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Introduction: Recognizing human actions is crucial for allowing machines 
to understand and recognize human behavior, with applications spanning 
video based surveillance systems, human-robot collaboration, sports analysis 
systems, and entertainment. The immense diversity in human movement and 
appearance poses a significant challenge in this field, especially when dealing 
with drone-recorded (RGB) videos. Factors such as dynamic backgrounds, 
motion blur, occlusions, varying video capture angles, and exposure issues 
greatly complicate recognition tasks.

Methods: In this study, we suggest a method that addresses these challenges in 
RGB videos captured by drones. Our approach begins by segmenting the video 
into individual frames, followed by preprocessing steps applied to these RGB 
frames. The preprocessing aims to reduce computational costs, optimize image 
quality, and enhance foreground objects while removing the background.

Result: This results in improved visibility of foreground objects while eliminating 
background noise. Next, we employ the YOLOv9 detection algorithm to identify 
human bodies within the images. From the grayscale silhouette, we extract the 
human skeleton and identify 15 important locations, such as the head, neck, 
shoulders (left and right), elbows, wrists, hips, knees, ankles, and hips (left and 
right), and belly button. By using all these points, we extract specific positions, 
angular and distance relationships between them, as well as 3D point clouds and 
fiducial points. Subsequently, we optimize this data using the kernel discriminant 
analysis (KDA) optimizer, followed by classification using a deep neural network 
(CNN). To validate our system, we conducted experiments on three benchmark 
datasets: UAV-Human, UCF, and Drone-Action.

Discussion: On these datasets, our suggested model produced corresponding 
action recognition accuracies of 0.68, 0.75, and 0.83.

KEYWORDS

neural network, sequential data processing, convolutional neural network (CNNs), 
decision-making processes, unmanned aerial vehicles neural network, unmanned 
aerial vehicles

OPEN ACCESS

EDITED BY

Long Jin,  
Lanzhou University, China

REVIEWED BY

Xiaoyin Zheng,  
XMotors.ai, United States
Yuriy Kondratenko,  
Petro Mohyla Black Sea State University, 
Ukraine

*CORRESPONDENCE

Touseef Sadiq  
 touseef.sadiq@uia.no  

Ahmad Jalal  
 ahmadjalal@mail.au.edu.pk

RECEIVED 04 June 2024
ACCEPTED 18 November 2024
PUBLISHED 04 December 2024

CITATION

Abbas Y, Al Mudawi N, Alabdullah B, Sadiq T, 
Algarni A, Rahman H and Jalal A (2024) 
Unmanned aerial vehicles for human 
detection and recognition using 
neural-network model.
Front. Neurorobot. 18:1443678.
doi: 10.3389/fnbot.2024.1443678

COPYRIGHT

© 2024 Abbas, Al Mudawi, Alabdullah, Sadiq, 
Algarni, Rahman and Jalal. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 04 December 2024
DOI 10.3389/fnbot.2024.1443678

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2024.1443678&domain=pdf&date_stamp=2024-12-04
https://www.frontiersin.org/articles/10.3389/fnbot.2024.1443678/full
https://www.frontiersin.org/articles/10.3389/fnbot.2024.1443678/full
https://www.frontiersin.org/articles/10.3389/fnbot.2024.1443678/full
mailto:touseef.sadiq@uia.no
mailto:ahmadjalal@mail.au.edu.pk
https://doi.org/10.3389/fnbot.2024.1443678
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2024.1443678


Abbas et al. 10.3389/fnbot.2024.1443678

Frontiers in Neurorobotics 02 frontiersin.org

1 Introduction

Recognizing human actions from drone-captured video is a 
challenging task that requires processing visual data to gather 
information about the motion of human and automatically identify 
human actions performed by humans. This approach is used in 
different applications and systems, like enhancing video based 
surveillance, human motion detection, sports activity analysis, 
human-robot interaction, and also in the rehabilitation process. For 
instance, in the rehabilitation process, we employ this approach when 
a patient suffers from a stroke and certain body parts are 
malfunctioning. As a result, we reduced the disability rate. In video 
surveillance, action recognition can help identify security threats like 
individuals hearting someone or using weapons to threaten someone, 
thus enhancing public safety and reducing and detecting criminal 
activities. In human-robot interaction, identifying the actions 
performed by humans can help the robots understand and classify 
humans’ behaviors and react accordingly (Perera et al., 2019b). The 
medical field also employs this technique. Coaches use this technique 
to learn the player’s physical health, performance, and team dynamics 
in support. Due to this, management and coaching staff decision-
making power will increase, and they will know more about the player 
and be able to make better team selections and improve their success. 
In the field of gaming and entertainment, action recognition improves 
and makes the gaming experience more enjoyable. This is, as we know, 
a very interesting field, and most researchers do their research in it. 
Researchers still face so many challenges in this field. When 
we  perform action recognition of a human, we  must consider 
numerous factors such as the human’s pose in the current frame of the 
video, the appearance of the object in the frame, whether the object is 
moving, the calculation of the object’s speed, and time constraints. All 
of the factors mentioned above make it challenging to make an 
effective algorithm that works accurately across different settings.

