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Introduction: Advanced traffic monitoring systems face significant challenges in 
vehicle detection and classification. Conventional methods often require substantial 
computational resources and struggle to adapt to diverse data collection methods.

Methods: This research introduces an innovative technique for classifying and 
recognizing vehicles in aerial image sequences. The proposed model encompasses 
several phases, starting with image enhancement through noise reduction and 
Contrast Limited Adaptive Histogram Equalization (CLAHE). Following this, contour-
based segmentation and Fuzzy C-means segmentation (FCM) are applied to identify 
foreground objects. Vehicle detection and identification are performed using 
EfficientDet. For feature extraction, Accelerated KAZE (AKAZE), Oriented FAST and 
Rotated BRIEF (ORB), and Scale Invariant Feature Transform (SIFT) are utilized. Object 
classification is achieved through a Convolutional Neural Network (CNN) and ResNet 
Residual Network.

Results: The proposed method demonstrates improved performance over 
previous approaches. Experiments on datasets including Vehicle Aerial Imagery 
from a Drone (VAID) and Unmanned Aerial Vehicle Intruder Dataset (UAVID) 
reveal that the model achieves an accuracy of 96.6% on UAVID and 97% on 
VAID.

Discussion: The results indicate that the proposed model significantly enhances 
vehicle detection and classification in aerial images, surpassing existing methods 
and offering notable improvements for traffic monitoring systems.
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1 Introduction

Experts are searching for methods to locate and categorize vehicles in the dynamic field 
of intelligent traffic management systems to improve the accuracy and usefulness of 
surveillance technologies (Pethiyagoda et al., 2023; Ren et al., 2024; Sun et al., 2020). This work 
examines the complex issues associated with aerial imaging, where precise vehicle detection 
is necessary, among other things, for parking management systems and crowded area 
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detection. Previously, motion estimates inside picture pixels (Kumar, 
2023; Sun et al., 2023) were used for vehicle identification in remote 
sensing data. This was an inefficient method that detected activity in 
areas that were not meant for detection. Recent developments in 
techniques such as object segmentation, silhouette extraction, and 
feature extraction combined with classification have improved the 
capacity to recognize objects in aerial images (Xiao et al., 2023a; Xiao 
et  al., 2023b; Wang J. et  al., 2024; Wang Y. et  al., 2024). Aerial 
photographs perform various functions, such as carrying out 
emergency relief operations, maintenance of crop fields, and detecting 
forested areas due to their view completeness (Qu et al., 2023; Ding 
et al., 2021). Here, the system is based on the work of satellites; in the 
process of determining and sometimes providing time-sensitive 
transit ID of vehicles through the organization of the aerial video to 
reveal individual frames necessary for effective analysis. A 
preprocessing procedure that uses methods which are brightness 
enhancement, noise-reduction, normalization, and Contrast-Limited 
Adaptive Histogram Equalization (CLAHE) is helpful in simplifying 
the image and to spot the vehicles and thus the speed of the cars easily. 
Cars in complex landscapes are picked out using Fuzzy C Mean 
segmentation method. Here is the summary in bullet form: Aerial 
images are reliable for various tasks just because of their exceptional 
view. An approach was employed to transform moving aerial videos 
into image frames which are subjected to vehicle identification and 
classification (Ahmed and Jalal, 2024a; Ahmed and Jalal, 2024b). 
Processing steps are brightness enhancement, noise reduction, 
normalization, and Contrast Limited Adaptive Histogram 
Equalization (CLAHE) so that images become easily identifiable. 
Fuzzy C Mean segmentation technique that is used to find vehicles in 
complicated backgrounds (Yan, 2022; Chen et al., 2022a; Chen et al., 
2022b; Li et al., 2023). YOLOv4, a brand newer model that is capable 
of precisely delineating objects bearing consideration to the fact that 
they are of small sizes, is used in the identifying stage. SIFT and ORB 
are the two feature extraction techniques that are employed to increase 
the accuracy of the classifier (Shang, 2023; Naseer et al., 2024). The 
algorithms provided by these networks benefit in size, position, and 
rotation invariance, as they can precisely identify vehicles in aerial 
view. As for a Convolutional Neural Network (CNN) classifier being 
deployed for vehicle classification, the new model will provide better 
classification outcomes and performance is much higher compared to 
the competition. There have been many investigations over the past 
couple of years concerning the recognition and classification of 
vehicles in aerial image sequences (Nosheen et al., 2024). Due to the 
complexity of the problem, it has been looked at in different ways by 
using various CNN network architectures and object detection 
algorithms. One of the most well-known object identification systems, 
Faster R-CNN (Region-based convolutional neural networks), was 
published by Ren et al. (2017) and Khan et al. (2024). After object 
extraction using RPN, Faster R-CNN performs box regression and 
classification within a rectangular region. Over the year, it has shown 
remarkable results in tracking and surveillance in a variety of object 
detection scenarios. Better performance was obtained by the Faster 
R-CNN model when tested on the task of identifying automobiles in 
aerial data. However, the computational complexity of Faster R-CNN 
can limit its real-time applications (Wang S. et  al., 2022; Liu 
et al., 2023).

Object recognition by another major method is also commonly 
used. It is known as SSD (Single Shot MultiBox Detector), developed 

with Near-Real Time Object Detection Application by Liu et al. (2016), 
Wang J. et al. (2024), and Wang Y. et al. (2024). SSD is a model that 
stands for “Scale Spoofing Detection” and it is famous for high grade 
accuracy and reliability in detecting various scaled objects. Through 
SSD, several scholars have succeeded in consuming audio speed 
information while still preserving the optimum precision in vehicle 
identification. SSD handles either vehicle size differences, or perspective 
shift that may appear in distance aerial images using anchor boxes and 
multi-scale feature maps. Interest in YOLO (You Only Look Once) 
algorithms have they are being as high as it is today due to the real-time 
efficiency of the object detection algorithms they use. YOLO is grid-
based classifier that produces educations and boundaries classes using 
the model’s grid (Zhou et al., 2022; Ansar et al., 2022).

