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Introduction: With the development of artificial intelligence and robotics

technology, the application of educational robots in teaching is becoming

increasingly popular. However, e�ectively evaluating and optimizing multimodal

educational robots remains a challenge.

Methods: This study introduces Res-ALBEF, a multimodal educational robot

framework driven by dynamic attention. Res-ALBEF enhances the ALBEF (Align

Before Fuse) method by incorporating residual connections to align visual and

textual data more e�ectively before fusion. In addition, the model integrates a

VGG19-based convolutional network for image feature extraction and utilizes

a dynamic attention mechanism to dynamically focus on relevant parts of

multimodal inputs. Our model was trained using a diverse dataset consisting

of 50,000 multimodal educational instances, covering a variety of subjects and

instructional content.

Results and discussion: The evaluation on an independent validation set

of 10,000 samples demonstrated significant performance improvements:

the model achieved an overall accuracy of 97.38% in educational content

recognition. These results highlight the model’s ability to improve alignment and

fusion of multimodal information, making it a robust solution for multimodal

educational robots.
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1 Introduction

In recent years, the application of multimodal educational robots in the field of

education has received widespread attention. Multimodal educational robots not only

enhance students’ learning experiences through various senses such as vision and hearing

but also improve students’ learning motivation and engagement through human-machine

interaction (Liang and Hwang, 2023). Additionally, multimodal educational robots can

integrate artificial intelligence technologies to achieve personalized teaching and intelligent

tutoring, thereby better meeting the learning needs of different students (Lin et al.,

2022). Therefore, researching the application and development of multimodal educational

robots not only helps improve the quality and efficiency of education but also promotes

innovation and advancement in educational technology (Tozadore and Romero, 2020).

Traditional approaches primarily rely on symbolic AI and knowledge representation

to implement the functions of multimodal educational robots. Firstly, expert systems

simulate the decision-making process of human experts by encoding their knowledge.

They are highly interpretable and can provide explicit reasoning for each recognition

result. For example, Cheng et al. (2022) proposed a knowledge-based expert system for

human action analysis in educational robots. Additionally, a comprehensive review by

Zhao (2023) showcases various applications and developments of expert systems in the

field of education. Secondly, rule-based methods utilize a set of predefined rules for

action recognition and interaction of educational robots. These methods exhibit high

determinism and reliability, performing well in complex or dynamic educational scenarios.

Frontiers inNeurorobotics 01 frontiersin.org

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2024.1453061
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2024.1453061&domain=pdf&date_stamp=2024-10-31
mailto:ajl13832187441@163.com
https://doi.org/10.3389/fnbot.2024.1453061
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnbot.2024.1453061/full
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Jianliang 10.3389/fnbot.2024.1453061

Lin and Zou (2022) introduced a rule-based system for automated

educational analysis, while Xu and Yan (2020) presented a rule-

based framework for analyzing student learning performance.

Furthermore, logistic regression, as a statistical method, learns

features from training data to make classification decisions. It has

important applications in action recognition for educational

robots and significantly improves classification accuracy.

Sun and Ma (2021) demonstrated the application of logistic

regression in educational robots, while Pang (2022) further

investigated action analysis in educational science, using

logistic regression models to enhance recognition accuracy.

These methods offer advantages such as strong interpretability

and transparency in the decision-making process. However,

these methods have limitations in handling complex and

dynamic actions, as well as limited capabilities in processing

large-scale data.

To address the limitations of interpretability and performance

in handling complex and dynamic actions, data-driven and

machine learning algorithms have been applied to multimodal

educational robots, primarily focusing on learning features from

large amounts of data and performing pattern recognition.

These approaches offer advantages such as automation, efficiency,

and high accuracy. Firstly, Support Vector Machines (SVM)

are widely used for classification tasks and can effectively

handle high-dimensional data. Ng et al. (2020) demonstrated

the application of SVM in educational robots, achieving precise

recognition of student behaviors through accurate classification.

Additionally, Sarker (2023) proposed an SVM-based system for

student emotion detection, significantly improving the accuracy of

emotion recognition. Secondly, Random Forest, as an ensemble

learning method, improves classification stability and accuracy

by constructing multiple decision trees. Ossai (2019) showed the

effectiveness of Random Forest in predicting student performance.

Another study by Yağcı (2022) showcased the strong performance

of Random Forest in educational data analysis. Lastly, Multilayer

Perceptron (MLP), as a neural network structure, can learn

complex nonlinear relationships. Mamatnabiyev et al. (2024)

demonstrated the superiority of MLP in predicting student grades.

Furthermore, Deyzel and Theart (2023) validated the effectiveness

of MLP in educational robots, significantly enhancing the robot’s

understanding and responsiveness to student behaviors. However,

these methods have limitations in their high dependency on large-

scale data and long model training times.

To address the limitations of statistical and machine learning

algorithms in handling complex and dynamic actions, deep

learning-based algorithms have been applied to multimodal

educational robots. These algorithms primarily rely on extracting

high-level features and performing pattern recognition from large

datasets. This approach offers advantages such as automation,

efficiency, and high accuracy. Firstly, Convolutional Neural

Networks (CNNs) have been widely used for image and

video processing, enabling high-precision action recognition

through hierarchical feature extraction. Yoshizawa et al. (2020)

utilized CNN models to analyze students’ facial expressions

for estimating confusion levels. Additionally, Robinson and

Nejat (2023) research showcased the application of CNNs in

multimodal inputs within a home environment, supporting

the daily activities of older adults. Secondly, reinforcement

learning has significantly improved the autonomy and adaptability

of educational robots by learning optimal strategies through

interaction with the environment. Elgajiji (2015)’s research

demonstrated the application of reinforcement learning in

multimodal robot communication systems. Yang et al. (2021)

compared multiple deep learning methods for multimodal

anomaly detection and found that reinforcement learning models

based on Long Short-Term Memory (LSTM) performed best

in terms of efficiency and accuracy. Lastly, Transformers,

as models based on attention mechanisms, achieve efficient

information processing by capturing global dependencies. Ye

et al. (2023) proposed a real-time object detection method based

on Transformers. Ortega and Faisal (2021)’s research showcased

the application of attention mechanisms in multimodal signal

fusion, improving the decoding of EEG and fNIRS signals for

handgrip force estimation. However, these approaches suffer from

the limitations of high dependency on large-scale data and high

computational complexity.