For human action recognition, labeled data collection is an 
expensive and time-consuming procedure (Skakodub et al., 2021). 
We also have a smaller dataset available for training our model and 
getting accurate results. When we want to recognize the action of the 
human, first of all, we should understand the sequence of the human’s 
moments in the given video. When we use video capture by drones, 
we face more difficulties because of the variety of camera viewpoints, 
as action may appear differently from various angles. Moreover, 
achieving real-time performance is crucial for applications like 
surveillance and robotics, while maintaining accuracy poses a 
significant challenge. Drone-mounted cameras add complexity as the 
image’s background changes with the drone’s motion (Sidenko et al., 
2023). In a previous system, they developed an action recognition 
system based on traditional computer vision and applied some 
machine learning techniques to the RGB image and depth of the video 
data. This system has several steps, like splitting video into frames, 
using a bilateral filter for noise reduction, region extraction using SLIC 
segmentation, and body joint estimation using EM-GMM. As 
we already mentioned, the system uses the depth information of the 
video to detect the motion of the object, so this dependency on depth 
information reduces its acceptance because, in real life, we have very 
complex data and also because the environment may affect the 
process. We propose a new system that detects human action from 
aerial RGB videos, addressing the limitations of the previous work. 
Video capture by drone, so it did not relay in-depth information about 

the object. This system uses quick-shift segmentation to segment 
humans and extracts features. However, to enhance accuracy and 
performance, we propose a new system that concentrates on aerial 
RBG data and does not rely on depth information. This system uses a 
deep neural architecture like CNN instead of depth information. In 
this process, first of all, the RGB aerial video is converted into frames, 
a Gaussian blur filter is applied to remove noise and reduce the 
computational cost, and background effects are removed from the 
results. We  also remove the background of the human, apply the 
YOLO algorithm to detect the human from the frames, and extract 
features such as angle between joints, distance between detected 
landmarks, 3D point cloud, and fiducial points. We  use Kernel 
Discriminant Analysis (KDA) as an optimizer. CNNs optimize feature 
extraction and enhance action classification. Our proposed method 
shows highest performance compared with the existing previous 
version. With accurate human detection using YOLO and deep-
learning-based feature extraction and classification, this system has 
gained acceptance. This study’s key contributions include:

 • A specialized approach that addresses the main challenges of 
human actions recognitions in aerial RGB videos makes our 
system independent of in-depth information and also increases 
the performance and accuracy of the system.

 • Improved feature extraction and action classification through 
CNN’s deep-learning model.

 • Efficient human detection using the YOLO algorithm.
 • 3D point cloud and fiducial point’s algorithms aid in accurate 

action identification.
 • Showing higher action recognition accuracy as compared with 

previous techniques.
 • KDA is used as a feature optimizer.

2 Literature review

Researcher have made significant strides in developing computer 
vision algorithms for recognizing human actions in recent past years. 
In the literature related to our study, we  distinguish between two 
main areas.

2.1 Human action recognition by machine 
learning

On the basis of motion patterns, Arunnehru et  al. conduct 
research on human action classification and recognition, concentrating 
on examining how a subject’s location changes over time. This system 
began by converting RGB input videos to grayscale and then applying 
a noise-removal filter to enhance the features. To extract the motion 
feature, they utilized the frame difference method, which calculates 
the intensity difference between two consecutive frames, to find the 
motion of moving object in given frame. Additionally, this uses 
traditional machine learning algorithms, which impact its accuracy 
and limit its ability to capture complex patterns across different action 
classes. For action classification, the system uses support vector 
machines (SVM) and random forest classifiers (Sun et al., 2021). To 
address these limitations, our proposed system incorporates deep-
learning architectures, leverages spatial information in aerial RBG 
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videos, and utilizes a convolutional neural network for improved 
action recognition and classification. For the classification of human 
action from videos Zhen et al. use local methods based on spatio-and 
temporal interest points such as sparse coding, the Naïve Bayes nearest 
neighbor classifier, and a vector of locally aggregated descriptors. 
These local approaches were effective in the image domain, but their 
performance might not directly work on video data. To address the 
challenge, our new approach considers both spatial and temporal 
relationships found in the video sequences and successfully recognizes 
action. A new framework is introduced by Yang et  al., which 
recognizes human actions in video sequences captured by a depth 
camera. They utilized a strategy called Super-Normal Vector to 
aggregate low-level polynomials into a discriminative representation. 
However, this proposed approach depends on depth information and 
does not fully rely on RGB. Our system analyzes RGB videos, not only 
the depth information of the object. It also analyzes the color and 
texture features of the video to understand human activations. A novel 
approach is proposed for action recognition using joint regression-
based learning. This approach focuses mostly on dynamic appearance, 
not whole body features. In contrast, our proposed model first extracts 
the features of the whole body, then uses a deep-learning architecture 
to classify the given classes based on these features. This makes our 
system more robust and generalizable.