YOLOv4, the latest version of the YOLO method has great detecting 
resolution that is faster than others. Studies have been carried out to 
check pictures of cars in an atmosphere taken using the YOLOv4 and the 
data shows that the algorithm has a high detection accuracy in real-time 
performance. Yusuf et al. (2024a), Yusuf et al. (2024b), and Alazeb et al. 
(2024) introduced the ResNet (Residual Network), another well-known 
CNN architecture that addresses the vanishing gradient issue and allows 
the training of extremely deep networks. ResNet has been applied to 
vehicle classification in aerial data in several studies, with better results 
than conventional CNN designs. Deep networks can be built utilizing 
ResNet’s skip connections and residual blocks without experiencing 
performance deterioration (Chen et al., 2023; Almujally et al., 2024).

Using state-of-the-art methods and procedures, this 
comprehensive approach forms the basis of our system’s 
main contributions:

 • To optimize both model simplicity and image quality, our 
approach incorporates CLAHE and noise reduction techniques 
in the pre-processing stage.

 • EfficientDet improves the detection objects capacity especially in 
segmented photos. We solve the problem of recognizing objects 
of different sizes with the application of improving vehicle 
detection level.

 • Our model provides for precise identification of vehicles in aerial 
pictures which is made possible by combining scale as well as 
rotation-invariant features, like vectors of 2D and fast local 
features using the SIFT and ORB approaches. A Convolutional 
Neural Network (CNN) classifier system is how the model 
increases its efficiency in the classification cycle, so the increased 
accuracy consequently arises. It emphasizes the role of both 
valuable and crucial tensors to create a more effective aerial 
vehicle detection and classification model.

The article’s structure is as follows: Section II covers system 
architecture which saves the system from exposure to physical attacks. 
Section III takes the system to the next level with a rigorous 
experiment phase analysis of how the prototype works. Next, Section 
IV emerges summarizing the system’s discoveries and indicating the 
directions of further transformations.

2 Literature review

Recently, various studies on vehicle detection and tracking have 
been carried out. The most recent techniques and methods used in 
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these systems will be covered in more depth in this section. For better 
comprehension, we separate the literature into two main streams: 
vehicle tracking and detection.

2.1 Vehicle detection algorithms

Li et al. (2021) used spatial pyramid pooling (SPP) in conjunction 
with convolutional neural networks (CNN) to achieve high accuracy 
vehicle identification in complicated environments. The SPP module 
collected context information at many scales, which allowed the 
model to account for changes in vehicle sizes even though CNN was 
successful in extracting hierarchical features from the input pictures. 
The combination of these methods enhanced detection performance, 
especially in difficult situations when there were occlusions and thick 
backgrounds. A deep learning technique based on the Faster R-CNN 
architecture was reported by Zhang et al. (2017). An RPN was used to 
propose areas, while a CNN was utilized to extract features. Together, 
these parts gave the system the capacity to precisely anticipate 
bounding boxes, which let it identify and locate cars in real time. The 
efficacy and efficiency of the algorithm in addressing vehicle 
identification tasks were evaluated via the use of RPN and deep 
learning. A comprehensive process chain for exploiting synthetic data 
in vehicle detection is evaluated by Krump and Stütz (2023). Learning 
models with various configurations of training data and assessing the 
resultant detection performance are part of the research. The process 
of creating synthetic training data includes these assessments. The 
authors look at the possibility of improving detection performance in 
the last phase. A real-time vehicle detection technique based on deep 
learning was reported by Javed Mehedi Shamrat et al. (2022). The 
strategy was to develop a lightweight CNN architecture that would 
enable efficient vehicle detection on low-resource devices. By making 
the model and its parameters simpler, the approach achieved real-time 
performance without reducing detection accuracy. This approach 
worked well for applications requiring embedded systems or 
low-power devices, when computational resources were limited. Ma 
and Xue (2024) presented a novel method for vehicle detection that 
utilizes a deformable component model (DPM) in conjunction with 
a convolutional neural network (CNN). The DPM modeled the spatial 
interaction between different components to capture the structural 
attributes of vehicles; the CNN recovered discriminative information 
for accurate identification. Together, these two techniques improved 
vehicle recognition resilience and accuracy, especially under 
challenging circumstances with obstacles and shifting perspectives. A 
two-stage framework for vehicle detection was suggested by Kong 
et  al. (2023) that makes efficient use of previous attribution 
information of cars in aerial images. The approach solves the scale 
variation issue by making use of convolutional layers with various 
receptive fields. The framework, which has been verified on difficult 
datasets like AI-TOD and view, shows promise in vehicle recognition. 
It consists of a Parallel RPN, Density-assigner, and Scale-NMS. Zhu 
et al. (2022) modifies the image segmentation technique to unify the 
vehicle size in the input image, simplifying the model structure and 
enhancing the detection speed. It also suggests a single-scale rapid 
convolutional neural network (SSRD-Net) and designs a global 
relational (GR) block to enhance the fusion of local and global 
features. A vehicle identification method based on deep learning and 
attention processes was developed by Zhang et  al. (2021). The 

proposed strategy for highlighting important components and 
suppressing irrelevant ones includes the self-attention mechanism. By 
identifying the distinctive features of cars, even in crowded 
environments where they can be obscured by other clutter, the system 
increased the accuracy of detection. The result of the attention 
process, which increased the discriminative capability of the model, 
was better detection performance. Yilmaz et  al. (2018) suggested 
maximizing the success rate of a trained detector by examining several 
factors, including the convolutional neural network’s architecture, the 
setup of its training choices, and the Faster R-CNN object detector’s 
training and assessment. The research shows that by effectively 
recognizing automobiles in real-time settings, the most recent 
approaches in vehicle detection systems specifically, R-CNN and 
Faster R-CNN deep learning methods significantly improve 
traffic management.

