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Recurrent neural network for
trajectory tracking control of
manipulator with unknown mass
matrix

Jian Li, Junming Su, Weilin Yu, Xuping Mao, Zipeng Liu and

Haitao Fu*

College of Information Technology, Jilin Agricultural University, Changchun, China

Real-world robotic operations often face uncertainties that can impede accurate

control of manipulators. This study proposes a recurrent neural network (RNN)

combining kinematic and dynamic models to address this issue. Assuming an

unknownmassmatrix, the proposedmethod enables e�ective trajectory tracking

for manipulators. In detail, a kinematic controller is designed to determine the

desired joint acceleration for a given task with error feedback. Subsequently,

integrated with the kinematics controller, the RNN is proposed to combine the

robot’s dynamic model and a mass matrix estimator. This integration allows

the manipulator system to handle uncertainties and synchronously achieve

trajectory tracking e�ectively. Theoretical analysis demonstrates the learning

and control capabilities of the RNN. Simulative experiments conducted on a

Franka Emika Pandamanipulator, and comparisons validate the e�ectiveness and

superiority of the proposed method.

KEYWORDS

recurrent neural network (RNN), trajectory tracking, manipulator control, dynamic
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1 Introduction

With the rapid development of modern robot research and development technology,

manipulators have permeated various aspects of human life, such as space explorations

(Ma et al., 2023a) and smart factories (Abate et al., 2022). Its fundamental functionality

lies in trajectory tracking, where specific tasks are accomplished by executing predefined

end-effector trajectories (Jin et al., 2024b). This involves the control of robot kinematics

and dynamics (Liao et al., 2022; Lian et al., 2024; Sun et al., 2024). To exert control over

the robot, desired joint attributes should be obtained according to the task trajectory and

converted into the corresponding joint torques (Müller et al., 2023). Numerous algorithms,

such as pseudoinverse methods (Guo et al., 2018; Sun et al., 2023a) and model predictive

control method (Jin et al., 2023), have been designed to achieve precise control of the

manipulator. However, these algorithms rely on accurate robot models and struggle to

control the robot effectively when its parameters change. In practical applications, it is

common for robot model parameters to vary, especially when robots are modified to

perform different tasks in diverse application scenarios (Xiao et al., 2022; Xie and Jin,

2024). Reliable model-free control methods need to be designed to enable effective control

of robots after the parameter changes.
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In recent decades, there are many emerging algorithms to

address the control issues of manipulators (Liao et al., 2024; Yan

et al., 2024), which are considered from the velocity level (Zhang

et al., 2019; Sun et al., 2022), acceleration level (Wen and Xie,

2024), or torque level (Hua et al., 2023). For instance, to eliminate

the joint-angle drift and prevent excessive joint velocity, a velocity-

level bi-criteria optimization scheme is provided for coordinated

path tracking of manipulators, focusing on the velocity aspect

(Xiao et al., 2017). Additionally, a data-driven acceleration-level

scheme is introduced to address control continuity and stability

issues for manipulator (Wen and Xie, 2024). However, most of

these studies focus solely on kinematics, neglecting dynamic factors

(Tang and Zhang, 2022). Robot kinematics and dynamics are two

fundamental domains within the field of robotics. Robot kinematics

focuses on the study of the motion capabilities of robots in space,

encompassing aspects such as joint angles, positions, velocities, and

accelerations, without considering the effects of forces (Xie et al.,

2023). In addition, robot dynamics is concerned with the impact of

forces and torques on the motion of the manipulator, including the

interactions between the robot and its environment. In the control

of robotic manipulators, considering dynamic factors can help

precisely predict the actual motion trajectory of the manipulator

under various load and motion conditions, thereby improving the

overall motion accuracy (Sun et al., 2023b; Xiao et al., 2023). It can

also compensate for the oscillation and coupling effects in joint

motion, making the movement of the manipulator smooth and

stable. Furthermore, the dynamics-based studies aid in selecting

the optimal drive scheme, reducing energy consumption, and

enhancing energy utilization efficiency. However, manipulators

frequently encounter issues with dynamic uncertainties due

to the diversity of robotic grippers and uncertainties in load

(Bruder et al., 2021; Liu et al., 2024b). Specifically, surgical

manipulators may be equipped with different end-effectors to

meet various task requirements, implying changes in dynamic

parameters (Liu et al., 2024b). Moreover, in robotic-grasping tasks,

unknown loads also lead to variations in robot dynamic parameters

(Bruder et al., 2021). Dynamic uncertainties significantly

impede the accurate control of manipulators, highlighting its

research significance.

