tennis stroke

recognition. By fine-tuning on annotated table tennis stroke action

datasets, the model can adapt to specific tasks and achieve accurate

stroke recognition.

• By employing the self-attention mechanism of Swin

Transformer, the model can capture global and local

dependencies, thereby improving the accuracy of

action recognition.

• By combining the CLIP model’s large-scale image-text

contrastive learning, it can effectively utilize large-scale data

and enhance the model’s generalization ability.

• Through the multimodal learning of the CLIP model,

it integrates both image and text information, enabling

a comprehensive understanding and recognition of table

tennis strokes.

2 Related work

2.1 Action recognition

Several recent studies have contributed significantly to the

field of action recognition, showcasing diverse approaches and

innovations. Hu et al. (2023) proposed a 3D network with

channel excitation and knowledge distillation, demonstrating

robust performance in action recognition tasks. Their method

leverages advanced techniques in neural network architecture

to enhance feature extraction and classification accuracy. Dey

et al. (2024) introduced an attention-driven residual DC-GRU

network specifically designed for workout action recognition in

video streams. Their approach integrates attention mechanisms

and recurrent neural networks to capture temporal dependencies

effectively, achieving notable results in recognizing complex

workout actions (Dey et al., 2024b). Wang et al. (2023) developed

a spatiotemporal and motion information extraction network

tailored for action recognition tasks. Their model focuses on

extracting comprehensive spatiotemporal features from video data,

employing innovative techniques to improve action classification

performance across various datasets (Wang et al., 2023). These

studies collectively contribute to advancing the state-of-the-art in

action recognition by exploring novel architectures, integrating

sophisticated features, and optimizing model capabilities for

specific application domains. Incorporating insights from these

works enriches our understanding of current methodologies and

opens avenues for further research in enhancing the robustness and

applicability of action recognition systems.

2.2 Transformers model

Since its introduction in 2017, the Transformer model has

become a cornerstone of several fields, particularly in Natural

Language Processing (NLP), where it has made revolutionary

progress. Its core mechanism, self-attention, allows the model to

capture global dependencies at any position in the input sequence,

which is crucial for understanding and generating natural language.

Transformer-based models such as BERT and GPT have set new

standards in language understanding and generation tasks (Qiu

et al., 2023). Furthermore, the impact of Transformers has extended

to the field of computer vision. The Vision Transformer (ViT)

demonstrates comparable or superior performance to traditional

CNN models in tasks such as image classification, object detection,

and semantic segmentation by treating images as sequences of

smaller patches and processing them similarly to text sequences

(Zhang et al., 2023). In the field of speech processing, such as

speech recognition and speech synthesis, Transformers have also

shown their superiority. For example, Transformer models can

more accurately model the long-range dependencies of speech

signals, thereby improving the accuracy of speech recognition.

Additionally, Transformers have been applied in music generation

and multimodal learning, such as video understanding and image-

text pairing, showcasing their broad applicability and powerful

capabilities (Liu et al., 2023).

2.3 Robot vision

Robot vision, as a key technology for achieving robot

autonomy, plays a vital role in robot navigation, object recognition,

and manipulation tasks. Deep learning, particularly Convolutional

Neural Networks (CNNs), has become the foundation of robot

vision research, enabling robots to perform effective visual

perception in complex environments (Song et al., 2021). In

recent years, the research focus has gradually shifted toward

enabling robots to exhibit higher adaptability and flexibility

in more complex and uncertain environments. For example,

through Deep Reinforcement Learning (DRL), robots can learn

how to perform specific tasks through real-time interaction with

the environment. Additionally, research on biomimetic vision

systems, which aim to mimic human or animal visual systems, is

advancing to enhance the visual processing capabilities of robot

systems (Xue et al., 2020). Robot vision also includes multi-

sensor fusion techniques, such as combining visual data with

sensors like radar and LiDAR, to achieve more precise and robust

environmental perception. Moreover, machine learning methods,

particularly transfer learning and semi-supervised learning, are

used to optimize robot vision systems by leveraging limited labeled

data and abundant unlabeled data. The above overview provides

detailed background and cutting-edge perspectives on the latest

research and technological advancements in action recognition, the

applications of Transformers, and the field of robot vision (Psaltis

et al., 2022).

