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To reduce transportation time, a discrete zeroing neural network (DZNN)

method is proposed to solve the shortest path planning problem with a single

starting point and a single target point. The shortest path planning problem

is reformulated as an optimization problem, and a discrete nonlinear function

related to the energy function is established so that the lowest-energy state

corresponds to the optimal path solution. Theoretical analyzes demonstrate that

the discrete ZNN model (DZNNM) exhibits zero stability, e�ectiveness, and real-

time performance in handling time-varying nonlinear optimization problems

(TVNOPs). Simulations with various parameters confirm the e�ciency and real-

time performance of the developed DZNNM for TVNOPs, indicating its suitability

and superiority for solving the shortest path planning problem in real time.
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1 Introduction

In recent years, the application of mobile platforms has been increasing, enhancing the

efficiency of production systems (Balk et al., 2021; Wu et al., 2022; Zhou et al., 2022). In

this case, certain collisions can delay production, harm productivity, and reduce profits

(Gonzalez et al., 2016; Li et al., 2022). Therefore, the path planning problem for mobile

platforms has become a research hotspot. In the processes of handling, loading, and

unloading, the path planning problem for the mobile platform can be transformed into a

shortest path planning problem, thereby saving both time and cost. Therefore, the shortest

path problem is a typical combinatorial optimization problem that seeks the shortest path

from a specified starting point to a desired terminus, aiming to minimize the total path cost

(Zhang and Li, 2017; Li et al., 2021; Xu et al., 2022).

Path-planning methods are classified as follows: The artificial potential field method is

a virtual force approach based on physical design (Jie et al., 2017; Zhou et al., 2023a,b).

In this algorithm, movement toward the target point is likened to gravitation, while

movement away from obstacles is likened to repulsion. Thus, the path planning problem is

transformed into an optimization problem using a gravitational repulsion field function

(Robinson et al., 2020). The model is simple to establish but challenging to obtain the

optimal solution due to its tendency to converge to local optima. The fuzzy logic algorithm,

derived from fuzzy control, emulates path-seeking methods based on drivers’ daily driving
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experiences. It directly utilizes expert knowledge from a database,

offering good stability when incorporating real-time external

information. However, the effectiveness of the fuzzy rules in the

expert database relies heavily on accumulated experience, and the

algorithm may lack real-time responsiveness in rapidly changing

external environments. Graph search-based methods include the

D* algorithm (Raheem and Ibrahim, 2018) and the Lee algorithm

(Chi et al., 2022), etc. One of the most representative algorithms

is the greedy algorithm, which aims to find the target point. In

order to accelerate the optimization speed and avoid constraints, Fu

improved the A* algorithm on the basis of the greedy algorithm to

solve the path planning problem of industrial mobile manipulators.

Under safe and non-collision conditions, a local path optimization

strategy is directly adopted to reduce the number and length of

local paths by straightening local paths (Fong et al., 2016; Fu

et al., 2018). However, the algorithm lacks real-time performance

due to the extensive computational requirements of the planning

problems involving high-dimensional mobile platforms and snake-

like robots. Bionic algorithms are developed for such problems,

such as the genetic algorithm (Yang et al., 2008), the neural network

algorithm (Qiu et al., 2018; Buddhadeb et al., 2020; Wang et al.,

2022), and the ant colony algorithm (Song et al., 2021). The ant

colony algorithm achieves optimization by simulating the foraging

behavior of ant colonies, offering advantages such as parallelism

and global optimization. Nevertheless, it is easy to fall into the

local optimal solution due to the large number of calculations.

Hui proposes an ant colony optimization algorithm to create a

collapse-free incipient path in the intricate map and then applies

a turning point optimization algorithm to achieve path planning

on the mobile platform (Yang et al., 2019). Xu uses a particle swarm

optimization algorithm to create a linear path and then smooths

the linear path. However, vibrations can arise at the intersections

of each path, potentially causing the anticipated trajectory to

lose its optimality. This may result in the mobile platform

stopping, rotating, and then restarting (Xu et al., 2021; Song

et al., 2022). Therefore, a higher-order Bezier curve is utilized to

construct the desired path directly to overcome the above problems.