2.2 Human action recognition by deep 
learning

A completely connected deep (LSTM) system for human skeleton-
based action identification was proposed by the authors. The study 
highlighted how the coexistence of skeletal joints naturally provides 
vital aspects of human behavior. In order to obtain this, a unique 
regularization approach was devised to learn the co-occurrence 
properties of the skeleton joints, and the skeleton was treated as input 
at each time slot. But without taking into account other modalities like 
RGB or depth information, this work concentrated only on skeleton-
based representations. On the other hand, our method works directly 
with RGB films, eliminating the need for skeleton-based 
representations and allowing for the extraction of rich visual data 
from aerial imagery. Li et al. addressed the shortcomings of earlier 
approaches that mainly relied on short-term temporal information 
and did not explicitly represent long-range dynamics by introducing 
a unique strategy for action recognition termed VLAD for Deep 
Dynamics (VLAD3). Different layers of video dynamics were merged 
in VLAD3, with Linear Dynamic Systems (LDS) modeling medium-
range dynamics and deep CNN features capturing short-term 
dynamics. Nevertheless, the reliance of that model on trained deep 
network (CNN) and the LDS model’s linearity assumption may 
restrict its capacity to manage intricate non-linear temporal dynamics. 
Our method, on the other hand, works directly with RGB videos and 
does not merely rely on pre-trained networks. This allows us to extract 
rich visual information and capture non-linear temporal dynamics. To 
obtain a dependable long-term motion representation, Shi et al. (2017) 
introduced a novel descriptor called the Sequential Deep Trajectory 
Descriptor (sDTD). To address the issue of effectively capturing 
motion data over extended periods of time, the proposed sDTD 
projected dense trajectories into two-dimensional planes. A 
CNN-RNN network was trained to learn a meaningful representation 

for long-term motion by finding both spatial and temporal correlations 
in the motion data. However, this approach relied on dense trajectory 
extraction, which could be  risky in settings with a lot of clutter 
or noise.

Our proposed method offers a solution by operating on RGB 
videos right away without requiring explicit trajectory extraction. 
Using the ability of hierarchical recurrent neural networks (HRNNs) 
to effectively simulate long-term contextual information in temporal 
sequences, Du et al. developed an end-to-end HRNN for skeleton-
based action recognition. Rather than using the entire skeleton as 
input, the authors divided it into five pieces based on the physical 
characteristics of people. However, the majority of this strategy 
depended on skeleton data, which was not always readily available.

2.3 Human action recognition using drones

Sanjay Kumar et  al. (2024) analysis on combination of facial 
recognition and object detection for drone surveillance. The authors 
present a new model that integrates analytical tools based on machine 
learning for the improvement of detection in real time. This they say, 
proves that integration of these technologies enhance the effectiveness 
as well as the efficiency of the surveillance process. Incorporating this 
work will help us show how similar methods can be  used for 
recognizing human action and thus link object detection with human 
behavior analysis. Hybrid grey wolf algorithms for optimizing fuzzy 
systems are the focus of discussion in the paper by Kozlov et al. (2022). 
The authors describe a method for enhancing the flexibility and 
effectiveness of UAV control approaches. Through discussing the 
parametric optimization methods, this paper contributes to the 
understanding of how the control of drones needs to be improved in 
order to capture the human behavior in real life situations. Kozlov 
et  al. (2024) describes an IoT control system for UAVs for 
meteorological measurements. To this end, the authors examine 
assorted communication protocols and control strategies that allow 
drones to operate on their own while gathering data. The significance 
for us in this study is the opportunity of implementing some of the IoT 
frameworks developed in this study for enhancing situation 
understanding for drones in human action identification tasks.

3 System methodology

The approach that we  propose is designed to deal with these 
issues, particularly for RGB videos captured by drones. Our 
methodology entails dividing the video into individual frames and 
implementing several pre-processing procedures on these RGB 
frames. During pre-processing, our focus lies on reducing 
computational complexity, resizing image quality, and improving 
foreground object visibility by eliminating background noise. 
Additionally, we employ YOLO to detect humans within the frames, 
enabling us to extract human skeletal structures and identify key 
points representing crucial body parts (the head, neck, shoulders (left 
and right), elbows, wrists, hips, knees, ankles, and hips (left and 
right)., and belly button). These key points, including significant joints 
like the head, wrists, elbows, thighs, knees, and ankles, serve as the 
foundation for deriving normalized positions, angular relationships, 
distance measurements, and 3D point clouds. To optimize features, 
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FIGURE 1

The architecture of the proposed system.

we  utilize the Kernel Discriminant allocation approach (kDA), 
followed by classification using CNN. Our experimentation was 
carried out on three standard benchmark datasets: UCF, Drone-
Action, and UAV-Human. The model accomplished recognition of the 
appropriate action accuracies of 0.75, 0.83, and 0.69 on these datasets. 
Figure 1 shows the architectural layout of the suggested system.

3.1 Preprocessing

In our proposed system, we utilize a dataset comprised of drone 
footage to train our model. The UAV-Human, UCF, and Drone-Action 
datasets consist of video recordings; thus, our system takes a video as 
its input. Since the algorithms employed in our system operate on 
images, the initial step involves converting the video into individual 
frames. These frames or images extracted from the video undergo 
Gaussian blur processing to reduce noise. By using Equation 1.