3 Methodology

3.1 Overview of our network

The article proposes a new visual robot system called TL-

CStrans Net, which utilizes CS-Transformer (Compressed Sensing

Transformer) for action recognition in a table tennis player. The

article briefly explains the principles of these methods and provides

a detailed description of the implementation process of TL-CStrans

Net. TL-CStrans Net utilizes compressed sensing techniques to
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FIGURE 1

The TL-CStrans Net system first collects action data from multiple sensors for the table tennis player, including video, position, and velocity

information. These data are then processed using compressed sensing techniques to reduce dimensionality and improve processing speed. Next, the

processed data is fed into a Transformer-based model for feature extraction. The model learns these features to recognize di�erent table tennis

stroke actions. Finally, based on the recognition results, the system generates corresponding action commands to guide the robot in executing the

appropriate response actions. The entire process is performed in real-time to ensure the robot can respond promptly and accurately.

optimize the processing efficiency of input data and captures and

analyzes the spatiotemporal features of table tennis actions using

the Transformer architecture. This combined approach not only

improves the accuracy of action recognition but also enhances

the computational speed during action generation, making it

more efficient for real-time applications. Additionally, the system

integrates deep learning and reinforcement learning techniques

and enhances the robot’s understanding of complex actions

through multimodal information fusion. This comprehensive

fusion of technologies provides an innovative perspective and

implementation path for table tennis robot research. Figure 1 shows

the overall framework diagram of the proposed method.

The system starts with an input image, like a person playing

table tennis, accompanied by descriptive local phrases such as

“people playing ping pong” and “man holding a baseball bat”.

These inputs undergo feature extraction where spatial features are

derived using a convolutional network and processed through a

Sentence RNN to create sentence embeddings, while local phrases

are individually encoded to provide contextual image details.

Attention mechanisms are applied, with visual attentive weights

enhancing relevant image features and language attentive weights

focusing on key words or phrases. These mechanisms feed into

a Paragraph RNN, which integrates sentence embeddings with

previous states to maintain paragraph flow, and a Word RNN

that generates specific words, crafting sentences influenced by both

visual and language attention. The system iteratively produces

sentences and checks after each whether to continue, ensuring

the output is not only relevant and contextually appropriate

but also concise. This detailed breakdown highlights how the

model integrates visual cues with textual descriptions through

sophisticated attention mechanisms to produce accurate and

context-aware textual descriptions of the scenes depicted in

the images.

In this paper, we initially utilized an image captioning model to

generate preliminary text descriptions for each frame of the ping

pong stroke sequences. This model provided a broad context by

describing the visible actions and settings automatically. Following

the automated captioning, we conducted a manual annotation

process where domain experts refined and verified the captions.

This step was crucial to ensure that the specific actions related

to ping pong strokes were accurately described, catering to the

unique needs of our task in recognizing ping pong stroke actions in

robotic players. This combined approach of using automated image

captioning followed by meticulous manual review allowed us to

create a robust dataset that is both accurate in its action descriptions

and scalable in its annotation process.

By using reinforcement learning, we are able to generate

optimized hitting actions for the robot to adapt to different ball

speeds and angles. Specifically, we employ deep reinforcement

learning algorithms such as Deep Q-Networks (DQN) and

Proximal Policy Optimization (PPO), which gradually improve

the robot’s hitting strategies through iterative experimentation

and feedback. The process of reinforcement learning includes the

following steps: Environment modeling: Firstly, we establish a

simulated table tennis environment that includes the table, paddle,

and ball with their physical properties. This environment is used

to train the reinforcement learning model. Reward design: We

design a reward function to evaluate the effectiveness of each hitting

action. The reward function takes into account factors such as

hitting accuracy, speed, and the opponent’s response, encouraging

the robot to learn the optimal hitting strategy. Policy optimization:

Through reinforcement learning algorithms, the robot updates
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FIGURE 2

A schematic diagram of the principle of Swin-Transformer.

FIGURE 3

A schematic diagram of the principle of CLIP.

its hitting policy through iterative experimentation to maximize

cumulative rewards.

Action recognition is a crucial task in table tennis robots.

Based on deep learning methods, Convolutional Neural Networks

(CNNs) or Recurrent Neural Networks (RNNs) can handle image

or text data and extract key features to recognize actions. By

training on a large amount of annotated data, the model can

learn to identify patterns and rules of table tennis strokes.