Recurrent neural networks (RNNs) have emerged as effective

robot control algorithms in recent years (Liao et al., 2023; Ma et al.,

2023b; Jin et al., 2024a). RNN is utilized to establish a scheme

for addressing the coordination problem for multirobot systems

(Cao et al., 2023; Liu et al., 2024a). In addition, RNN can mitigate

uncertainties in the robot systems by enabling online learning

of robot parameters (Xie et al., 2022). However, further research

is needed to explore the integration of synchronous dynamic

parameter learning with the kinematic model to achieve accurate

trajectory tracking (Tang et al., 2024). To this aim, this study

assumes the presence of deviations in the robot dynamic model

and proposes an RNN for the model-free control of manipulators.

Specifically, relevant control algorithms are designed at both the

kinematic and dynamic levels, and an estimator of the mass matrix

is proposed to compensate for the uncertainty of the dynamic

model. Further verifications are carried out on a Franka Emika

Panda manipulator to perform a trajectory-tracking task, taking

into account dynamic uncertainties. In addition, compared with the

existing methods, the superiorities of the proposed RNN lie in the

following two aspects:

• Compared with kinematics-based methods (Guo et al., 2018;

Jin et al., 2023, 2024b), the proposed RNN bridges the

robot kinematics and robot dynamics models through joint

acceleration signals, considering the motion feature and the

dynamic behavior of manipulators.

• Compared with dynamics-based methods (Shojaei et al., 2021;

Zong and Emami, 2021), the proposed RNN addresses the

dynamic uncertainty problem by estimating the mass matrix

online and realizes synchronous trajectory tracking.

Through the introduction of the above basic content, the

specific research of this study is organized as follows. Section 2

explains the kinematic relationship between the joint angle of the

manipulator and the end-effector. In Section 3, a corresponding

RNN is designed. Subsequently, the learning and control ability of

the proposed RNN are analyzed theoretically in Section 4. Finally,

simulations and comparisons are carried out in Section 5.

2 Kinematic controller

The forward kinematics of the manipulator describes the

mapping relationship between the joint angle and the end-effector

position, described as f (q) = r, where q ∈ R
a is the joint angle,

r ∈ R
b denotes the position of the end-effector, and f (·) stands for

the non-linear mapping. Furthermore, the time derivative of the

forward kinematics is derived as

Lq̇ = ṙ, (1)

where L = ∂f (q)/∂q ∈ R
b×a is the Jacobian matrix, q̇ denotes the

joint velocity, and ṙ is the velocity of the end-effector. Concerning

the joint acceleration level, taking the time derivative of Equation 1

leads to

L̇q̇+ Lq̈ = r̈, (2)

where L̇ is the time derivative of L, q̈ represents the joint

acceleration, and r̈ denotes the acceleration of the end-effector.

Building upon Equation 2, the desired joint acceleration can be

obtained by the following kinematic controller:

q̈ = L†(r̈d − L̇q̇− v), (3)

where v = β(ṙ − ṙd) + ζ (r − rd) denotes the error feedback

term; rd, ṙd, and r̈d are the desired position, velocity, and

acceleration of the trajectory tracking task; superscript † denotes

the pseudoinverse operation of a matrix with L† = LT(LLT)−1;

and β > 0 and α > 0 are convergence coefficients. On

the one hand, kinematic controller (Equation 3) utilizes the

minimization function of the pseudoinverse operation to obtain

the desired joint acceleration (Wen and Xie, 2024). On the other

hand, it takes the desired trajectory tracking task as input and

incorporates feedback of the tracking error, leading to improved

trajectory tracking performance. In addition, kinematic controller
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(Equation 3) can apply traditional methods to avoid the singularity

issues, such as the damped least squares method (Xie et al., 2024).

Specifically, a damped term can be added in the computation of the

pseudoinverse. The specific calculation formula is LT(LLT+µI)−1,

where µ > 0 denotes a tiny parameter and I denotes the identity

matrix. By doing so, the infinite values caused by zero eigenvalues

in the pseudoinverse operation can be avoided.