 
( )
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2

x y

G a b e σ
πσ

+
−

=
 

(1)

In this equation, G (a, b) denotes the value of the Gaussian 
function at coordinates (x, y). The formula calculates the weight of 
each pixel in an image’s local neighborhood using a Gaussian kernel. 
This kernel is represented by a two-dimensional matrix where the 
weights decrease from the center, where the highest weight pixel is 
positioned. The parameter σ corresponds to the standard deviation of 
the Gaussian distribution(Chen et al., 2023). A higher σ value results 
in more pronounced blurring of the image. This mathematical 
representation allows for the convolution of the image with the 
Gaussian kernel, effectively reducing noise and enhancing the image’s 

quality. Following the Gaussian blur process, the images remain in the 
RGB color space (Papaioannidis et al., 2021). However, since our focus 
is not on color but rather on image description, which can sometimes 
impact the information within the image, we  further process the 
images. To achieve this, we utilize the blurred images as input and 
apply a grayscale conversion algorithm to them, aiding in noise 
reduction. By using Equation 2.

 S 0.299R 0.587G 0.114B= + +  (2)

This equation represents the luminance (S) value calculated from 
the RGB components of a color image. The original frame and the 
frame following preprocessing are illustrated in Figure 2.

3.2 Human detection

Computer vision and deep learning intersect in the realm of 
identifying and locating objects or humans within images, offering 
wide-ranging applications across fields like robotics, autonomous 
vehicles, and drone-based surveillance systems. We  commonly 
categorize detection algorithms into two primary types: single-shot 
detector algorithms and two-stage detector algorithms. One notable 
approach for object detection is YOLOv9 (You Only Look Once), 
which has been pivotal in transforming the field (Sobhan et al., 
2021). YOLOv9 stands out for its ability to predict object attributes 
in a single pass, greatly boosting real-time performance and 
achieving top-tier results. YOLO’s strength lies in using a single 
fully connected layer for its predictions, unlike methods like Faster 
R-CNN that rely on a region proposal network and separate 
recognition steps. This streamlined strategy significantly reduces 
computational load, requiring only one iteration per image 
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compared to the multiple iterations needed by approaches using 
region proposal networks (Hwang et al., 2023).

When tailoring the YOLOv9 algorithm for individual detection, the 
main goal is to accurately forecast bounding boxes with strong 
confidence scores, particularly for the human class. This necessitates 
fine-tuning the training process and potentially adjusting the YOLOv9 
network’s architecture to concentrate specifically on human detection. 
We introduce adjustments to interpret outputs from a human-centric 
viewpoint, while keeping the core equations governing the algorithm 
unchanged. The prediction of bounding boxes remains central, with a 
focus on identifying boxes with notable probabilities of containing a 
human. Consequently, during inference, we retain only bounding boxes 
associated with humans, eliminating those related to other object classes. 
Simplifying the class prediction process by considering solely the 
confidence score for the human class further bolsters detection accuracy. 
By using Equation 3.

 ( ) ( ), , , , , , truth
i j c i j c i jA q Tr Object IOU d d= × ×

 
(3)

In this equation:
, ,i j cA  represents the predicted bounding box for class c at grid 

cell i, j. , ,i j cq  this is the confidence score for the presence 

of an object within that bounding box. ( )Tr Object  this is the 
probability that an object exists in the box. ( ), , truth

i jIOU d d  this 
represents the ground truth box truth and the expected box’s 
intersection over union (IOU) (see Figure 3).

In Table 1 we displays the accuracy rates of various YOLO models 
evaluated on three distinct datasets: There are three datasets namely 
UAV-Human, UCF, and Drone-Action. This research presents results 
demonstrating that with each subsequent release of YOLO, there is an 
improvement in the model’s precision, described broader 
improvements in human action recognition capacity. Starting with 
YOLOv1, one can see that on all the analyzed datasets, there is a 
continuous growth in accuracy with the trends of improvement in the 
model architecture and training processes from YOLOv1 to YOLOv9. 
This progression suggests further development for deep learning 
models for the processing of the aerial imagery (Jiang and He, 2020; 
Nadeem et al., 2020).

3.3 Key-points extraction

The Yolo algorithm is employed to analyze images extracted from 
videos, facilitating human detection within these images. 

FIGURE 2

Preprocessing outcomes for (A) Drone Action (B) UAV human.

FIGURE 3

We observe the YOLO method in action for human detection, with representations for (A) Drone Action (B) UAV human.
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TABLE 1 Comparison of YOLO versions with proposed model.

Propose 
Model + YOLOv

UAV-
human 

accuracy

UCF 
accuracy

Drone-
action 

accuracy

YOLOv1 0.50 0.60 0.65

YOLOv2 0.55 0.64 0.69

YOLOv3 0.60 0.69 0.75

YOLOv4 0.63 0.71 0.78

YOLOv5 0.65 0.72 0.84

YOLOv6 0.66 0.73 0.86

YOLOv7 0.67 0.73 0.89

YOLOv8 0.68 0.74 0.91

YOLOv9 0.68 0.75 0.92

Bold value indicates the accuracy of my system when i use yolov9.