Nevertheless, it is necessary to design an efficient algorithm with

strong computing power that is less time-consuming to find the

optimal path in an environment with a large scanning area and a

large number of obstacles. Hence, the above algorithms are always

limited by the inherent problem of the exponential growth of the

search scale. As the number of nodes increases, the success rate

of solving within a limited time is significantly weakened. Neural

networks are powerful algorithms to solve many scientific research

and engineering problems. For the shortest path planning problem,

Song proposed a pulse-coupled neural network model with a

special mechanism to solve the shortest path planning problem.

Compared with numerous algorithms, it effectively reduces costs

(Sang et al., 2016). Filipe proposes a two-layer Hopfield neural

network to solve the shortest path, which requires fewer neurons

and converges quickly. However, the solution of this model is

not optimal when dealing with shortest path planning problems

(Araujo et al., 2001). In general, the discrete zeroing neural network

(DZNN) has the characteristics of parallel processing, which can be

used in path planning to quickly solve the optimal path and achieve

the path planning task of the mobile platform (Hopfield and Tank,

1985).

The rest of this paper covers the following four parts: Section 2

describes the mathematical models of path planning and the ZNN

model (DZNNM). Section 3 provides a theoretical analysis of the

stability and convergence of the proposed DZNNM. In Section

4, the superiority and real-time characteristics of the proposed

DZNNM are verified by numerical simulations. Section 5 draws

the conclusion and future works. The primary contributions of this

paper are described as follows:

1) The path planning problem is converted to the nonlinear

optimization problem with equality and inequality

constraints, and the nonlinear function related to the

energy function is constructed so that the solution of the

lowest energy state corresponds to the solution under the

optimal path.

2) The theoretical analysis shows that the proposed discrete

ZNNmethod has 0-stability and convergence for time-varying

nonlinear optimization problems (TVNOPs).

3) The simulation results demonstrate that the DZNNM is

feasible, effective, and real-time in dealing with the shortest

path planning problem.

2 Problem formulation and model
foundation

In this section, it describes the process of transforming the

path planning problem into a nonlinear optimization problem. It

covers the conversion process from the continuous ZNN model to

the DZNNM and the establishment of the mathematical model for

path planning. Specifically, it presents the problem formulation, the

ZNN model, and the energy function model for online solving of

TVNOPs.

2.1 Problem formulation

Let L =
{

j|j = 1, · · ·m
}

denote an arbitrary finite set, and let

B = (j, r), (j ∈ L, r ∈ L) represent a set of ordered pairs of elements

arranged sequentially.
(

j, r
)

and
(

r, j
)

represent different elements

if and only if r is equal to j. T = (L,D) is an oriented graph,

and D ⊂ B. The parameters of L are named vertexes, and the

parameters of D are denoted as oriented borders. If a cost matrix

cjr corresponds to edges in T from vertex j to vertex r, then T is

referred to as a directed graph. Generally, the cost matrix cjr is not

needfully symmetric. In other words, the cost from vertex r to j is

not inequivalent, possibly to the cost from vertex j to r. In addition,

some borders between vertexes do not exist. Namely, the number of

borders may be less than the quantity of vertices. For non-existent

edges, the value of the cost coefficient is defined as infinity. In this

paper, the shortest path problem is to search for the shortest feasible

path from the desired starting point to the designated terminus.

2.2 Mathematical model of path planning

Consider the shortest path from vertex 1 to vertex m for an

oriented graph with m vertexes and m borders, and the price of
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cjr per border. To formulate the shortest path problem, there are

two typical path representations: vertex representation and edge

representation. This paper adopts the border path characterization

method to express the shortest path problem. The shortest path

problem can be transformed into the following integer linear

programming problem (Xia and Wang, 2000; Yoshihiko and

Willsky, 2015).