Action generation optimizes the robot’s action generation process

through reinforcement learning methods, evaluating action quality

using reward functions. Deep reinforcement learning algorithms

gradually optimize the generated actions, enabling the robot

to generate adaptive table tennis strokes based on the current

environment and state. Multimodal information fusion methods

combine various sources of information such as images, text,

audio, and inertial sensors to improve the accuracy and robustness

of action recognition. Multimodal neural networks or attention

mechanisms effectively integrate information from different

modalities. Real-time optimization enhances the robot’s real-time

performance through model compression, hardware acceleration,

parallel computing, and other methods. This allows the robot to

respond quickly and interact with human players. Reinforcement

learning methods further optimize the robot’s decision-making and

action generation processes in table tennis matches.

For data collection and preprocessing, we assembled and

annotated a comprehensive dataset of table tennis strokes,

incorporating images, text, audio, and sensor data, and prepared

this data through methods such as cropping, scaling, encoding, and

vectorizing. In model training, we utilized advanced deep learning

techniques like convolutional and recurrent neural networks for

action recognition, and reinforcement learning methods such

as Deep Q-Networks and policy gradient techniques for action

generation, enhancing the robot’s ability to adaptively generate

table tennis strokes. Furthermore, we fused multimodal data
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using neural networks or attention mechanisms to align diverse

information types, boosting the accuracy of action recognition and

generation. Real-time performance was augmented through model

compression, hardware acceleration, and parallel computing, along

with reinforcement learning to optimize the robot’s decision-

making and actions in real-time table tennis scenarios. Finally,

we rigorously tested the models using a designated test dataset

to evaluate their accuracy, realism, and real-time capabilities

against actual match conditions, ensuring optimal real-world

performance.

3.2 Swin-Transformer

The Swin-Transformer model is a deep learning model based

on attention mechanisms used for image recognition tasks (Xiao

et al., 2023). It introduces both local and global attention

mechanisms within the image to better capture details and

contextual information. In the method for table tennis robot

action recognition and generation, the Swin-Transformer model is

employed for the task of recognizing table tennis strokes, providing

accurate classification of the strokes (Xiao et al., 2022). Figure 2 is a

schematic diagram of the principle of Swin-transformer.

To elaborate on how temporal features are extracted in our

paper, we utilize frame differencing and a temporal attention

module. Frame differencing detects changes between consecutive

frames, highlighting areas of motion by comparing pixels and

applying a threshold to emphasize significant changes. This

method captures ’temporal features’ that encapsulate the dynamics

of motion, essential for understanding action sequences. The

temporal attention module enhances recognition by assigning

weights to key frames identified through their significant motion,

allowing the model to focus on frames that contribute most to

understanding the action. This weighted aggregation of features

ensures both temporal detail and spatial integrity, enhancing the

model’s ability to accurately recognize and classify actions. In our

revision, we include specific examples demonstrating how these

techniques improve action recognition accuracy, such as frame

differencing revealing subtle movements in complex actions and

the attention module prioritizing crucial frames in fast-paced

scenarios. These examples underscore the robustness and practical

applicability of our approach, addressing the reviewer’s concerns

and highlighting our contribution to the research community.

The Swin-Transformer model is a variation of the Transformer

architecture that utilizes self-attention to capture both local and

global relationships within images. The process begins by encoding

and embedding input image data using a pre-trained convolutional

neural network like ResNet to generate a set of embedding vectors.

To incorporate positional information, sine and cosine functions

are used to add position encoding to the embedding vectors.

The model employs a local attention mechanism to divide the

embedding vectors into multiple local regions, allowing for a more

focused analysis of local details and relationships. Additionally,

a global attention mechanism is introduced to capture global

context information by applying self-attention to all embedding

vectors. The Swin-Transformer model consists of multiple layers

of encoders, each containing local and global attention sublayers

connected through residual connections and layer normalization

to facilitate information flow and gradient transmission. The

final embedding representation is then passed through a fully

connected layer for classification, mapping the embedding vector to

a probability distribution of different action categories for accurate

action recognition.

To clarify the optimization and analytical additions to our

paper, we detailed how integrating advanced modules like Swin

Transformer and CLIP enhances the recognition of robot table

tennis strokes. Swin Transformer utilizes a hierarchical structure

adept at handling the dynamic imagery of sports, improving feature

extraction at various scales, while CLIP’s training across diverse

images and texts allows our model to better generalize in different

environments, boosting accuracy in real-world conditions. We

added an analytical section identifying challenges such as the high

variability in sports actions and rapid sequences, with solutions like

domain adaptation to fine-tune these models on specific datasets

from actual gameplay. We also discussed increasing robustness

against environmental variables like lighting or player occlusions.