Subsequently, critical points of the human body are identified to 
enable further analysis. An Opencv pose estimator is utilized for 
human skeleton detection within an image, a pivotal step in 
determining the precise position of each body part. This skeleton is 
instrumental in calculating the angles and distances between joints of 
the human body. Our proposed system relies on 15 key points: head, 
neck, shoulders (left and right), elbows, wrists, hips, knees, ankles, and 
hips (left and right), and belly button. These identified key points 
contribute to height accuracy within our system. Notably, Opencv 
does not detect the neck, belly button, or specific key points besides 
the head. To address this, we  compute the midpoints of these 
landmarks. For instance, the midway of the left and right shoulders is 
used to calculate the position of the neck. The calculation of midpoints 
between two given key points is based on their respective x and y 
coordinates (see Figure 4).

 
( )1 2

2
a a

Am
+

=
 

(4)

 
( )1 2

2
b b

Bm
+

=
 

(5)

Where:
(a1, b1) keypoint 1 coordinates and (a2, b2) keypoint 2 coordinates. 

To calculate the midpoint between two key points (Am, Bm), 
Equations 4, 5 are employed: This method allows us to precisely locate 
three specific critical points within the human body. Figure 5 provides 
a summary of identified landmarks belonging to various categories.

3.4 Feature extraction for action 
recognition

During the system development process, considerable attention is 
devoted to selecting features that effectively represent the outcomes. 
Optimal feature selection is crucial for attaining desirable results, 
given its substantial influence on system accuracy. The chosen features 
must possess autonomy and reliability. We extract multiple features 
from the photos and aggregate their numerical values into a single file 
for subsequent analysis (Chéron et al., 2015).

3.4.1 Relative angle between joints
The orientation of the body during various movements is determined 

by the angles formed between joints or specific anatomical points that 
we identify (Reddy et al., 2016). These angles dynamically alter relative 
to each other as humans engage in different actions. Continuously 
monitoring these angles as subjects move aids in enhancing the precision 
of our system. To achieve this, we focus on tracking fifteen key points 
across the body. The angle between two points was calculated using the 
following Equation 6:

 ( )tan 1 b2 b1 / a2 a1ϕ = − − −
 (6)

Here, (a1, b1) and (a2, b2) indicate the coordinates of the two 
spots that are being examined. Figure  6 demonstrates the angles 
computed as one-dimensional signals for some activities.

3.4.2 Relative distance between joints
Once a human starts moving, every single one of their body parts 

moves until it stops. The measurement of this motion involves assessing 
the distance traveled by various key points from one frame to the next. 
This evaluation typically employs a comparison of two consecutive 
frames. Utilizing the Euclidean distance formula, expressed as Equation 7, 
facilitates the calculation of the distance between these key points:

 

∆
=
∆

tv
d  

(7)

Where Δd represents the change in distance between two points (the 
relative distance between joints in this context). Δt is the change in time 

FIGURE 4

Relative joint angles for body key-points.
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between two frames. This formula quantifies the change rate of distance 
as compare with time, offering insights into the pace at which the distance 
between joints alters as the body undergoes motion (see Figure 7).

3.4.3 Landmark fiducial points
Fiducial points serve as crucial landmarks within an image and 

are utilized for various calculations. Our proposed system employs 
fifteen such points, such as the head, neck, shoulders (left and right), 
elbows, wrists, hips, knees, ankles, and hips (left and right), and belly 
button. The successful detection of these landmarks in each frame of 
the provided video greatly facilitates object motion detection through 
their positional data (Guo et al.,2022). These points are strategically 
positioned along the contours of each body part, and their 
visualization is achieved through the ellipsoids encompassing these 
body regions. Within the ellipsoid, where the interior is depicted in 
black, transitions from high to low values signify points along the right 
border, while transitions from low to high values denote points along 
the left edge. We then determine the local minima and maxima for 
each border after accurately identifying the left and right borders. 
Equations 8, 9 articulate this mathematical process (see Figure 8).

 
{ }maxima 0 and 1 0′ ′= ≥ + <ai ai ai|

 
(8)

 
{ }minima 0 and 1 0′ ′= ≤ + >ai ai ai|

 
(9)

3.4.4 3D point cloud
In our proposed system, we leverage the representation of objects 

in 3D space, a widely employed feature across various applications, 
for tracking object motion. Specifically, we focus on utilizing the x, y, 
and z dimensions of the central pixel within an RGB image. To 
determine the z coordinate, we employ both the relative RGB image 
and its grayscale counterpart, enabling us to calculate the z coordinate 
of the pixel. Utilizing the YOLO algorithm for human detection in 
images, our process initiates by identifying humans within the image. 
Subsequently, the algorithm identifies the central pixel value within 
the YOLO bounding box encompassing the object. Upon locating the 
central pixel, the algorithm proceeds to iterate through all pixels 
within the bounding box, facilitating the determination of the z 
coordinate of each pixel using Equation 10.

FIGURE 5

Key-points extraction-with: (A) Drone Action (B) UAV human.

FIGURE 6

We examined the angular positions of the joints during various movements with (A) Drone Action (B) UAV human.
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( )1 ,Grey p q

Scaling Factor
×

 
(10)

Where p, q are the x, y-coordinates of the pixel that is under 
observation. P, Q are calculated by Equations 11, 12.