min
m
∑

j=1

m
∑

r=1
cjrxjr

s. t.
m
∑

v=1
xjv −

m
∑

l=1

xlj =











1, if j = 1

0, if j = 2, 3 · · ·m− 1

−1, if j = m

, (1)

where the minimizing objective function of an integer linear

programming problem (Equation 1) is the absolute price of the

route, and the restriction is -1, 0, or 1. The constraint guarantees

a sequential route from the specified starting point to the particular

ending point. A decision variable represented by edge dependence

from vertex to vertex is defined as follows:

xjr =

{

1, if the edge from j to r is on the path,

0, otherwise
(2)

Due to the constraint coefficient matrix defined in Equation

2, it is set to either 0 or 1. If there exists a unique optimal

integer solution where the variable takes on values of 0 or 1, the

integer programmingmentioned above can be transformed into the

following linear programming (Equation 3):

min
m
∑

j=1

m
∑

r=1
cjrxjr

s. t.
m
∑

v=1
xjv −

m
∑

l=1

xlj = δj1 − δjm

xjr ≥ 0, j, r = 1, 2, · · ·m

, (3)

where δjr denotes the Kronecker function, which is defined as j =

r, δjr = 1, and j 6= r, δjr = 0. According to the duality principle

of convex optimization (Lemeshko and Sterin, 2013), the dual path

planning problem (Equation 4) can be obtained as follows:

max y1 − ym
s. t. yj − yr ≤ cjr j, r = 1, 2 · · ·m

, (4)

where yj represents the dual decision variable related to vertex j,

y1 − yj indicates the shortest length from vertex 1 to vertex j.

Generally, a suitable energy function is developed such that the

lowest energy condition corresponds to the anticipative solution.

According to the duality properties of linear programming, an

energy function model (Equation 5) of the original duality problem

is generalized by Xia and Wang (2000):

E(x, y) =
1

2

m
∑

j=1

[

m
∑

r=1

(xjr − xrj)− δi1 + δim

]2

+
1

2

m
∑

j=1

m
∑

r=1

[

(−xjr)
+
]2

+
1

2





m
∑

j=1

m
∑

r=1

cjrxjr − y1 + ym





2

+
1

2

m
∑

j=1

m
∑

r=1

[

(yj − yr − cjr)
+
]2
, (5)

where (s)+ = max {0, s}, and s ∈ R. The first term of the above

formula represents the equality constraint, the second term denotes

the non-negative constraint, the third term means the square dual

gap, and the last term indicates the inequality restriction in the dual

problem.

For convenience, the following coefficient vectors are defined

as:

ŷ =
(

ŷ1, · · · , ŷm
)⊤

;

ĉ =
(

ĉ11, · · · , ĉ1m, ĉ21, · · · , ĉ2m, · · · , ĉm1, · · · , ĉmm

)⊤
;

x = (x11, · · · , x1m, x21, · · · , x2m, · · · , xm1, · · · , xmm)
⊤.

Define A is an m × m2 constraint matrix, whose row denotes j

and column means r, ej − er is a vector, the j element is 1, and the

other elements are 0.
The above formula can be rewritten as Equation 6:

E
(

x, ŷ
)

=
1

2

[

(

c⊤x− (e1 − em)
⊤ ŷ

)2
+

∥

∥(−x)+
∥

∥

2

2
+

∥

∥

∥

(

A⊤ ŷ− c
)+

∥

∥

∥

2

2
+ ‖Ax+ em − e1‖

2
2

]

. (6)

Let b̃ = e1−em. Therefore, the above equation can be simplified
as Equation 7:

E
(

x, ŷ
)

=
1

2

[

(

c⊤x− b̃⊤ ŷ
)2

+
∥

∥(−x)+
∥

∥

2

2
+

∥

∥

∥

(

A⊤ ŷ− c
)+

∥

∥

∥

2

2
+

∥

∥

∥
Ax− b̃

∥

∥

∥

2

2

]

, (7)

where ‖·‖ represents the 2-norm, and given (−x)+ =
[

(−x1)
+, · · · , (−xm)

+
]⊤

.