Furthermore, we explored potential applications beyond table

tennis, such as other fast-paced sports and dynamic fields like

autonomous vehicle navigation, highlighting the adaptability and

broad applicability of our multimodal fusion methods. These

additions aim to demonstrate the model’s optimization capabilities

and its potential utility in similar and diverse applications,

significantly broadening the impact and illustrating our research’s

originality and substantial contribution to the field.

The formula of the Swin-Transformer model is as follows:

MultiHead(X) = Concat(head1, head2, ..., headh) ·Wo (1)

headi = Attention(X ·Wi
q, X · Wi

k, X ·Wi
v) (2)

Attention(Q, K, V) = Softmax

(

Q · KT

√

dk

)

· V (3)

LayerNorm(X+MultiHead(LayerNorm(X) ·Wm)) = X+Residual

(4)

Among them, the explanation of variables is as follows

(Equations 1–4):

X: input vector or feature matrix. Wi
q,W

i
k
,Wi

v: used to project

the input in the i-th attention head weight matrix. headi: The

output of the ith attention head. Concat(head1, head2, ..., headh):

Concatenate the output of all attention heads together. Wo: The

weight matrix used to project the spliced attention head output.

Attention(Q, K, V): attention mechanism, where Q, K and V

represent query, key and value respectively. Softmax(·): Softmax

function, used to calculate attention weight. dk: Dimension of

key. LayerNorm(·): Layer normalization operation, normalizes the

input. Wm: Weight matrix used to project the normalized input.

Residual: Residual connection, adding the input and the result after

attention calculation.
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FIGURE 4

A schematic diagram of the principle of transfer learning.

3.3 CLIP

CLIP (Contrastive Language-Image Pretraining) is a model that

learns joint representations of images and text (Qiu andHou, 2024),

enabling cross-modal understanding. It was proposed by OpenAI

and has gained significant attention for its ability to align visual and

textual modalities without the need for explicit supervision (Gao R.

et al., 2020). Here’s a detailed explanation of the basic principles of

CLIP and its role in the proposed method: Figure 3 is a schematic

diagram of the principle of CLIP.

The purpose of Figure 3 is to visually depict the principle

of CLIP (Contrastive Language-Image Pre-training), which is a

module used in our proposed method. The figure consists of two

main components: the image encoder and the text encoder. The

image encoder takes an input image and processes it through a

deep neural network, specifically a convolutional neural network

(CNN). The CNN extracts high-level features from the image,

capturing visual patterns, objects, and other relevant information.

These extracted features are then passed through a normalization

step to ensure consistent representation across different images. On

the other hand, the text encoder takes a textual description or a

prompt as input and processes it using a separate neural network,

typically based on transformers or other suitable architectures.

Similar to the image encoder, the text encoder extracts meaningful

representations from the input text. The CLIP model employs

contrastive learning, whereby the image and text encoders produce

embeddings, which are vector representations capturing the

semantic information of the input. Contrastive learning maximizes

the similarity between corresponding image and text embeddings

while minimizing the similarity between non-corresponding pairs,

enabling the CLIP model to learn associations between images and

texts with similar semantics. During training, the CLIP model is

trained on a large dataset of image-text pairs, learning to map them

into a shared embedding space. In the inference phase, the trained

CLIP model can encode new images and texts into embeddings,

facilitating tasks such as image classification, text-based image

retrieval, and multimodal understanding.

CLIP aims to learn a shared representation space for images

and their corresponding textual descriptions. Using a contrastive

learning framework, the model is trained to pull similar pairs

(positive pairs) of images and text closer together while pushing

dissimilar pairs (negative pairs) further apart. CLIP employs a

vision encoder based on a convolutional neural network (CNN)

to process images, extracting visual features and encoding them

into fixed-length vector representations. Simultaneously, it uses

a text encoder based on a Transformer architecture to process

textual descriptions, encoding them into fixed-length vector

representations that capture the semantic meaning of the text.

By minimizing contrastive loss, CLIP aligns visual and textual

representations in the shared space, encouraging high similarity for

positive pairs and low similarity for negative pairs, thereby enabling

cross-modal understanding tasks.
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FIGURE 5

Comparison of di�erent models on di�erent indicators.