2.2 Vehicle tracking algorithms

Vehicle tracking algorithms have taken the stage in automated 
traffic monitoring research as the rising need for effective 
surveillance systems drives. Important research and approaches in 
the realm of literature are thoroughly analyzed in this part. 
Focusing on several sensors and algorithms, the authors (Wang 
et al., 2022) investigated their possibilities and uses in intelligent 
automobile systems using a fresh method. The article also addresses 
possible future directions and difficulties and looks at ways to 
identify vehicles in bad weather. Wood et al. (1985) demonstrated 
how well the Kalman filter, a widely used real-time tracker in 
computer vision kept vehicle tracks across numerous picture 
frames. This highlights how very important the Kalman filter is for 
applications in vehicle tracking. Long-term tracking using SURF-
based optical flow was first presented by the authors (Li et  al., 
2012). This technique combines online visual learning and 
computes warp matrices around SURF critical sites. In complicated 
real-world situations, this method shows much better tracking 
performance than conventional optical flow systems (Qiu et al., 
2020) integrated the YOLO object detector with the Deep SORT 
algorithm, yielding a robust solution for real-time vehicle 
surveillance that delivers unparalleled precision and efficiency. 
Vermaak et  al. (2005) tackled the difficulties of multi-object 
tracking by introducing a method that relies on the Joint 
Probabilistic Data Association Filter (JPDAF). This technique can 
handle occlusions and maintain correct track connections in tough 
settings. Meanwhile, Guo et al. (2022) created an improved vehicle 
tracking system that blends deep learning-based object detection 
techniques with the Hungarian algorithm for track association. 
This system displays great performance, even under hectic traffic 
circumstances. In addition (Tayara et al., 2017) proposed a unique 
approach to enhance vehicle tracking in aerial pictures. They 
merged object-level and trajectory-level properties using 
convolutional neural networks (CNNs) and recurrent neural 
networks (RNNs). This resulted in better precision and reliability 
in tracking. This essential research illustrates the amazing efficacy 
and flexibility of different algorithms used for monitoring 
automobiles. These algorithms include breakthroughs in graph-
based approaches, Kalman filtering, feature extraction techniques, 
deep learning, and association algorithms. Therefore, these studies 

https://doi.org/10.3389/fnbot.2024.1448538
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Yusuf et al. 10.3389/fnbot.2024.1448538

Frontiers in Neurorobotics 04 frontiersin.org

are defining the direction of current research on vehicle tracking, 
with the objective of building more efficient and reliable 
surveillance systems that may be utilized in a broad variety of real-
world applications.

3 Materials and methods

3.1 System methodology

The recommended design is based on a sophisticated item 
recognition and vehicle categorization approach applied for the region 
under evaluation. The procedure begins with the conversion of aerial 
images into individual frames. Before the detection phase, these 
frames go through important pre-processing procedures. i.e., Noise 
removal and CLAHE is used to improve image intensity dynamically, 
hence maximizing the visual input for subsequent detection 
algorithms. Following pre-processing, Fuzzy C Mean (FCM) 
segmentation is used to successfully discriminate foreground and 
background objects in the filtered images, resulting in a refined input 
for subsequent analysis. EfficientDet powers the detection phase. After 
the detection SIFT and ORB approaches are used to extract features 
from detected vehicles. This feature vector, which contains 
comprehensive details about the observed vehicles, serves as input for 
the CNN classifier. Figure 1 depicts the overall architecture of the 
suggested approach. The proposed system’s architecture is visually 
represented in Figure 1.

3.2 Pre-processing

Through the disseminating of pixel intensity levels, histogram 
equalization improves contrast in an image, improving features and 
streamlining research (Huang et  al., 2023; Zhang et  al., 2019). 
Applying the approach to color images, one can equalize the 
luminance channel in a color structure that differentiates between 
luminance and color information, such the YCrCb color space, 
guaranteeing improved image quality and feature visibility (Gong 
et al., 2018; Pervaiz et al., 2023). The process involves creating the 
cumulative distribution function (CDF) for transforming the pixel 
values, calculating the histogram of the original image, and mapping 
every pixel to a new intensity value based on the CDF. The CDF is 
calculated from the histogram of the image (Alarfaj et al., 2023). For 
a given intensity level i, the CDF 𝐶(𝑖) is defined as in Equation 1:

 
C i

h j
Nj

i
( ) = ( )

=
∑

0  
(1)

where h(j) is the histogram count for intensity level j.
By expanding the brightness range, this technique enhances the 

visibility of elements within the image, proving especially beneficial for 
images characterized by low contrast resulting from illumination issues 
(Yin et al., 2022; Sun B. et al., 2024; Sun G. et al., 2024). The analysis of 
images benefits from the preprocessing step in the form of histogram 
equalization which increases the resolution and contrast in images and 

FIGURE 1

The architecture of the proposed system.
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hence the accuracy of image analysis operations such as feature 
extraction, object detection and classification (Hanzla et  al., 2024a; 
Hanzla et al., 2024b; Hanzla et al., 2024c). The transformation function 
maps the original intensity levels to the new equalized intensity levels. 
For an intensity level 𝑖, the new intensity level 𝑇(𝑖) is given by Equation 2:

 T i round C i L( ) = ( )× −( )( )1  (2)

Where C(i) is the cumulative distribution function for intensity 
level i. L is the number of possible intensity levels in the image 
(typically 256 for an 8-bit image) (Figure 2).

3.3 Semantic segmentation

In many computer vision applications, including autonomous 
vehicles, medical imaging, virtual reality, and surveillance systems, 
image segmentation is essential. Images are divided into homogeneous 
sections using segmentation methods. Each area stands for a class or 
object. To improve item recognition on complex backgrounds, 
we compared two segmentation techniques.