 
( )ZP X P Cp

Focal Length
= = × −

 
(11)

 
( )ZQ Y q Cq

Focal Length
= = × −

 
(12)

The algorithm presented in this study is designed to identify all 
the pixel values corresponding to objects within an image and then 
compile them into an Excel file. This Excel file serves as a basis for 
applying a voxel filter, allowing visualization of these pixels within a 
3D space (Azmat et al., 2023). The classification of these pixel values 
is essential for enhancing the accuracy of our system. Figure  9 
illustrates the resulting point clouds.

Algorithm 1 shows the working of 3D point cloud algorithm.

Algorithm-1 Generating point cloud from silhouette 
image

# Input:
# image path: Path to the image
# - F: Focal length
# - SF: Scaling factor
# Output:
# - Downsampled point cloud saved as a CSV file
try:
 # Specify Output Folder
 output_folder = specify_output_folder()
 # Initialize Parameters
 F = 100 # Replace with actual focal length
 SF = 1.0 # Replace with actual scaling factor
 # Calculate Central Pixel Coordinates
 Cx, Cy = calculate_central_pixel_coordinates(silhouette_image)
 # Initialize Point Cloud
 point_cloud = []

FIGURE 7

We examined the angular distance between joints during various movements with (A) Drone Action (B) UAV human.

FIGURE 8

Results of fiducial points on (A) Drone Action (B) UAV human.
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 # Iterate Over Image Pixels
 for v in range(silhouette_image.shape[0]):
  for u in range(silhouette_image.shape[1]):
    X, Y, Z = calculate_3d_coordinates(u, v, silhouette_image, 

F, SF, Cx, Cy)
   point_cloud.append([X, Y, Z])
 # Convert to NumPy Array
 point_cloud_np = np.array(point_cloud)
 # Convert to Open3D Point Cloud
  o3d_point_cloud = convert_to_open3d_point_cloud 

(point_cloud_np)
 # Downsample the Point Cloud
  downsampled_point_cloud = downsample_point_cloud 

(o3d_point_cloud)
 # Save Downsampled Point Cloud
 save_point_cloud(downsampled_point_cloud, output_folder)
 print(“Downsampled point cloud saved successfully”)

except Exception as e:
 print(f ”An error occurred: {e}”)

3.5 Kernel discriminant analysis

Kernel Discriminant Analysis (KDA) stands out as a method in 
machine learning, emphasizing the identification of a blend of features 
that effectively distinguishes classes within a dataset. Unlike the 
conventional approach of Linear Discriminant Analysis (LDA), which 
presupposes the linearity of data separability, KDA employs a kernel 
function to transform data into a higher-dimensional space where 
potential linear separability may exist. This adaptation enables KDA to 
handle datasets with non-linear separability more adeptly compared to 
LDA. By prioritizing the maximization of the ratio between-class 
variance and within-class variance, KDA strives to uncover a projection 
that optimizes the discrimination among various classes. This technique 

FIGURE 9

Results of 3D point cloud feature on (A) Drone Action (B) UAV human.

FIGURE 10

Enhanced feature allocation via kernel discriminant analysis (KDA).
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finds applications across diverse domains such as pattern recognition, 
computer vision, and bioinformatics, where addressing classification 
challenges characterized by intricate decision boundaries is paramount. 
By using Equation 13.

 KBw KWwλ=  (13)

3.6 Classification

In the classification process, a Convolutional Neural Network 
(CNN) is employed (Azmat et  al., 2023). The general equation 
governing the convolutional operation within a CNN is outlined by 
using Equation 14:

 

1 1 1
, ,

0 0 0

k k cin
ijk pqck i p j q c k

p q c
F Q P b

− − −

+ +
= = =

= +∑ ∑ ∑
 

(14)

In this case, P stands for the input matrix, Q for the weights, b 
for the bias, and F for the convolutional layer’s output. The 
suggested CNN architecture for classifying human actions is 
shown in Figure 10. The features are first formatted and supplied 
into the CNN model. 32 filters with a stride of 1 are first applied. 
The input size is then decreased by implementing a max pooling 
layer of size. Next, another max pooling layer of size is applied, 
after which 64 convolutional filters of size and stride of 1 are 
applied. This is where the outcome size becomes. Next, a layer that 
is flattened and then densely placed. Ultimately, the probability 

FIGURE 11

CNN architecture for proposed system.

FIGURE 12

Confusion matrix for the UAV-human dataset.
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distribution for the final forecast is produced by the softmax 
function (see Figure 11).

4 Experimental setup and datasets

4.1 Experimental setup

To carry out the experiments outlined in this study, a laptop 
equipped with an Intel Core i5 CPU and 8 GB of RAM was 
utilized. The operating system employed was a 64-bit version of 
Windows 10, along with the pyCharm integrated development 
environment for programming tasks. Furthermore, the research 
involved capturing RGB footage utilizing a drone camera, 
capturing various perspectives. Three benchmark Human Activity 
Recognition (HAR) datasets were employed, specifically the 
Drone-Action dataset.