3 Recurrent neural network design

Robot dynamics refers to the mathematical description of the

relationship between joint torques, dynamic parameters, and joint

motions in a robotic system. Specifically, the dynamic model of a

manipulator can be written as

τ = M(q)q̈+ c(q, q̇)+ g(q), (4)

where τ ∈ R
a represents the joint torque, M(q) ∈ R

a×a is the

mass matrix, c(q, q̇) ∈ R
a is the Coriolis and centrifugal vector,

and g(q) ∈ R
a denotes the gravity vector. Generally, traditional

methods, such as Guo et al. (2018), are capable of performing

accurate dynamic control by relying on precise dynamic models

(Equation 4). However, in real-world applications, it is common

for manipulators to undergo modifications to perform various

tasks, resulting in changes in their dynamic parameters. Given

the assumption that the change occurs in the inertia matrix, we

design an estimated inertia matrix M̄ ∈ R
a×a to effectively mitigate

dynamic uncertainties. As a result, the following state equation is

established:

τ̄ = M̄(q)q̈+ c(q, q̇)+ g(q), (5)

where τ̄ ∈ R
a is the corresponding joint torque. When the

estimated inertia matrix converges to the actual one, it indicates

that the dynamic uncertainty issue is solved. To this aim, an

estimation equation is presented as follows:

˙̄M = α(τ − τ̄ )q̈†, (6)

where ˙̄M determines the evolution direction of M̄, and α > 0 stands

for the convergence coefficient. In Equation 6, τ is measured in real

time. Combining Equations 3, 5, 6, an RNN is designed as follows:

˙̄M = α(τ − M̄(q)q̈+ h(q, q̇))q̈†, (7a)

τ out = M̄(q)(L†(r̈d − L̇q̇)− v)+ h(q, q̇), (7b)

where τ out is the output signal and h(q, q̇) = c(q, q̇) + g(q). In

addition, a control flow chart of RNN (Equation 7) is shown in

Figure 1. Notably, the joint acceleration generated by Equation 3

in a kinematic manner serves as the input for Equation 7b.

Furthermore, Equation 7a utilizes measurement data τ to estimate

the mass matrix, which, in turn, facilitates the precise control

of Equation 7b. In this context, RNN (Equation 7) demonstrates

its capability to learn the mass matrix and achieve synchronous

trajectory tracking via the joint torque. The parameters in RNN

(Equation 7) include α, β , and ζ , which are determined through

trial and error methods.

In RNN (Equation 7), we first apply kinematic controller

(Equation 3) to output the joint acceleration corresponding to the

trajectory task. This process belongs to the inverse kinematics

solution. Subsequently, we further obtain the joint torque by

calculating the obtained joint acceleration. This process belongs to

the inverse dynamics of solution. Finally, the output joint torque

can directly control the manipulator to perform the given task. In

this control mode, robot kinematics and dynamics are combined

together with joint acceleration to form a bridge.

4 Theoretical analysis

The following theorem provides a verification of the learning

and control capabilities of the proposed RNN (Equation 7).

Theorems: Assuming a sufficiently large value of α, the

estimated error M − M̄ generated by Equation 7a is global

convergent to a zero matrix. Based on the estimated mass matrix,

Equation 7b enables accurate trajectory-tracking control of the

manipulator with an unknown mass matrix.

Proof: By incorporating Equations 2, 3, we can rewrite

Equation 7b as ˙̄M = α(M − M̄)q̈q̈†. Multiplying both sides of

the equation by q̈ yields ˙̄Mq̈ = α(M − M̄)q̈. Then, it follows that
˙̄M = α(M − M̄). Define an estimated error as e = (Mi − M̄i)

with Mi and M̄i being the i-th column of M and M̄ (i = 1, · · · , a),

respectively. Set a Lyapunov function asV = (Mi−M̄i)
T(Mi−M̄i),

and then, its time derivative is calculated as follows:

V̇ = (Mi − M̄i)
TṀi − α(Mi − M̄i)

T(Mi − M̄i)

= eTṀi − αeTe

≤ ||e||2||Ṁi||2 − α||e||22

= ||e||2(||Ṁi||2 − α||e||2),

(8)

with ||·||2 being the Euclidean norm of a vector. The above equation

leads to three different situations as follows:

• Situation i: ||e||2 > ||Ṁi||2/α. This situation contributes to

V̇ < 0 and V > 0, which implies that ||e||2 is convergent until

||e||2 = ||Ṁi||2.