2.3 Continuous ZNN model and discrete
ZNN model

Through the above analysis, the path planning problem is

transformed into the path optimization problem from the specified

initiating point to the terminus. An energy function is established

for the shortest path to solve the optimization problem. The state

solution corresponding to the optimal node is obtained when the

energy function reaches its minimum. Therefore, the shortest path

problem is considered as the TVNOP. The TVNOPs described in

discrete time form are as follows (Guo et al., 2017; Qiu et al., 2018;

Sun et al., 2021):

min f̂
(

xχ+1, tχ+1

)

,
[

tχ , tχ+1

)

∈ [0,+∞) , (8)

where f̂ (·, ·) represents a differentiable nonlinear function

(Equation 8). The discrete form of the TVNOPs is transformed
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from the continuous time-varying nonlinear function f̂ (x (t) , t)

based on the sampling time t = (χ + 1) τ . τ > 0 is the acquisition

interval, and χ = 0, 1, 2, · · · is the sampling time. The existing

and foregone data is used to ensure the next data iteratively, which

can solve TVNOPs. In the calculation time interval
[

tχ , tχ+1

)

∈

[0,+∞), the variable xχ+1 and the function f̂
(

xχ+1, tχ+1

)

can be

calculated iteratively by given information xχ and f̂
(

xχ , tχ
)

at the

next moment.

A DZNNM is acquired for solving TVNOPs online; the

following continuous TVNOPs (Equation 9) are considered:

min
x(t)∈Rn

f̂ (x (t) , t) ∈ R, t ∈ [0,+∞) . (9)

On behalf of solving the time-varying optimal solution of

continuous TVNOPs x∗ (t), the gradient of the function f̂ (x (t) , t)

(Equation 10) is directly generalized as:

ϑ (x (t) , t) = ∂ f̂ (x (t) , t) /∂x (t) . (10)

The above formula is expanded to the following Equation 11:

[

∂ f̂

∂x1
,
∂ f̂

∂x2
, · · ·

∂ f̂

∂xn

]⊤

= [ϑ1 (x (t) , t) ,ϑ2 (x (t) , t) , · · · ,

ϑn (x (t) , t)]
⊤ ∈ Rn, (11)

where the superscript ⊤ represents the transposition operational

character of a matrix or a vector. The gradient ϑ (x (t) , t) is a

slippy differentiable nonlinear function created by the objective

function f̂ (x (t) , t). On behalf of solving the theoretical solution of

TVNOPs, the gradient of the objective function tends to 0, and the

zeroing dynamical system (Equation 12) is defined as:

ϑ̇t (x (t) , t) =
dϑ (x (t) , t)

dt
= −λϑ (x (t) , t) , (12)

where the parameter λ > 0, ϑ̇t (x (t) , t) is the derivative of

the gradient ϑ (x (t) , t) in connection with time. While the error

ϑ (x (t) , t) reaches 0, the solution x (t) of the TVNOPs arrives

at the corresponding theoretical solution x∗ (t) of the continuous

TVNOPs (Sun et al., 2020a,b; Wei et al., 2021). Because of the

zeroing dynamic system (Equation 12), the differential equation of

the ZNN model (Equation 13) is extended as:

H̃ (x (t) , t) ẋ (t) = −λϑ (x (t) , t)− ϑ̇t (x (t) , t) , (13)

where H̃ (x (t) , t) is a non-singular Hessian matrix. The details can

be seen as follows:

H̃ (x (t) , t) =
∂2 f̂ (x (t) , t)

∂x (t) ∂x⊤ (t)

=

















∂2 f̂ (x(t),t)
∂x1∂x1

∂2 f̂ (x(t),t)
∂x1∂x2

· · ·
∂2 f̂ (x(t),t)
∂x1∂xn

∂2 f̂ (x(t),t)
∂x2∂x1

∂2 f̂ (x(t),t)
∂x2∂x2

· · ·
∂2 f̂ (x(t),t)
∂x2∂xn

...
...

. . .
...

∂2 f̂ (x(t),t)
∂xn∂x1

∂2 f̂ (x(t),t)
∂xn∂x2

· · ·
∂2 f̂ (x(t),t)
∂xn∂xn

















∈ Rn×n.