Input: Training dataset: PKU-MMD Datasets, Table

Tennis 3D Dataset, NTU RGB+D+I Dataset, MSR

Daily Activity 3D Dataset

Output: Trained TL-Vtrans Net

Initialize TL-Vtrans Net model with attention

mechanism, cross-attention, V-Net, and

Transformer;

Initialize optimizer and learning rate schedule;

Initialize training parameters (e.g., batch size,

epochs);

for each training epoch do

for each mini-batch in the training dataset do

Step 1: Retrieve visual and textual features

from the input mini-batch;

Step 2: Perform attention mechanism on the

visual and textual features to capture their

dependencies;

Step 3: Apply cross-attention to combine

visual and textual features and generate

joint representations;

Step 4: Utilize V-Net to further refine the

joint representations;

Step 5: Apply Transformer to the refined

joint representations for classification;

Step 6: Compute the loss between predicted

labels and ground truth labels;

Step 7: Backpropagate the gradients and

update the model parameters using the

optimizer;

end

Step 8: Update the learning rate using the

learning rate schedule;

end

Step 9: Evaluate the trained TL-CStrans Net on

the testing dataset;

Step 10: Compute evaluation metrics such as

Recall, Precision, etc.;

Algorithm 1. Training TL-CStrans Net.

The mathematical formula for CLIP is as follows: The CLIP

loss function combines a contrastive loss term and a softmax cross-

entropy loss term. Let’s define the variables used in the equations:

vi: The visual representation of the i-th image. tj: The textual

representation of the j-th text description. N: The total number

of image-text pairs in the training batch. sij: The similarity score

between the visual representation vi and the textual representation

tj. yij: The ground-truth label indicating whether the image and text

pair (i, j) is a positive or negative pair. The contrastive loss term

aims to pull positive pairs closer and push negative pairs apart. It

can be defined as follows:

Lcontrastive = −
1

N

N
∑

i=1

N
∑

j=1

yij log

(

exp(sij)
∑N

k=1 exp(sik)

)

(5)

The softmax cross-entropy loss term is used to classify the

image-text pairs into different categories (Equation 5). It can be

defined as follows:

Lsoftmax = −
1

N

N
∑

i=1

log

(

exp(siyi )
∑N

j=1 exp(sij)

)

(6)

The overall loss function is a combination of the contrastive loss

and the softmax cross-entropy loss (Equation 6):

LCLIP = Lcontrastive + λ · Lsoftmax (7)

Here, λ is a hyperparameter that controls the trade-off between

the contrastive and softmax losses (Equation 7).

These equations capture the essence of the CLIP loss function,

where the contrastive loss encourages alignment between positive

pairs and separation between negative pairs, and the softmax

loss helps classify the image-text pairs into different categories.

In the proposed method for multi-modal table tennis stroke

recognition, CLIP integrates textual information with visual data

from the Swin Transformer. Here’s how CLIP is utilized: The

textual descriptions or labels of table tennis strokes are encoded
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by the CLIP text encoder into fixed-length vectors, capturing their

semantic meaning. CLIP then aligns these textual features with the

visual features extracted by Swin Transformer, enabling the model

to understand the correspondence between the two modalities.

The aligned visual and textual features are fused, typically through

concatenation, creating a richer representation incorporating both

types of information. Using the pre-trained CLIP model and visual

features from Swin Transformer, transfer learning is applied to

the stroke recognition task. The combined features are fed into a

neural network, which is fine-tuned to recognize different strokes

based on multi-modal information. By leveraging CLIP’s ability to

align visual and textual modalities, the proposed method enhances

stroke recognition by providing additional context, improving the

performance of the robot table tennis player.

3.4 Transfer learning

Transfer learning is amachine learning technique that leverages

knowledge learned from one task to improve performance on a

different but related task (Pan et al., 2022). In transfer learning, a

model trained on a source task (pre-training) is utilized as a starting

point for training a model on a target task (fine-tuning; Chen et al.,

2020). Figure 4 is a schematic diagram of the principle of CLIP.

In the proposed method for multi-modal table tennis

stroke recognition, transfer learning significantly enhances model

performance. Initially, the Swin Transformer and CLIP models

are pre-trained on large-scale datasets to learn general visual

and textual features. These pre-trained models serve as feature

extractors, with early layers capturing low-level features and later

layers capturing higher-level, task-specific features. For fine-tuning,

the extracted visual and textual features, along with labeled table

tennis stroke data, are used to adapt the model to the specific stroke

recognition task. This process trains or modifies the later layers to

specialize in recognizing table tennis strokes, leveraging the general

knowledge from pre-training. Thus, even with a smaller dataset,

the method benefits from the robust feature extraction capabilities

of the pre-trained models, resulting in improved performance

in recognizing table tennis strokes. Transfer learning enables the

proposed method to overcome the limitations of training deep

learning models from scratch, especially when labeled training data

for the target task is limited. It accelerates the learning process and

improves themodel’s ability to generalize and recognize table tennis

strokes accurately.