3.3.1 Contour-based segmentation
Contour-based segmentation emerged as a robust technique for 

partitioning images into meaningful regions by leveraging the 
detection and analysis of object boundaries (An et al., 2019; Khan 
et al., 2024a; Khan et al., 2024b). Through the application of edge 
detection algorithms and contour extraction methods, we successfully 
delineated objects within the images, enabling precise region-of-
interest identification. First, the gradients of the image are computed 
to find areas with high spatial derivatives (Mi et al., 2023; Zhao et al., 
2024; Chughtai and Jalal, 2023). The gradient magnitude 𝐺 and 
direction 𝜃 are calculated using the following Equations 3 and 4:

 G G x G y= +2 2
 (3)

 
Q Gy

Gx
= 






arctan

 
(4)

Here, Gx and Gy, are the gradients which act along x and y axis, 
respectively. These gradients are normally estimated by convolution 
with the Sobel operators.

After that, non-maximum suppression is applied to thinning the 
edges to produce a binary edge map of a single pixel thick edges. This 
phase involves eliminating any gradient value that does not represent 
a peak in the search space. There are two thresholds, Tlow and Thigh  
which are used to classify edges as strong, weak and irrelevant. The 
classification is as follows using Equation 5 below:

 

Strong edge if G T
weak edge if T G T
non relev

ij high

low ij high

  
  
 

≥
≤ <

aant if G Tij low <









 

(5)

When evaluating the segmentation findings, this approach 
enabled precise segmentation free of omitted variability and other 
noise and fluctuation in light (Yang et al., 2022; Chen et al., 2022a; 
Chen et al., 2022b). By means of contour analysis techniques, the 
knowledge of spatial properties of objects was advanced to a 
substantial degree, thus improving segmentation results (Khan et al., 
2024a; Khan et al., 2024b; Xu et al., 2022). Therefore, underlining its 
relevance in the improvement of the continued development of the 
most complicated systems of image analysis and interpretation, the 
efficacy of the contour-based segmentation as a technique employed 
in any domain, from object identification to medical imaging, 
indicates (Naseer et al., 2024) (Figure 3).

FIGURE 2

Histogram Equalization results over the VAID and UAVID datasets: (A) original Images; (B) Equalized images.

https://doi.org/10.3389/fnbot.2024.1448538
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Yusuf et al. 10.3389/fnbot.2024.1448538

Frontiers in Neurorobotics 06 frontiersin.org

3.3.2 Fuzzy C-mean segmentation
To minimize the image’s complexity level, the image is segmented 

in this step using the Fuzzy C-Means (FCM) segmentation technique 
to separate the figure from the background (Zheng et al., 2024; Sun 
et al., 2019). Being the pixels belonging to multiple clusters fuzzy, 
FCM organizes the pixels in picture one or more clusters, (Saraçoğlu 
and Nemati, 2020; Sun et  al., 2022). Membership degrees and 
clustering centers of the objectives are optimized through iterative 
amendments. As we have an existing, but limited set of elements, Q 
that can be divided into M clusters with the latter having known 
centers, the clustering method approach uses an adequate matrix, h, 
to express and measure the degree of belonging to each of the 
clusters (Xiao et al., 2024; Luo et al., 2022). Membership values h 
(j: y) (Javadi et al., 2018; Hashmi et al., 2024) show to what extent an 
element is committed to belonging to a certain cluster. The eq. Thus, 
where Kc is the number of fuzzy cluster components within the 
cluster, Lf, the effectiveness index, is defined as follows in Equation 6:

 L h disf a
M

i
N

ia
t

ia= = =Σ Σ
1 1

2
.  (6)

where the equation depicts the quantification of the performance 
index concerning the membership matrix, distance, and cluster indices 
a and i. The proposed FCM segmentation result is shown in the Figure 4.

The CBS and FCM segmentation methods were evaluated in terms 
of computational cost and error rates determined using Equation 7.

 Error Rate accuracy = −1  (7)

CBS outperforms FCM due to its excellent capability of dealing 
with datasets through various cluster shapes and different sizes (Sun 
et al., 2018; Xiao et al., 2023a; Xiao et al., 2023b). When it comes to 
contour-based segmentation methods, CBS is also effective to delineate 
the object boundaries and thus provides a more precise clustering 
compared to FCM (Al Mudawi et al., 2024). Therefore, while FCM 

solves the problem of uncertainty in the data point assignments by 
introducing membership degree of fuzziness, the CBS technique is 
sounder in offering good solution through contour analysis to perform 
accurate and adaptive clustering (Naseer and Jalal, 2024a,b). 
Additionally, CBS offers more flexibility in terms of change in the 
boundaries by way of parameterization where changes can be made 
more accurately to adequately respond to the nature of the data at 
hand (Zheng et al., 2023; Peng et al., 2023). Table 1 shows that CBS gets 
better results and more accurate for the picture segmentation on both 
VAID and UAVID datasets as compared to FCM method, which 
proves that CBS is efficient for the complicated image data. In terms of 
computational time and accuracy rates CBS is more efficient than 
FCM which can be useful in activities such as feature extraction as well 
as classification leading to better results in many operations.

3.4 Vehicle detection via EfficientDet

For detecting vehicles, the EfficientDet, which is one of the most 
advanced object detection algorithms, was used to detect vehicles in 
aerial images. Therefore, EfficientDet maximizes the degree of accuracy 
and the related computing complexity by using the compound scaling 
technique. This covers consistently widening the depth, breadth, and 
backbone network resolution (Murthy et al., 2022; Sun et al., 2024). 
The effective feature fusion networks of many sizes augment the model 
architecture and help to improve the detection outcomes. Effective and 
quick integration of feature pyramid is achieved in EfficientDet by use 
of BiFPN (Bi-directional Feature Pyramid Network). This is 
particularly crucial when working with aerial images because things, 
such as automobiles, might vary substantially in scale (Naik Bukht 
et al., 2023). Using focus loss, a theory of correcting for class imbalance 
that emphasizes challenging cases helps the model’s performance to 
be better (Zhu, 2023; Bai et al., 2024). Consequently, in this study 
EfficientDet was trained using VAIDs and UAVIDs and acquired good 
accuracy and recall values for the vehicle identification task. The great 

FIGURE 3

Contour-Based Segmentation used across UAVID and VAID datasets (A) original image (B) segmented image.
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stability of the model and its capacity to provide quick solutions for 
real-time applications in the realm of UAV based surveillance systems 
helped to demonstrate its further value (Mudawi et al., 2023).