• Situation ii: ||e||2 = ||Ṁi||2/α. It leads to V̇ ≤ 0. This suggests

that ||e||2 converges to zero or maintains at ||e||2 = ||Ṁi||2.

• Situation iii: ||e||2 < ||Ṁi||2/α. We deduce that V̇ > 0 or

V̇ ≤ 0. Subsequently, it can be inferred that ||e||2 continues to

increase until it reaches Situation ii or it remains unchanged

or convergent.

Considering the above three situations, it can be obtained that

||e||2 ≤ ||Ṁi||2/α when t → ∞. Provided a sufficiently large value

of α, we have that ||e||2 reaches zero when t → ∞. In conclusion,

the estimated error M − M̄ generated by Equation 7b globally

converges to a zero matrix. Hence, applying LaSalle’s invariance

principle (K.Khalil, 2001), we replace M̄ withM in Equation 7b and

deduce

τ out = M(q)(L†(r̈d − L̇q̇)− v)+ h(q, q̇). (9)

Therefore, Equation 7b enables dynamic control of the

manipulator depending on the desired joint acceleration in

kinematic controller (Equation 3).

The desired joint acceleration allows the manipulator to

precisely follow a given trajectory, which is proven through
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FIGURE 1

A control flow chart of RNN (Equation 7).

A B

C D

FIGURE 2

Simulative results of RNN (Equation 7) for trajectory-tracking task on Franka Emika Panda manipulator. (A) Motion process. (B) Joint acceleration. (C)

Position error. (D) Joint torque.

the following proof. Primarily, (Equation 3) can be equivalently

converted into

Lq̈+ L̇q̇− r̈d = r̈ − r̈d = −β(ṙ − ṙd)− ζ (r − rd). (10)

Assuming the position error as u = r − rd, the above equation

is reorganized as ü + βu̇ + ζu = 0, which belongs to a second-

order differential equation system. The roots of the corresponding

characteristic equation are s1 = (−β +
√

β2 − 4ζ )/2 and s2 =

(−β −
√

β2 − 4ζ )/2. Furthermore, According to Equations 8–

10, we can analyze that the convergence of this system can be

categorized into the three cases (Jin et al., 2017).

• Case i: When β2 − 4ζ > 0, we obtain that s1 < 0 and s2 < 0

are real numbers with s1 6= s2. Then, the solution satisfies

u(t) = c1exp(s1t)+c2exp(s2t) with c1 ∈ R
b and c1 ∈ R

b being

coefficient vectors determined by the initial state of the system.

• Case ii: When β2 − 4ζ = 0, the system has two

equivalent characteristic roots with s1 = s2 <

0. Therefore, the solution can be deduced as

u(t) = (c1 + c2)exp(s1t).

• Case iii: When β2 − 4ζ < 0, s1 = z + iy and

s2 = z − iy are conjugate complex numbers with

z < 0. As a result, the solution can be deduced as

u(t) = exp(zt)(c1cosyt + c2sinyt).
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A B

C D

FIGURE 3

Simulative results of Equation 7b without Equation 7a for trajectory-tracking task on Franka Emika Panda manipulator. (A) Motion process. (B) Joint

acceleration. (C) Position error. (D) Joint torque.

These cases demonstrate that the position error u generated by

Equation 3 exponentially converges to a zero vector from any initial

states. In other words, it is concluded that Equation 7b enables

trajectory tracking control of the manipulator with the unknown

mass matrix. The proof is thus completed.

5 Simulative results and comparisons

This section provides simulation experiments to demonstrate

the learning and control performance of RNN (Equation 7).

Specifically, we test it on a 7-degree-of-freedom manipulator

called Franka Emika Panda (Liu and Shang, 2024) to task a

four-leaf clover path with α = 104, β = 1, and ζ = 5.

In addition, we assume that the mass matrix is unknown and

design a random noise matrix with elements <0.5 to represent

its uncertainties. The related results are shown in Figures 2, 3.