Due to the non-singularity of the Hessian matrix, the above

equation is converted to the following Equation 14:

ẋ (t) = −H̃−1 (x (t) , t)
(

λϑ (x (t) , t)+ ϑ̇t (x (t) , t)
)

. (14)

If the Hessian matrix is a positive symmetric matrix, it

represents the solution of the continuous TVNOPs. Moreover, if

the matrix is singular, the Hessian matrix can be transformed into

H̃ + rI, where r is the absolute value of the maximum eigenvalue

of the Hessian matrix and I is the identity matrix. Thus, the matrix

H̃
(

x(t), t
)

satisfies the non-singularity condition.

A DZNNM is proposed to solve the TVNOPs to solve the

optimal value of the energy function E
(

x, ŷ
)

. Hence, a continuous

ZNN model is discretized to obtain the ZNN model in discrete

form. Generally, Euler’s forward difference equation ẋ (t) =
(

xχ+1 − xχ
)

/τ is employed to discretize the continuous ZNN

model (Equation 15) as follows:

xχ+1 = xχ − H̃−1
(

xχ , tχ
) (

ιϑ
(

xχ , tχ
)

+ τ ϑ̇t
(

xχ , tχ
))

. (15)

The above formula can be called as DZNNM, where ι =

τλ ∈ (0, 1] is step length, H̃−1
(

xχ , tχ
)

, ϑ
(

xχ , tχ
)

, and ϑ̇t
(

xχ , tχ
)

are discrete forms of H̃−1 (x (t) , t), ϑ (x (t) , t), and ϑ̇t (x (t) , t),

respectively.

3 Theoretical analyzes and results

The continuous ZNN model construction process and the

DZNNM construction process are briefly described to solve the

TVNOPs in the previous section. Therefore, the continuous ZNN

model-building process, discretization steps, and proof process are

elaborated on in this section. Define a continuously differentiable

linear equation, and the matrix Q(t) is a known and bounded

matrix of time-varying full-rank coefficients; w(t) is a time-varying

vector and is differentiable at any time in connection with time t.

ν(x(t), t) = Q(t)x(t)−w(t) = 0. (16)

The discrete formal equation corresponding to the above

formula (Equation 16) can be managed in the time period

[χτ , (χ + 1) τ ] ⊆
[

t0, tf
]

. The time-varying equation in discrete

form Equation 17 is as follows:

Qχ+1xχ+1 = wχ+1, (17)

where the matrices Qχ+1 and wχ+1 are discrete forms of the

matrices Q(t) and w(t), respectively. Instantaneous sampling is t =

(χ + 1)τ , i.e., χ = 0, 1, 2 · · · denotes the regenerative target.

The following vector-valued error function ν(x(t), t) =

Q(t)x(t) − w(t) is defined to handle the above equation based

on the design steps by Zhang et al. (2015). The continuous ZNN

model (Equation 18) of the linear equation dynamical system has

the following form:

ẋ(t) = Q−1(t)(ẇ(t)− Q̇(t)x(t)− η(Q(t)x(t)− w(t))). (18)

Among them is the design parameter η > 0, which can be used

to control the convergent ratio. Q−1(t) denotes inverse and it is

equivalent to H−1(t). Generally, the ZNN model is discretized by

Euler’s forward difference formula (Equation 19) as follows:

xχ+1 = xχ + Q−1
χ (τ ẇχ − τ Q̇χxχ − h(Qχxχ − wχ )). (19)

Definition 1 (Guo and Zhang, 2012; Jin and Zhang, 2015;

Zhang et al., 2015). The roots of the characteristic polynomial
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PM (ψ) =
M
∑

i=0
ωiψ

i are used to verify whether the M-step method

M
∑

i=0
ωiσχ+i = τ

M
∑

i=0
ζi̟χ+i has 0-stability .

The M-step method has 0-stability if the solution of the

equation pM(ψ) = 0 lies on or within the unit circle (i.e., |ψ | ≤ 1).

The convergence order O(τ p) of the M-step method matches the

truncation error order p (p > 0) of the equation solution.