First, EfficientDet has a compound scaling method that helps to 
scale up not only the number of layers but also the width of the 
backbone network (Alshehri et al., 2024). This kind of approach 
enables the model to learn and understand the intricate hierarchical 
features and at the same time due to layer-wise learning rate factor 
computational complexity of the model does not increase greatly as 
the size of model increases (Naseer et al., 2024; Al Mudawi et al. 
2024). In addition, EfficientDet incorporates efficient feature fusion 
schemes that help in the successful incorporation of the multi-scale 
information from different layers of the network architecture which 
in turn enhances the design to capture both the big picture and 
detail features. However, in EfficientDet, focus loss and scaling 
compound approaches have been used in the training process, which 
are effective in addressing the problems of class imbalance than in 
improving the model’s overall performances and calibration abilities. 
By such new architectural designs and training strategies, 
EfficientDet achieves the best correctness in object detection tasks 
while incurring less computational costs; hence, EfficientDet can 
be seen as an efficient and realistic solution (Mehla et al., 2024; Qiao 
et al., 2024) (Figure 5).

3.5 Feature extraction

This part describes feature extraction as a component, therefore 
clarifying the approaches proposed in this work. We used three strong 

feature extraction techniques: ORB, SIFT, AKAZE to extract various 
aerial image characteristics.

3.5.1 AKAZE features
Renowned for speed and accuracy, AKAZE (Accelerated-KAZE) 

is a sophisticated feature extracting method. It works by spotting and 
characterizing local image properties unaffected by affine 
transformations, rotation, or scaling. AKAZE’s major value originates 
in the usage of nonlinear scale spaces for key point detection, which 
accelerates the process while keeping robustness. This makes it 
especially helpful in situations where computational efficiency is very 
crucial. In this study, AKAZE was employed to extract crucial points 
from the VAID and UAVID datasets, delivering a rich collection of 
features for vehicle recognition and classification tasks (Hanzla et al., 
2024a; Hanzla et al., 2024b; Hanzla et al., 2024c).

Sophisticated feature extraction techniques like AKAZE 
(Accelerated-KAZE) are often used in computer vision applications 
including registration, object identification, and image matching. 
AKAZE is resistant to changes in perspective and scene appearance 
because it finds and defines local image attributes that are invariant 
to scale, rotation, and affine transformations (Chughtai et al., 2024). 
Its acceleration via nonlinear scale space evolution and quick feature 
identification methods is one of its main advantages. This 
acceleration enables AKAZE to successfully produce high-
dimensional feature descriptions while preserving accuracy and 
durability over diverse image sizes. Furthermore, AKAZE gives a 
large range of feature descriptors, including both local intensity 
information and spatial relationships among key places (Tareen and 
Saleem, 2018; Yin et al., 2024a; Yin et al., 2024b; Zhou et al., 2021). 
These characteristics are crucial for occupations requiring correct 
image matching and registration in applications ranging from 
augmented reality to panoramic stitching. The AKAZE feature 
extraction approach typically comprises critical procedures, 
including key point recognition, feature description, and matching, 
facilitating the finding of unique image features that allow 
dependable and accurate picture analysis (Ahmed and Jalal, 2024a; 
Ahmed and Jalal, 2024b). Figure  6 displays the AKAZE feature 

FIGURE 4

Using FCM for Semantic Segmentation over VAID and UAVID datasets (A) original image (B) segmented image.

TABLE 1 Error rate comparison of CBS and FCM.

Datasets Error rate

FCM CBS

VAID 0.32 0.22

UAVID 0.37 0.24
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extraction process visually, demonstrating crucial steps in detecting 
and describing relevant spots across numerous sizes and orientations. 
Figure 6 presents instances of the obtained AKAZE characteristics, 
exhibiting their capacity to collect vital visual information and 
support powerful image analysis and interpretation (Chien et al., 
2016; Yin et al., 2024a; Yin et al., 2024b).

3.5.2 SIFT features
Feature Transform (SIFT). SIFT generates invariant to scale, 

rotation, and translation descriptors and detects significant areas in an 
image. SIFT is particularly helpful for evaluating aerial photos where 
vehicles might show different diameters and orientations, hence of this 
robustness (Kamal and Jalal, 2024). SIFT was used in this study on 
VAID and UAVID datasets to provide a collection of distinctive and 
consistent features that increase vehicle identification and classification 
accuracy (Mudawi et al., 2023).

Integration of a Scale Invariant Feature Transform (SIFT) method 
resulted in notable achievements. Therefore, it is feasible to find 

comparable patterns in other images by means of the reduction of the 
supplied image to a collection of points, which may be provided via 
SIFT. This approach performs well in obtaining such characteristics, even 
though specialized in scaling and rotation invariance (Ou et al., 2020; 
Chen et al., 2024; He et al., 2024). Figure 7 dissects the SIFT characteristics.

3.5.3 ORB features
Another alike detector which is fast as SIFT is Oriented FAST and 

Rotated BRIEF (ORB). ORB uses the FAST keypoint detector and the 
following BRIEF descriptor with orientation compensation (Wang 
Z. et al., 2022). This combination makes it possible for ORB to carry 
out the tasks of feature detection as well as description in a very 
efficient and at the same time accurate manner suitable for use in 
vehicle detection systems that are mounted on UAVs. Presumably, 
ORB was employed for the extraction of features from the VAID and 
UAVID datasets, which in its turn constituted an overall robustness as 
well as the efficiency of the proposed method (Afsar et al. 2022; Abbas 
and Jalal, 2024).

FIGURE 5

Vehicle Detection across (A) VAID and (B) UAVID datasets highlighted with green boxes using the EfficientDet method.