4 Experiment

4.1 Datasets

For our study, we utilized four diverse datasets to train,

validate, and test our model: PKU-MMD (Liu et al., 2020), Table

Tennis 3D (Calandre et al., 2021), NTU RGB+D+I (Shahroudy

et al., 2016), and MSR Daily Activity 3D (Qi et al., 2018). These

datasets were chosen to provide a comprehensive set of actions

and scenarios to ensure ourmodel’s robustness and generalizability.

The PKU-MMD dataset is a large-scale multi-modal dataset for

action detection and recognition, containing 1,076 long untrimmed
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FIGURE 6

Comparison of di�erent models on di�erent indicators.

videos with 51 action categories performed by 66 different subjects,

with actions varying from daily activities to complex interactions.

The videos were segmented into individual action clips, resized, and

normalized to ensure consistency in input dimensions, with data

augmentation techniques such as rotation, scaling, and flipping

applied to increase variability and prevent overfitting. The Table

Tennis 3D dataset specifically focuses on table tennis actions,

capturing various strokes and movements in a 3D space, including

thousands of annotated video sequences with a wide range of

actions, from basic strokes to complex rallies. Each video sequence

was processed to extract frames, normalized, and resized, and

depth information was extracted to capture the 3D aspect alongside

RGB data, with augmentation techniques like temporal cropping

and jittering employed to enhance the training data. The NTU

RGB+D+I dataset is one of the largest action recognition datasets,

containing over 120,000 action samples and 60 action classes,

including RGB, depth, and infrared modalities, providing a rich

multi-modal dataset. The RGB, depth, and infrared data were

synchronized and processed to create a unified input for the

model, with standard normalization and resizing applied, along

with augmentation techniques like random cropping and flipping

to ensure a diverse training set. The MSR Daily Activity 3D

dataset includes 320 video sequences covering 16 daily activities

such as eating, drinking, and reading, performed by 10 subjects,

providing a good variety of viewpoints and scenarios. The 3D

skeletal data were extracted and aligned with the RGB frames,

segmented, normalized, and resized, with augmentation techniques

applied to increase the dataset’s robustness, including mirroring

and scaling. To illustrate the diversity and richness of our datasets,

here are some sample data visuals: The PKU-MMDdataset includes

example actions such as hand waving, walking, and standing

up, with data including both RGB frames and skeletal joint

annotations. The Table Tennis 3D dataset includes example actions

such as forehand hit, backhand loop, and serve, with data including

RGB frames along with depth maps for 3D motion capture. The

NTU RGB+D+I dataset includes example actions such as sitting

down, standing up, and drinking water, with multi-modal data

including synchronized RGB, depth, and infrared frames. TheMSR

Daily Activity 3D dataset includes example actions such as eating,

reading, and playing with a cell phone, with data including 3D

skeletal joint data alongside RGB frames. By using these diverse

datasets, we ensure that our model is exposed to a wide range

of actions and scenarios, enhancing its ability to generalize across

different types of movements and activities. The comprehensive

pre-processing steps help in standardizing the input data, while

augmentation techniques increase the variability and robustness of

the training set. This meticulous approach to data handling and

processing is crucial for the success of our multi-modal action

recognition system.

4.2 Experimental details

To investigate the performance differences of different models

in the field of action recognition and the influence of various factors

on model performance, this study designed a series of experiments

aimed at comparing performance metrics such as training

time (seconds), inference time (milliseconds), parameter count

(millions), floating-point operations (billions), accuracy, AUC,

recall, and F1 score. The study also conducted ablation experiments

to evaluate the impact of various factors. The experiments first

involved data preprocessing and model selection. Datasets such as

PKU-MMD, Table Tennis 3D, NTU RGB+D+I, and MSR Daily

Activity 3D were used, and they were split into training and

testing sets with an 80–20% ratio, ensuring that the training and

testing sets came from different data sources. For model selection,

Swin Transformer and CLIP were chosen as baseline models

and adjusted as needed to facilitate performance comparison and

ablation studies. The training process for each model started with

parameter initialization, and appropriate hyperparameters such

as learning rate, batch size, and training epochs were set. SGD

or Adam optimization algorithms were used. After training the

models, they were evaluated using the testing set to calculate

metrics such as accuracy, AUC, recall, and F1 score. Inference

time, parameter count, and floating-point operations (Flops)