Definition 2 (Jin and Zhang, 2015; Jin et al., 2018). If and only

ifM-step has 0-stability and is consistent over time t ∈
[

t0, tf
]

, it is

convergent (i.e., σ[(t−t0)/τ] → σ ∗ (t) with τ → 0) .

Definition 3. The 0-stable consistency of the M-step method

converges to the order of its truncation error.

Based on the aforementioned definitions, we will analyze the

0-stability and convergence performance of the DZNNM.

Theorem 1. The DZNNM is 0-stable.

Proof. A DZNNM (Equation 15) is viewed as the one-step

neural network dynamics on account of Definition 1. According

to Definition 1, the characteristic polynomial (Equation 20) of the

ZNNmodel separated and dispersed by forward Euler interpolation

is as follows:

P1(ψ) = ψ − 1. (20)

The root (Equation 21) of the above equation is

ψ1 = 1. (21)

Therefore, according to Definition 1, the DZNNM is 0-stable.

The proof is fulfilled.

Theorem 2. The DZNNM (Equation 15) converges to the order

of the truncation error O(τ 2).

Proof. The forward Euler interpolation formula (Equation 22)

is as follows:

ẋχ =
xχ+1 − xχ

τ
+ O(τ ). (22)

The continuous ZNN model (Equation 18) is discretized

by forward Euler interpolation, and the following formula

(Equation 23) is obtained:

xχ+1 = xχ +Q−1
χ (τ ẇχ − τ Q̇χxχ −h(Qkxχ −wχ ))+O(τ 2). (23)

In the light of the above analysis, the truncation error of the

DZNNM is O(τ 2), so the DZNNM has consistency, convergence,

and 0-stability. According to Definition 2 and Definition 3, the

order of convergence of the model is O(τ 2). The proof is fulfilled.

Theorem 3. For the TVNOPs in discrete form, the steady-

state position error lim
χ→∞

∥

∥Qχxχ − wχ
∥

∥

2
of the DZNNM has order

O(τ 2).

Proof. According to Theorem 1, Theorem 2, and Definition 3,

as χ tends to infinity, we can get x∗χ + O(τ 2) = xχ . Therefore, the

following derivation process (Equation 24) is obtained:

∥

∥Qχxχ − wχ
∥

∥

F
=

∥

∥Qk(x
∗ + O(τ 2))− wχ

∥

∥

F

=
∥

∥Qχx
∗ − wχ + QχO(τ

2))
∥

∥

F
, (24)

where ‖‖F is a Fubini norm. The following Equation (25) is

obtained by further arrangement:

∥

∥Qχxχ − wχ
∥

∥

F
=

∥

∥QχO(τ
2))

∥

∥

F
= O(τ 2). (25)

FIGURE 1

The transport diagram of six-node path planning.

TABLE 1 Cost coe�cients of six-node path planning problems.

c1 c2 c3 c4 c5 c6

c1 100 16 8 16 9 8

c2 100 100 9 10 11 9

c3 100 100 100 10 11 12

c4 100 100 100 100 9 10

c5 100 100 100 100 100 13

c6 100 100 100 100 100 100

This proof is thus completed.

4 Numerical simulations and
verifications

Consider the shortest path planning problem, where each node

has five possible directions to move from a fixed initial point to the

terminus. To make the transportation process more reasonable, the

following conditions are assumed to be true:

1) For the path planning problem with a single starting point

and a single target point, node 1 is the starting point and node

6 is the endpoint, as shown in Figure 1.

2) In order to meet the actual transportation situation, some

transportation roads do not exist. For example, it cannot travel

from node 4 to node 4. Therefore, the given value of the cost

cjr of such a path is large in the simulation.

3) In the transportation process, it should not go in the reverse

direction. For instance, there is no arrow to go from node 2 to

node 1, indicating that the situation is not considered.

4) Assume that each node can go to a node whose number is

greater than its own.
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FIGURE 2

Energy function based on the six-node primal duality problem, (A) ι = 0.1, (B) ι = 0.5, (C) ι = 0.9, and (D) ι = 1.0.