FIGURE 6

Using AKAZE for feature extraction across (A) VAID dataset and (B) UAVID dataset.
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Among all the corner and feature detectors, the Oriented FAST and 
Rotated BRIEF (ORB) extractor of features is quite robust in detecting 
critical areas. The primary detector used in the means is called the FAST 
(Features from Accelerated Segment Test). ORB renders rotational and 
dimensions consistency by interlinking the BRIEF description (Khan 
Tareen and Raza, 2023; Wang et al., 2023; Wu et al., 2023) at a closer level 
of detail. The following is the formula that the client needs to use to 
compute the patch moment or muv. as described in Equation 8 below.

 
m x y l j kuv

jk

u v= ( )∑ ,
 

(8)

Where muv represents the moment of the image patch, x and y are 
the coordinates of the image pixels, u and v are the orders of the 
moments, and l (j, k) is the intensity of the pixel at position (j, k). The 
center of the image is then computed using the following Equation 9:
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Where W  represents the coordinates of the image center, m10 and 
m01are the first-order moments, and m00 is the zeroth-order moment 
(the sum of all pixel intensities). Furthermore, the orientation (θ) is 
determined by the function as described in Equation 10:

 
θ = atan m

m
01

00  
(10)

Where θ is the orientation angle, m01 is the first-order moment 
along the y-axis, and m10 is the first-order moment along the x-axis. 

The culmination of these computations results in the final extracted 
feature as depicted in Figure 8.

3.6 Vehicle classification

The proposed method reconciles the methods to identify and 
classify vehicles in aerial images acquired by unmanned aerial 
vehicles (Ali et al., 2022). Pre-processing the images using Contrast 
Limited Adaptive Histogram Equalization (CLAHE) and noise 
reduction methods first improves picture quality in the process. 
EfficientDet then is used to identify vehicles within the images. After 
that, feature extraction using ORB, SIFT, and AKAZE methods treats 
the spotted vehicles. Every found vehicle has a composite feature 
vector built from these properties (Cai et al., 2024; Abbasi and Jalal, 
2024). Finally, using these feature vectors, a Convolutional Neural 
Network (CNN) classifier is trained to recognize the found vehicles. 
Following CNN-based classification, EfficientDet for detection and 
ORB, SIFT, and AKAZE for feature extraction presents great accuracy 
and robustness in vehicle detection and classification in UAV images 
(Jin et al., 2024; Hanzla et al., 2024a; Hanzla et al., 2024b; Hanzla 
et al., 2024c).

3.6.1 Classification via CNN
EfficientDet was used to use Convolutional Neural Networks 

(CNNs) to improve detection performance post-identification in the 
vehicle classification stage. CNNs, which specialize in image 
recognition, shine at extracting discriminative features from found 
vehicles critical for complex classification. The design of CNN 
comprises convolutional, pooling, and fully connected layers that 

FIGURE 7

Using SIFT for feature extraction over (A) VAID dataset and (B) UAVID dataset.
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autonomously develop hierarchical representations, collecting crucial 
features for successful classification (Jahan et al., 2020; Hou S. et al., 
2023; Hou X. et al., 2023).

During training, CNN was exposed to a labeled dataset, allowing 
it to generalize and make exact predictions on fresh vehicle photos. 
The end output of CNN recognized and classed cars, which is crucial 
for applications like traffic control and surveillance. Integrating 
CNNs into the proposed system considerably boosts its capabilities, 
creating doors for advanced applications in aerial vehicle surveillance. 
The CNN model’s design, training, and accuracy are thoroughly 
explained in succeeding parts, offering a clear grasp of its function in 
the study (Rajathi et al., 2022; Yusuf et al., 2024a; Yusuf et al., 2024b). 
The mathematical procedures involved in the convolutional layer are 
given by following Equation 11:

 
z f x w bi j
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F F

i u j v
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u v
l l
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where zi jl,  represents the activation at position (i, j) in the lth layer, 
f is the activation function, x i u j v

l
+( ) +( )
−( )

,

1  is the input from the previous 
layer, wu v

l
,
( )  is the weight, and bl  is the bias. Similarly, the mathematical 

operations for the fully connected layer are expressed by the following 
Equation 12 below.
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This equation represents the activation ai
l( ) at position i in the lth 

fully connected layer, where f is the activation function, wi j
l
,
( ) is the 

weight, x j
l−( )1  is the input from the preceding layer, and bil  is the bias 

(Figure  9). The detailed process is illustrated in Algorithm 1 that 
Harnessing the Strength of CNNs.

Algorithm 1 : Harnessing the Strength of CNNs.
Input: A = {i1, i2, …, in}; img_frames
Output: B = (n0, n1, …, nN): class_result.
detected_vehicles ← []: Vehicle Detections
feature_vectors ← []: Feat. Vector
Method:
video reader = Video Reader (‘video. mp4’)
current frame = read(video_reader)
for frameidx = 1 to size (current frame)
reseeding = imresize (current frame[frame_idx], 768×768)
segmented = FCM (reseeding)
detected_vehicles ← EfficientDet (segmented)
for vehidx = 1 to size(detected_vehicles)
feat_vectors ← SIFT (detected_vehicles[vehidx])
feat_vectors ← ORB (detected vehicles[vehidx])
veh_classification = CNN (feat_vectors)
end for
return veh_classification
end for
return current frame

4 Experimental setup and datasets

4.1 Experimental setup

A PC running x64-based Windows 11 with an Intel Core 
i5-12500H 2.40GHz CPU, 24GB RAM, and other characteristics was 
used for the experiments. Spyder was employed to obtain the 
outcomes. The VEDAI and VAID datasets are three benchmark 
datasets that the system used to assess the performance of the 
suggested architecture. All three datasets undergo k-fold 

FIGURE 8

Using ORB for feature extraction over (A) VAID dataset and (B) UAVID dataset.
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cross-validation to evaluate the dependability of our suggested system. 
In this section, the system is compared to other state-of-the-art 
technologies, the dataset is discussed, and the experiments 
are explained.

4.2 Dataset description

In the following subsection, we  furnish comprehensive and 
detailed descriptions of each dataset utilized in our study. Each dataset 
is meticulously introduced, emphasizing its distinctive characteristics, 
data sources, and collection methods.