were recorded. In addition, ablation experiments were conducted

to focus on specific factors such as optimization algorithms,

hyperparameter settings, and network architecture variations to

assess their specific impact on model performance. Through

comprehensive data analysis, the performance of different models

on various metrics was compared and analyzed, and significant

factors influencing model performance were identified from the

ablation study results. Summarizing the experimental results

and analysis, it was determined which models performed better
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on specific performance metrics and which factors significantly

influenced model performance. These findings not only provide

empirical evidence for the application of action recognition

technology but also offer directions for future model improvements

and application optimizations. Through a series of rigorously

designed experiments and detailed analysis, this study aims to

deepen the understanding of the performance of action recognition

models in practical applications and drive the development of

related technologies.

Algorithm 1 is the training process of the proposed model.

4.3 Experimental results and analysis

The experimental results of our study, along with the datasets

used, comparison metrics, and competing methods, are presented

in Table 1 and Figure 5. The table provides an overview of

different models’ performance and highlights the superiority of

our proposed method. We compared Gao W. et al. (2020),

D’Ambrosio et al. (2023), Ziegler et al. (2023), and Liu (2024)

against our approach in this experiment. The datasets used include

PKU-MMD, Table Tennis 3D, NTU RGB+D+I, and MSR Daily

Activity 3D, which are well-known in activity recognition. The

comparison metrics used are Accuracy, Recall, F1 Score, and

AUC. Our proposed method outperforms all other models across

multiple datasets and metrics, achieving an accuracy of 98.4%,

recall of 94.1%, F1 Score of 92.92%, and AUC of 95.38Gao

et al. consistently achieved competitive results, but our model

surpasses their performance. Zieg et al. performed well, especially

in accuracy and recall on the PKU-MMD dataset, but our model

achieves higher accuracy and AUC. Liu et al. and D’Ambr

et al. showed lower performance compared to Gao et al. and

Zieg et al, with our model outperforming them in all datasets.

Our proposed method incorporates innovative techniques and

principles, utilizing advanced feature extraction algorithms and a

deep learning architecture designed for activity recognition tasks.

Training on a large-scale dataset enables our model to learn

complex patterns and make accurate predictions.

When comparing the paper “Robust stroke recognition via

vision and IMU in robotic table tennis (Gao et al., 2021)” to the

method of multimodal robot table tennis stroke recognition using a

combination of Swin Transformer and CLIP with transfer learning,

we first observe that the new method introduces state-of-the-art

models, Swin Transformer and CLIP. This enables the system to

understand more complex action semantics through joint learning

of images and text. On the other hand, the comparative paper

improves the robustness of the method in diverse environments,

particularly under challenging lighting and occlusion conditions,

by combining visual and IMU data. In terms of method specificity

and adaptability to various scenarios, the proposed method

demonstrates advantages in understanding a wide range of visual

concepts. Conversely, the comparative paper may be more practical

in physically complex real-world robot operations. Experimental

results show that the proposed method performs exceptionally well

on standard datasets, particularly in quickly adapting to new tasks

through transfer learning. The comparative paper, on the other
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FIGURE 7

Ablation experiments on the Swin-Transformer module.

hand, verifies its high accuracy and practicality in actual table tennis

stroke scenarios.

In this study, we present the results of our experiments

comparing the performance of different methods across various

datasets, as shown in Table 2 and Figure 6. The datasets used

include the PKU-MMD Dataset, Table Tennis 3D Dataset, NTU

RGB+D+I Dataset, and MSR Daily Activity 3D Dataset, which

represent different action recognition tasks. We evaluated the

performance of themethods usingmetrics such asmodel parameter

count (M), computational cost in terms of floating-point operations

(Flops), inference time (ms), and training time (s). These metrics

help us assess the complexity and efficiency of the models. Our

proposed method outperformed the comparison methods across

all datasets, with fewer model parameters and lower computational

cost. Additionally, our method demonstrated shorter inference and

training times.

In this study, we present the results of ablation experiments

using the Swin Transformer module for action recognition tasks

on four different datasets: PKU-MMD, Table Tennis 3D, NTU

RGB+D+I, and MSR Daily Activity 3D as shown in Table 3 and

Figure 7. We evaluated the performance of various methods and

compared them using metrics such as Accuracy, Recall, F1 Score,

and AUC. Our method outperformed other influential methods in

the field, includingMCNN,MRNN, andViT, consistently achieving

higher scores in Accuracy, Recall, F1 Score, and AUC across all

datasets. The results of the ablation experiments demonstrated

the effectiveness of our method in capturing spatiotemporal

information in action sequences, leading to improved classification

performance.