TABLE 2 Energy loss from node 1 to other nodes.

|E12| |E13| |E14| |E15| |E16|

5.5558 2.1937 1.6309 1.3792 2.5478

TABLE 3 Energy loss from node 5 to other nodes.

|E51| |E52| |E53| |E54| |E56|

15.3249 20.9741 8.3363 3.4891 2.9722

FIGURE 3

Energy loss under di�erent parameters.

4.1 Six-node path planning simulations

The path planning problem is to find the shortest path between

source node 1 and terminal node 6, so as to minimize the cost

E
(

x, y
)

in the transportation process. The cost coefficient matrix

ĉ needs to be set in the process of establishing the path planning

mathematical model in Section 2.2, which is given in Table 1. The

cost coefficient matrix is c = [c11, c12, · · · c16, · · · , c61, · · · c66]
⊤,

and the original value matrix of the system is defined as follows:

x (0) = [0, 0, · · · 0]⊤36∗1, y (0) = [1, 1, · · · 1]⊤6∗1. In Section 2.4, it is

noted that different parameters of the DZNNM generally exhibit

different convergence rates. Therefore, the parameters are set as

ι = 0.1, ι = 0.5, ι = 0.9, and ι = 1.0, respectively. The energy

FIGURE 4

Twelve-node mobile platform path transportation diagram.

function of each path is calculated successively to determine the

shortest path in the transportation process.

The simulation results show that the DZNNM is exploited

to solve the shortest path planning problem. As the number

of iterations increases, the energy function E
(

x, y
)

decreases to

0, indicating that the DZNNM can effectively address the path

planning problem with a single starting point and a single target

point. While the energy function gets its minimum value, the

optimal solution x̂ can be solved at this time. The optimal solution

x̂ is substituted into the energy function E
(

x, y
)

to obtain the cost of

each path so as to determine the shortest path. Starting from node

1, it uses the energy function to calculate the energy consumption

from node 1 to node 2, node 3, node 4, node 5, and node 6. The

specific energy loss is shown in the Tables 2, 3.

As can be seen in Table 2, it can be concluded that the cost from

node 1 to node 5 is the smallest. Therefore, the energy consumption

of node 5 compared to other nodes is calculated. According to

the analysis of the actual transportation situation and assumed

conditions, when the mobile platform moves to node 5, it can

only transport objects to target point 6. In order to verify the
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FIGURE 5

Energy function based on the 12-node primal duality problem, (A) ι = 0.1, (B) ι = 0.5, (C) ι = 0.9, and (D) ι = 1.0.

TABLE 4 Cost coe�cients of six-node path planning problems.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

c1 100 5 4 2 9 8 10 12 25 30 22 23

c2 100 100 9 10 11 9 9 10 12 15 15 15

c3 100 100 100 10 11 12 12 8 10 12 15 13

c4 100 100 100 100 9 10 2 8 12 13 14 13

c5 100 100 100 100 100 13 12 9 11 12 14 16

c6 100 100 100 100 100 100 14 13 15 17 18 15

c7 100 100 100 100 100 100 100 15 14 3 13 19

c8 100 100 100 100 100 100 100 100 15 17 18 15

c9 100 100 100 100 100 100 100 100 100 14 15 16

c10 100 100 100 100 100 100 100 100 100 100 16 3

c11 100 100 100 100 100 100 100 100 100 100 100 17

c12 100 100 100 100 100 100 100 100 100 100 100 100

effectiveness of the algorithm, the optimal solution is substituted

into the expression of the energy function to solve the energy loss

from node 5 to each node. Table 3 can testify to the validity of

the DZNNM. Therefore, the shortest path is from node 1 to node

5, and finally to target point 6. Figure 2, Tables 2, 3 indicate that

the DZNNM is effective in processing TVNOPs. As the number of

iterations increases, the energy function decreases to 0 in a short

number of times, which reflects the high efficiency and real-time

performance of the DZNNM.

As the parameter ι increases, the energy function rapidly

converges to 0, reflecting the fast convergence and effectiveness

of the DZNNM, as shown in Figure 3. In practical application,

adjusting parameters can accelerate the convergence rate of the

whole optimal path, which can quickly accelerate and complete the

path planning.