4.2.1 UAVID dataset
The UAVID dataset offers a high-resolution view of urban 

environments for semantic segmentation tasks. It comprises 30 video 
sequences capturing 4 K images (meaning a resolution of 3,840 × 2,160 
pixels) from slanted angles. Each frame is densely labeled with 8 
object categories: buildings, roads, static cars, trees, low vegetation, 
humans, moving cars, and background clutter. The dataset provides 
300 labeled images for training and validation, with the remaining 
video frames serving as the unlabeled test set. This allows researchers 
to train their models on diverse urban scenes and evaluate their 
performance on unseen data (Yang et al., 2021) (Figure 10).

4.2.2 VAID dataset
The VAID collection featured six separate vehicle image categories 

such as minibus, truck, sedan, bus, van, and car (Lin et al., 2020). 
These images are obtained by a drone in different illumination 
circumstances. The drone was situated between 90 and 95 meters 

above the earth’s surface. The resolution of images taken at 23.98 
frames per second is 2,720 × 1,530. The dataset offers statistics on the 
state of the roads and traffic at 10 sites in southern Taiwan. The traffic 
images illustrate an urban setting, an educational campus, and a 
suburban town (Figure 11).

5 Results and analysis

5.1 Experiment I: semantic segmentation 
accuracy

The CBS and FCM algorithms were compared and assessed in 
terms of segmentation accuracy and computational time. FCM 
requires training on a bespoke dataset, increasing the model’s 
computing cost as compared to CBS. Furthermore, CBS produced 
superior segmentation results than FCM, therefore we utilized the 
CBS findings for future investigation. Table 2 shows the accuracy of 
both segmentation strategies.

5.2 Experiment II: precision, recall, and F1 
scores

The effectiveness of vehicle detection and tracking has been 
assessed using these evaluation metrics, namely Precision, Recall, and 
F1 score as calculated by using Equations 13, 14, and 15 below:

 
Precision TP

TP FP
=

∑
∑ + ∑  

(13)

FIGURE 9

The architecture of CNN model for classification.
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Table 3 shows vehicle detection’s precision, recall, and F1 scores. 
True Positive indicates how many cars are effectively identified. False 
Positives signify other detections besides cars, whereas False Negatives 

shows missing vehicles count. The findings indicate that this suggested 
system can accurately detect cars of varying sizes (Table 4).

5.3 Experiment IV: confusion matrix

Tables 5, 6 provide comprehensive confusion matrices that 
illustrate the performance of our vehicle classification methods on 
the UAVID and VAID datasets, respectively. These matrices reveal 
the precision of our classification by indicating how frequently 
vehicles from different classes are correctly identified (diagonal 
elements) as opposed to being misclassified (off-diagonal elements). 
Table 5 highlights that our proposed method achieved high precision 
across various vehicle classes, culminating in an impressive overall 
mean precision of 0.966. Similarly, Table 6 showcases the accuracy 
of our suggested method, achieving a mean precision of 0.97. This 
demonstrates robust performance across multiple vehicle types. 
These results underscore the efficacy of our classification algorithms 
in accurately identifying and categorizing different vehicle classes, 

TABLE 2 Accuracies comparison of FCM and CBS segmentation.

Datasets Segmentation Accuracies

FCM CBS

VAID 0.69 0.85

UAVID 0.67 0.80

TABLE 3 Overall accuracy, precision, recall, and F1-score for vehicle 
detection over the UAVID dataset.

Vehicle 
class

Precision Recall F1-score

Pickup 0.987 0.977 0.985

Aircraft 0.993 0.989 0.975

Vans 0.943 0.961 0.956

Car 0.912 0.914 0.909

Truck 0.945 0.980 0.955

Others 0.965 0.971 0.968

Mean 0.956 0.964 0.958

FIGURE 10

Sample images frame from the UAVID dataset.

FIGURE 11

Sample images frame from the VAID dataset.

TABLE 4 Overall accuracy, precision, recall, and F1-score for vehicle 
detection over the VAID dataset.

Vehicle 
class

Precision Recall F1-score

Sedan 0.965 0.979 0.975

Minibus 0.988 0.972 0.950

Truck 0.979 0.991 0.981

Bus 0.952 0.975 0.962

Trailer 0.981 0.966 0.946

Car 0.956 0.909 0.927

Mean 0.970 0.965 0.965
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thus affirming their reliability and effectiveness in diverse  
applications.

5.4 Experiment V: ablation study 
experiment

The ablation study in Table 7 evaluates the performance of our 
model by systematically removing individual components. Each row 
represents a version of the model with a specific component removed, 

and the corresponding accuracy is measured on the UAVID and VAID 
datasets. This table demonstrates the importance of each component 
in achieving high accuracy.

The ablation study presented in Table  7 demonstrates the 
robustness and effectiveness of the proposed model components on 
the UAVID and VAID datasets. Removing individual components 
such as histogram equalization, FCM, AKAZE, ORB, SIFT, and 
EfficientDet significantly degrades the model performance, indicating 
their essential contributions. Notably, the absence of EfficientDet 
results in the most substantial drop in accuracy, underscoring its 

TABLE 5 Confusion matrix illustrating the precision of our proposed vehicle classification approach on the UAVID dataset.

Vehicle class Pickup Tractor Vans Car Truck Others

Pickup 0.97 0 0 0 0 0

Aircraft 0.02 0.98 0 0 0 0

Vans 0 0.01 0.96 0.02 0 0

Car 0 0 0.04 0.92 0 0.01

Truck 0 0.03 0 0 0.97 0

Others 0 0 0 0 0 0.98

Mean: 0.966

TABLE 6 Confusion matrix demonstrated our suggested vehicle categorization method’s accuracy using the VAID dataset.

Vehicle class Sedan Minibus Truck Bus Vans Car

Sedan 0.98 0.01 0.01 0 0 0

Minibus 0 0.94 0.02 0.03 0 0

Truck 0 0.01 0.98 0 0 0

Bus 0.01 0.02 0 0.98 0 0

Trailer 0.01 0 0 0 0.99 0

Car 0.03 0.01 0.01 0 0 0.95

Mean: 0.97

TABLE 7 Ablation study experiment of all methods on UAVID and VAID datasets.