Figure 2A demonstrates the effectiveness of the proposed method

in enabling the manipulator to accomplish trajectory-tracking

tasks, even in the presence of an unknownmass matrix. In addition,

the initial joint acceleration in Figure 2B is relatively large due to

the initial mass matrix error and becomes smooth and normal.

Furthermore, the position error keeps the order of 10−5 m in

Figure 2C. Similarly, in Figure 2D, it can be observed that the

joint torque exhibits reasonable variations. However, when the

estimation Equation 7b is not considered, achieving the trajectory

tracking task based on Equation 7b becomes challenging due to the

presence of the unknown mass matrix. As shown in Figure 3A, the

manipulator driven by Equation 7a cannot complete the tracking

task. Evidently, the joint acceleration became uncontrollable at

∼4.5 s, as shown in Figure 3B, and the manipulator system is

no longer operational. Furthermore, the position error exhibits

divergence in Figure 3C. Similarly, the joint torque in Figure 3D is

out of control at 4.5 s. Through the above results, the learning and

control ability of the proposed method are verified.

To further demonstrate the feasibility of the proposed method,

we additionally apply the proposed RNN (Equation 7) to control

the Franka Emika Panda manipulator performing a Lissajous

trajectory-tracking task. It is noteworthy that the parameters

involved are identical to the previous simulation, except for

the trajectory-tracking task. The specific results are presented

in Figure 4. Specifically, Figures 4A, B demonstrate that the

manipulator successfully executes the given trajectory tracking

task, taking into account dynamics uncertainties. Furthermore,

the positional error, as shown in Figure 4C, is maintained at the

order of 10−5 m. Additionally, the joint acceleration exhibits

normal variations, as shown in Figure 4D. In addition, Figures 4E, F

illustrate that the proposed method is capable of compensating for

the dynamics uncertainties, with tiny estimated errors of the joint

torque. The aforementioned results indicate the effectiveness of the

proposed RNN (Equation 7).

In addition, the advantages of the proposed RNN are

shown in Table 1, compared with the existing methods.

One notable advantage of the proposed RNN (Equation 7)

is its simultaneous consideration of both the kinematic

and dynamic models. This approach enables the realization
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A B

C D

E F

FIGURE 4

Simulative results of RNN (Equation 7) for trajectory-tracking task on Franka Emika Panda manipulator. (A) Desired trajectory and end-e�ector

trajectory. (B)Motion process of manipulator. (C) Position error. (D) Joint acceleration. (E) Estimated joint torque. (F) Joint torque error with ξ = τ − τ̄ .

TABLE 1 Comparisons among di�erent methods for controlling manipulator.

Di�erent Dynamic Unknown Trajectory Mass matrix

methods control issue tracking Online estimation

RNN (Equation 7) Yes Yes Yes Yes

Guo et al. (2018) No No Yes No

Jin et al. (2023) No No Yes No

Ma et al. (2023b) No No Yes No

Jin et al. (2017) No No Yes No

Liu and Shang (2024) No No Yes No

Shojaei et al. (2021) Yes Yes No No

Zong and Emami (2021) Yes No No No
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of online estimation of the mass matrix and synchronous

trajectory tracking.

6 Conclusion

In this study, we have proposed a recurrent neural network

(RNN) to address the challenges of trajectory tracking in

manipulator systems with unknown mass matrices. The key idea

of our proposed RNN is to establish a connection between the

kinematics and dynamics models using joint acceleration signals,

considering the motion characteristics and dynamic behavior of

manipulators. Primarily, it has incorporated a kinematic controller

to generate the desired joint acceleration based on the given task.

On this basis, the robot dynamics model and a mass matrix

estimator have been designed and integrated into the RNN to

enable trajectory tracking in the presence of an unknown mass

matrix. Subsequently, theoretical analysis has demonstrated the

learning and control capabilities of the RNN. Through simulation

experiments and comparisons, we have validated the effectiveness

and superiority of the proposed RNN for trajectory tracking control

of the manipulator with unknown mass matrix.

In addition to the robot’s mass matrix, other dynamic

parameters of the manipulator, such as the gravity vector, may also

change. In addition, joint constraints help to improve the safety of

robot operation. Therefore, future research will focus on estimating

multiple dynamic parameters and considering multiple levels of

joint constraints.
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