4.2 Path planning simulations of 12 nodes

To demonstrate the correctness of the energy function

mathematical model as well as the validity and real-time capability

of the DZNNM, the 12-node path planning problem is further

discussed. The transport diagram for the problem is shown in

Figure 4. For the sake of comparison, the assumptions of this

TABLE 5 The energy loss from node 1 to each other.

|E11| |E12| |E13| |E14| |E15| |E16|

∞ 0.0364 0.0256 0.0113 0.0369 0.0265

|E17| |E18| |E19| |E110| |E111| |E112|

0.0217 0.0136 0.0204 0.0645 0.3339 2.1625

TABLE 6 The energy loss from node 4 to each other.

|E45| |E46| |E47| |E48|

0.0121 0.9318 0.0097 0.0125

|E49| |E410| |E411| |E412|

1.1156 0.1319 0.0218 1.2085

problem are the same as those of the six-node path planning

problem.

For convenience, the initial matrix is defined as follows:

x (0) = [0, 0, · · · 0]⊤144∗1,

y (0) = [1, 1, · · · 1]⊤12∗1,

c = [c11, c12, · · · c112, c21, c22, · · · c212, · · · , c121, · · · c1212]
⊤.

The simulation results of solving the shortest path problemwith

12 nodes using the DZNNM are as follows: The simulations show
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TABLE 7 Energy loss from node 7 to each other.

|E78| |E79| |E710| |E711| |E712|

0.0218 0.05424 0.0023 0.0719 1.7784

TABLE 8 Energy loss from node 10 to each other.

|E1011| |E1012| |E1112|

0.0443 0.2757 1.5876

that the path planning problem is increased to 12 nodes, and the

DZNNM can effectively solve the discrete TVNOPs, as shown in

Table 4. It can be seen from Figure 5 that the addition of path nodes

does not influence the convergence rate of the proposed DZNNM.

It can reflect the correctness of the path-planning mathematical

model as well as the superiority and real-time performance of the

DZNNM. In addition, the values in Table 5 show that the energy

loss from node 1 to any other node, so it can be concluded that

the energy consumption from node 1 to node 4 is the smallest in

the path planning process. Figure 5 and Table 5 demonstrate that

the DZNNM exhibits convergence performance, 0-stability, and

superior capability in handling TVNOPs.

Combined with the data in Table 6, the second path consumes

the least energy to move from node 4 to node 7. The data in

Table 7 show that the optimal choice in the third path is to move

from node 7 to node 10, and the energy consumed is 0.0023.

Table 8 shows the energy loss of the last two sections of the path.

In Table 8, the minimum energy consumption from node 10 to

node 11 is reflected by numerical values. Meanwhile, the value of

energy consumption from node 11 to target point 12 is given as

1.5876. Combined Table 5 with Table 8, it can be concluded that

the motion path in the twelve-node path planning problem is 1 →

4 → 7 → 10 → 11 → 12. The proposed DZNNM is suitable

and effective for discrete TVNOPs. In addition, the convergence

rate does not decrease with the increase of the nodes in the path-

planning problems, and the convergence rate can be accelerated by

scaling the design parameters appropriately. These characteristics

make the DZNNM suitable for solving large-scale path-planning

problems in real-time applications.

5 Conclusion and future work

A DZNNM is developed and analyzed to handle the shortest

path planning problem from a single starting point to a single

terminus. For the shortest path planning problem, a discrete

nonlinear function related to the energy function is constructed so

that the solution of the lowest energy function corresponds to the

solution of the shortest path. The shortest path planning problem

is transformed into the TVNOPs through strictly mathematical

analysis. In addition, the convergence, 0-stability, and theoretical

results of the proposed DZNNM are discussed and analyzed, which

reflect that the DZNNM can effectively deal with the shortest

path-planning problems. Simulation results show that the proposed

DZNNM has high precision and real-time performance in dealing

with path planning problems. Ultimately, the future research

direction is to develop mathematical models under complex

conditions and solve multi-starting point and multi-objective point

path planning problem.
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