4.2 Dataset description

4.2.1 HAV human dataset
The UAV-Human dataset encompasses a diverse array of human 

activities, comprising 67,428 videos captured with the participation of 
119 individuals over a duration of three months. These recordings 

were conducted in both urban and rural settings, facilitated by 
Unmanned Aerial Vehicles (UAVs), thereby presenting a multitude of 
challenges such as varied backgrounds, occlusions, weather 
conditions, and camera movements. This study focuses on eight 
specific human action categories extracted from the UAV-Human 
dataset: sitting down, standing up, applauding, waving hands, running, 
walking, giving a thumbs-up, and saluting.

4.2.2 UCF dataset
The UCF Ariel Video Dataset is a curated collection of aerial 

footage intended for academic exploration in computer vision and 
machine learning. It contains a diverse selection of scenes captured 
from aerial viewpoints, including urban and rural environments, as 
well as various weather conditions. Researchers leverage this dataset to 
develop and assess algorithms for tasks such as object detection, 
tracking, and understanding aerial scenes, without relying on 
AI-generated content.

4.2.3 Drone Action dataset
Within the Drone-Action dataset, there exist 13 distinct categories, 

namely: boxing, clapping, hitting-bottle, hitting-stick, jogging-front, 
jogging-side, kicking, running-front, running-side, stabling, walking-
front, walking-side, and waving hands. This dataset diverges from an 
object-oriented structure due to instances where multiple entities 
engage in identical actions simultaneously. Each class in the dataset 

FIGURE 13

Confusion matrix for UCF dataset.
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comprises a collection of video clips, ranging from 10 to 20 clips 
per class.

5 Results and analysis

In this section, we  performed different experiments for the 
proposed system. The system is evaluated using different matrices, 
including confusion matrix, precision and recall.

5.1 Confusion matrices

In this section; we  discussed performance analytics 
of all 3 benchmarks datasets used in the field of unmanned 
aerial vehicles for human detection and recognition. Figures 12–
14 presents’ confusion matrix of human interaction 

FIGURE 14

Confusion matrix for Drone Action dataset.

TABLE 2 Performance evaluation of the proposed system over UAV-
Human dataset.

Classes Accuracy Precision Recall

Sitting 0.68 0.68 0.74

Standing 0.71 0.71 0.69

Applaud 0.69 0.69 0.71

Wave-hands 0.68 0.68 0.67

Run 0.67 0.67 0.66

Walk 0.68 0.68 0.66

Salute 0.67 0.67 0.65

Thumbs-up 0.68 0.68 0.68

Average 0.68 0.67 0.66

Bold value indicates the results of my system.

TABLE 3 Performance evaluation of the proposed system over UCF 
dataset.

Classes Accuracy Precision Recall

Boxing 0.75 0.77 0.75

Carrying 0.75 0.73 0.74

Clapping 0.75 0.76 0.78

Digging 0.75 0.71 0.77

Jogging 0.75 0.70 0.74

Running 0.75 0.73 0.72

Throwing 0.75 0.77 0.75

Trunk 0.75 0.75 0.71

Walking 0.75 0.78 0.77

Waving 0.75 0.79 0.74

Average 0.75 0.74 0.73

Bold value indicates the results of my system.
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recognition over UAV-Human, UCF and Drone Action datasets, 
respectively.

5.2 Precision, recall, and F1 score values for 
locomotion activities

Tables 2–4 presented the comparison of each class with their 
precision, accuracy and recall values.

Our system get UAV-Human = 0.68, UCF = 0.75, and Drone-
Action = 0.83. We recognize that accuracy by itself is not enough to 
define the reliability of such a system, especially if it is used for 
applications like surveillance, search and rescue, or working closely 
with people. Our system is built to address typical issues arising with 
drone-based object tracking, including complex background, object 

occlusion and illumination variation. Some of the procedures 
performed here help to gain higher image’s contrast – the objects in 
the foreground will be  more easily detected which will definitely 
improve recognition in non-ideal conditions. The capacity for 
withstanding broad variations in the environment is useful in making 
certain that the system will perform well optimally after implementing 
it in real field use.

5.3 Ablation study analysis of propose 
model components

We perform an ablation study in Table 5 to evaluate our model 
by systematically removing components one at a time. Every row 
describes the model with one element omitted and the accuracy 
on UAV-Human, UCF, and Drone-Action datasets. Table 5 also 
shows how important each of these elements is for achieving 
high accuracy.

5.4 Analyzing time complexity and 
executing time

Understanding time complexity of different processes is critical 
to the efficiency of the machine learning and computer vision tasks. 
Time complexity computation helps us identify slow activities within 
the system and estimate the impacts of certain techniques on 
run-time. Data preprocessing is critical in enhancing the efficiency of 
our model functions most importantly in the area of recommendation. 
Preprocessing Execution Time and Preprocessing Time Complexity 
of Critical Processes in Our Model (with and without) The empirical 
results reveal that preprocessing can greatly enhance efficiency as 
many processes are transformed from linear or quadratic to 
logarithmic. First, this kind of transition reduces the execution time 
by almost half and increases the system’s throughput, making it 
beneficial for real-time applications such as action recognition and 
the field of study. Table 6 shows the computational cost of all steps of 
given system.

TABLE 4 Performance evaluation of the proposed system over Drone-
Action dataset.