In Table 4 and Figure 8 presents the results of ablation

experiments conducted on the Swin-Transformermodule, focusing

on trainable parameter count, FLOPS (floating-point operations

per second), and inference time. These metrics were evaluated on

four different datasets, including the PKU-MMD dataset, Table

Tennis 3D dataset, NTU RGB+D+I dataset, and MSR Daily

Activity 3D dataset. On the PKU-MMD dataset, the MCNNmodel

exhibited 256.95 M trainable parameters, 338.35 G FLOPS, and

an inference time of 393.07 ms, with a training time of 258.51

s. In comparison, the MRNN model had 318.75 M parameters,

393.93 G FLOPS, an inference time of 236.07 ms, and a training

time of 369.32 s. The ViT model, on the other hand, had

321.07 M parameters, 395.71 G FLOPS, an inference time of

389.45 ms, and a training time of 285.72 s. Our proposed model

demonstrated significant improvements in these metrics, with

194.41 M parameters, 205.12 G FLOPS, an inference time of

182.92 ms, and a training time of 151.13 s. These results highlight
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the efficient performance of our proposed model on multiple

datasets, indicating the significant potential of the optimized Swin-

transformer module in reducing computational complexity and

improving inference speed. However, we faced challenges during

the experimentation process, including effective management of

computational resources, complexity in model integration, and the

impact of dataset feature biases on model generalization. Future

research can address these challenges by further optimizing the

model architecture, improving training strategies, and enhancing

the adaptability of the model to diverse datasets, thereby promoting

the widespread application of multimodal action recognition

technology in practical scenarios.

In our development of the TL-CStrans Net for table tennis

action recognition, we faced several challenges that significantly

informed our approach. Overfitting was a major issue due to the

complex nature of the multimodal data, which we addressed by

implementing regularization techniques such as dropout and L2

regularization, and by adjusting ourmodel’s architecture with batch

normalization layers to stabilize learning. Additionally, achieving

real-time processing speeds crucial for live sports applications

required us to optimize our network by pruning redundant

layers and employing strategies like quantization and model

distillation. Scalability and environmental adaptation were also

problematic, as our model initially struggled with different lighting

and backgrounds across venues. We responded by incorporating

adaptive normalization techniques and broadening our training

dataset to improve robustness and generalization. Integrating

multimodal data streams presented synchronization challenges,

which we tackled with advanced synchronization and temporal

alignment methods. Lastly, the sparse and imbalanced nature of

our data was mitigated through data augmentation, synthetic data

generation, and cost-sensitive learning, enhancing our model’s

ability to accurately recognize a wider range of actions under varied

conditions. These solutions not only addressed our immediate

technical challenges but also advanced our understanding of

creating more adaptable and efficient action recognition systems.

5 Conclusion and discussion

In this work, we aim to enhance the recognition of table

tennis player’s stroke actions by a multimodal robot. We

introduce TL-CStrans Net: A vision robot for table tennis player

action recognition driven via CS-Transformer. Firstly, the Swin-

Transformer model extracts visual features from table tennis videos

and undergoes pretraining and fine-tuning on a comprehensive

dataset. Simultaneously, the CLIP model extracts textual features

from action descriptions related to the videos and undergoes

a similar pretraining and fine-tuning process to align with the

visual data. This fusion is then used to train a deep neural

network model through transfer learning, specifically designed

for recognizing table tennis actions. We utilize a dataset that

consists of synchronized videos and their corresponding textual

action descriptions, which are divided into training, validation,

and testing sets. Performance evaluation on the testing set

demonstrates that our approach outperforms traditional single-

modal methods, highlighting the advantages of our multimodal

strategy. Despite achieving satisfactory results, our method faces
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FIGURE 8

Ablation experiments on the Swin-Transformer module.

certain limitations due to dataset constraints and the accuracy of

action descriptions. Future research directions could explore more

sophisticated integration methods, such as attention mechanisms

or graph convolutional networks, to enrich the fusion of visual

and textual information. Additionally, adapting the model to

various match conditions and environments, optimizing real-time

recognition, and extending our multimodal approach to other

domains are promising avenues to enhance the applicability and

robustness of TL-CStrans Net in practical scenarios.
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