Experiment Histogram 
equalization

FCM AKAZE ORB SIFT EfficientDet CNN 
(ResNet)

UAVID VAID

Full model

(Baseline)
Yes Yes Yes Yes Yes Yes Yes 96.6 97

Without histogram 

equalization
No Yes Yes Yes Yes Yes Yes 95 94.2

Without FCM Yes No Yes Yes Yes Yes Yes 92 91.5

Without AKAZE Yes Yes No Yes Yes Yes Yes 93 92.3

Without ORB Yes Yes Yes No Yes Yes Yes 94 93.1

Without SIFT Yes Yes Yes Yes No Yes Yes 91 90.8

Without EfficentDet Yes Yes Yes Yes Yes No Yes 88 87.6

Simple CNN instead 

of ResNet
Yes Yes Yes Yes Yes Yes No 90 89.5

Without traditional 

features (CNN)
Yes Yes No No No Yes Yes 85 84.2

Without traditional 

features (Simple)
Yes Yes No No No Yes No 80 79.8
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critical role in the detection pipeline. Additionally, substituting the 
ResNet backbone with a simpler CNN architecture leads to a 
noticeable decline in performance, highlighting the importance of 
using a sophisticated feature extractor. These findings validate the 
necessity of the integrated components and their synergistic effect in 
achieving high accuracy for UAV-based vehicle detection.

5.5 Comparison with other state-of-the-art 
methods

Table 8 compares our proposed model’s performance with existing 
state-of-the-art methods. The figures for our model are consistent with 
those in Table 7.

Research welcoming cross-validation for the results portrays the 
robustness of the model for the vehicle detection and aerial images 
classification. Application of EfficientDet, which is well-known for 
object identification of various sizes and appearances intensity, gives 
our approach more credibility. Furthermore, obtaining important 
features of the surrounding environment along with the form and 
texture of the objects improves categorization accuracy to the 
maximum extent.

5.6 Detailed analysis of the comparison 
with other state-of-the-art methods

Table  8 provides a comparison of our proposed method with 
existing methods on the UAVID and VAID datasets. The results 
highlight the significant improvement in performance achieved by 
our approach:

 1. Superior Performance on UAVID Dataset: Our suggested 
model obtains an accuracy of 96.6%, which is substantially 
greater than the accuracies produced by existing state-of-
the-art approaches such as Mandal et al. (53.95%), Terrail et al. 
(82.52%), Wang et al. (89.21%), and Hou et al. (75.54%). This 
highlights the stability and efficacy of our approach in 
managing the intricacies of the UAVID dataset.

 2. Outstanding Results on VAID Dataset: For the VAID dataset, 
our technique obtains an accuracy of 97%, exceeding Lin et al.’s 
method, which achieved 88.1%. This suggests that our 
technique is extremely successful in vehicle identification and 
classification under varied environmental circumstances and 
vehicle kinds as documented in the VAID dataset.

The benefit of our suggested strategy is further underlined 
utilizing EfficientDet for vehicle detection. EfficientDet’s compound 

scaling method, efficient feature fusion, and usage of focus loss 
contribute to its outstanding performance in object identification 
tasks, as seen by the high accuracy and recall rates attained on both 
datasets. Moreover, the combination of modern methods such as 
Histogram Equalization, FCM, AKAZE, ORB, and SIFT in our model 
further strengthens its power to effectively recognize and categorize 
automobiles in aerial images.

Overall, the results in Table 8 clearly demonstrate the superiority 
of our proposed method over existing methods, providing a robust 
solution for vehicle detection and classification in UAV-based 
surveillance systems.

6 Discussion/research limitation

For effective traffic monitoring based on aerial images, our 
suggested model is an efficient solution. While catering to high-
definition aerial images, object detection is one of the most difficult 
problems. To get efficient results, we  devised a technique that 
combines contour based semantic segmentation with CNN 
classification. However, the suggested technique has significant 
limitations. First and foremost, the system has only been evaluated 
with RGB shots acquired during the daytime. Analyzing video or 
pictorial datasets in low-light conditions or at night can further 
confirm this proposed technique as a lot of researchers already have 
succeeded with such datasets. Furthermore, our segmentation and 
identification system have problems with partial or complete 
occlusions, tree-covered roadways, and similar items (Figure 12).

7 Conclusion

This study presents a novel method for classifying and identifying 
vehicles in aerial image sequences by utilizing cutting-edge approaches 
at each stage. The model starts by applying Histogram Equalization 
and noise reduction techniques to pre-process aerial images. After 
segmenting the image using Fuzzy C-Means (FCM) and Contour 
based segmentation (CBS) to reduce image complexity, EfficientDet 
is used for vehicle detection. Oriented FAST, Rotated BRIEF, Scale 
Invariant Feature Transform (SIFT), and AKAZE (Accelerated-KAZE) 
are used to extract features from detected vehicles (ORB). 
Convolutional Neural Networks (CNNs) are used in the classification 
phase to create a strong system that can correctly classify cars. 
Promising results are obtained with the proposed methodology: 96.6% 
accuracy on the UAVID dataset and 97% accuracy on the VAID 
dataset. Future enhancements to the system could involve 
incorporating additional features to boost classification accuracy and 
conducting training with a broader range of vehicle types. Moving 

TABLE 8 Comparison of the proposed method with existing methods on UAVID and VAID datasets.

Methods UAVID VAID

Mandal et al. (2019) 53.95 –

du Terrail et al. (2018) 82.52 –

Wang et al. (2020) 89.21 –

Lin et al. (2020) – 88.1

Hou et al. (2023) 75.54 –

Our proposed model 96.6 97
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forward, our aim is to explore reliable methodologies and integrate 
more features into the system to enhance its efficacy, aspiring for it to 
become the industry standard across a spectrum of traffic scenarios.
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