Classes Accuracy Precision Recall

Boxing 0.92 0.92 0.92

Clapping 0.92 0.89 0.91

Hitting-w-b 0.92 0.92 0.91

Hitting-w-s 0.92 0.93 0.92

Jogging-f 0.92 0.91 0.92

Jogging-s 0.92 0.91 0.92

Kicking 0.92 0.91 0.90

Running-f 0.92 0.91 0.90

Running-side 0.92 0.91 0.91

Stabbing 0.92 0.91 0.90

Walking-s 0.92 0.92 0.82

Walking-f 0.92 0.91 0.90

waving 0.92 0.91 0.90

Average 0.92 0.91 0.90

Bold value indicates the results of my system.

TABLE 5 An ablation experiment evaluating all methods across different datasets.

Experiments Preprocessing Human 
detect

Key-point 
extraction

JA RD FP PC KDA CNN UAV 
human

UCF Drone 
Action

Full model ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 68 75 92

Preprocessing ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 63 70 86

Human detection ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 60 69 84

Key-point 

extraction

✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ 63 71 87

Without KDA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ 61 68 84

Without pre + Key 

points

✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ 58 65 81

Without 

pre + point clouds

✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 62 69 85

Without 

Pre + KDA

✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ 59 66 83

JA = Joint Angle, RD = Relative Distance, FP = Fiducial Points, PC = Point Clouds, KDA = Kernel Discriminant Analysis, CNN = Convolutional Neural Network.
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5.5 Comparison

In this experiment, we have compared our proposed method with 
other popular state-of-the-art methods over all 3 datasets. Table 7 
provided a significant improvements in recognition accuracies over 
other methods.

6 Discussion

Our study addresses the challenge of recognizing human actions 
in drone-recorded RGB videos, crucial for various applications like 
video surveillance and sports analysis. We  propose a multi-step 
system: segmenting video frames, preprocessing for quality 
enhancement, and identifying human bodies using the YOLO 
algorithm. Key skeletal points are extracted from human silhouettes, 
including head, shoulders, and joints. This data is optimized using 
the KDA optimizer and classified using a CNN. Evaluation on 
benchmark datasets shows promising action recognition accuracies, 
highlighting the effectiveness of our approach in overcoming 
complexities in drone-captured RGB videos.

7 Conclusion

The technique proposed in this study brings into the 
framework a new approach for detecting human actions in drone 
videos making it easier to identify people’s movements and 
actions. Subsequently and most importantly, the system 
recognizes human poses and categorizes them with a fair degree 
of accuracy based on the features selected, thus enabling the users 
to understand the different movements of the human form in 
various activities. The integration of Convolutional Neural 
Networks (CNN) enables our system to focus and identify 
regional features and variations which enhances its capability of 
detecting motion dissimilarities in human movement. This is 
especially important for the type of applications where action 
recognition is crucial due to the possibility of better interpretation 
of the performed gestures and interactions in the context of the 
environment. Besides, as a part of the preprocessing steps which 
are also integrated into the proposed approach, the quality of the 
images is enhanced, and the interference from the background is 
minimized. When making foreground subjects stand out, 
we  boost recognition rates and simplify detection models 
freed of interferences that disrupt recognition in real-
world conditions.

Further, in the future, we plan on incorporating more features and 
testing our system with more different types of datasets. Expanding the 
number of scenarios and actions that we teach to our model is our goal 
to make more flexible the system that we develop in various conditions 
of operation. This is a continuous work due to our commitment to 
improve and enhance the method for the detection of the human action 
in the drone video for better performances in real-world scenarios.

Data availability statement

Publicly available datasets were analyzed in this study. This 
data can be  found here: https://www.kaggle.com/datasets/

TABLE 6 Processing efficiency analysis and execution time.

Process Without 
preprocessing

With 
preprocessing

Execution time 
without 

preprocessing (s)

Execution time 
with 

preprocessing (s)

Reduction in 
time 
complexity

Preprocessing N/A O(n) N/A 0.1 Enhance efficiency

Human detection O(n log n) O(log n) 4.0 1.2 Notable improvement

Key-point 

extraction
O(n) O(log n) 2.5 0.8

More efficient 

extraction

Joint angle O(n) O(log n) 2.0 0.6 Faster computations

Relative distance O(n) O(log n) 1.8 0.5 Optimized calculations

Fiducial points O(n) O(log n) 1.7 0.6 Quicker identification

Point cloud O(n log n) O(log n) 5.0 1.5
Improved noise 

reduction

KDA O(n2) O(n log n) 8.0 3,0
Reduced 

dimensionality

CNN O(n log n) O(log n) 10,0 3.5
Enhanced feature 

processing

TABLE 7 Comparisons of the recognition accuracies between proposed 
method and other state-of-the-arts methods.

Methods
UAV 

Human
UCF

Drone 
Action

Baseline (SGN) (Xu et al., 2022) 0.39 - -

MSST-RT (Sun et al., 2021) 0.41 - -

P-CNN (Perera et al., 2019a) - - 0.75

SWTF + Pose-Stream (Yadav et al., 2023) - - 0.78

CNN (Azmat et al., 2023) 0.44 - 0.90

Proposed system mean accuracy 0.68 0.75 0.92

Bold value indicates the results of my system.
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dasmehdixtr/drone-dataset-uav and https://paperswithcode.com/
dataset/drone-action.
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