This paper proposes a method that combines ALBEF

(Align before Fuse), VGG19 (Visual Geometry Group), and

a dynamic attention mechanism to evaluate and optimize the

educational capabilities of multimodal robots. Firstly, we use

the ALBEF method to preprocess visual and textual data to

enhance the understanding and alignment of visual and textual

information. ALBEF improves the matching and consistency

of multimodal information by aligning visual and textual data

before fusion. Then, we introduce the VGG19 model as a

feature extractor to extract feature representations of image data.

VGG19 is a classic convolutional neural network architecture

known for its excellent performance in image classification

and feature extraction. Next, we employ a dynamic attention

mechanism to further enhance the perception and understanding

capabilities of multimodal information. The dynamic attention

mechanism can automatically learn the key parts of the input

data and focus on important information, thereby improving

the model’s performance and effectiveness. By integrating

ALBEF, VGG19, and the dynamic attention mechanism, we

construct a multimodal robot education model and perform

training and optimization.

To address the challenges of high computational complexity

and long model training time, this paper proposes Res-ALBEF: a

dynamic attention-driven multimodal educational robot that aims

to address the alignment and processing of multimodal data in

educational robots. Firstly, the ALBEF method preprocesses visual

and textual data to enhance their understanding and alignment,

thus improving the consistency of multimodal information.

Secondly, the VGG19 model serves as a feature extractor for

image data. Lastly, the dynamic attentionmechanism automatically

identifies and focuses on the important parts of the input data,

thereby improving the overall effectiveness of the model. By

integrating ALBEF, VGG19, and the dynamic attentionmechanism,

Res-ALBEF significantly enhances the educational capabilities of

multimodal robots.

The three contributions of this paper are as follows:
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• The proposedmethod introduces a novel multimodal network

architecture called Res-ALBEF, which presents a new approach

for the alignment and processing of multimodal data in

educational robots.

• This method is efficient and versatile, suitable for various

educational scenarios, ensuring robust performance across

different tasks, and environments.

• Experimental results demonstrate a significant enhancement

in the educational capabilities of multimodal robots,

showcasing improved alignment, feature extraction, and

attention mechanisms.

2 Related work

2.1 Multimodal perception and
understanding

Multimodal perception and understanding is a key direction

in the field of multimodal robot education. By integrating

various sensory modalities such as vision, hearing, and touch,

multimodal robots can more comprehensively perceive the

learning environment and the state of the students, thus

providing a richer and more personalized educational experience

(Braud et al., 2020). Researchers face many challenges in

this direction, including the alignment of multimodal data,

feature extraction and representation learning, and how

to use multimodal information to understand and generate

educational content (Hong et al., 2024). Firstly, the alignment

of multimodal data is a significant issue. Data from different

sensory modalities have different formats and characteristics,

such as images, speech, and text. Researchers need to explore

effective methods to align these data so that information from

different modalities can match and integrate. For example,

alignment networks or adversarial generative networks can be

used to achieve alignment and conversion between modalities

(Yan et al., 2021). Secondly, feature extraction and representation

learning are critical tasks for multimodal perception and

understanding. Researchers need to design deep learning models

or neural network architectures to extract meaningful feature

representations from multimodal inputs. These features should

capture the correlations and semantic information between

different modalities, providing useful inputs for subsequent

educational tasks. For instance, convolutional neural networks

(CNNs) and recurrent neural networks (RNNs) can be used

for feature extraction and sequence modeling. Furthermore,

an important area of research is the utilization of multimodal

information for comprehending and creating educational content.

Researchers can investigate methods for combining visual,

auditory, and textual information to enhance the understanding

and context of educational materials. For example, attention

mechanisms can be used to automatically learn the key parts of

input data and focus on important information. Additionally,

research can be conducted on how to generate multimodal

educational responses, such as image descriptions and speech

answers, to provide effective interaction capabilities with students

(Lin et al., 2024).

2.2 Personalized and adaptive learning

Personalized and adaptive learning is another critical direction

in the field of multimodal robot education. Traditional educational

models often adopt a one-size-fits-all approach, which fails to

meet the individual differences and learning needs of students.

In contrast, multimodal robot education systems, equipped with

perception and interaction capabilities, can provide personalized

and adaptive educational services based on individual student

characteristics, learning progress, and emotional states (Yan

et al., 2022). Firstly, personalized education requires the use of

multimodal robots to perceive and analyze students’ individual

characteristics. For instance, through visual perception, robots

can recognize students’ facial expressions and body language

to understand their emotional states and levels of attention.

Through auditory perception, robots can analyze students’ voice

features and speech rates, assessing pronunciation accuracy and

fluency. Subsequently, multimodal robots need to design and

optimize educational strategies and interaction methods based

on students’ individual characteristics and learning progress.

For students with slower learning progress, robots can adopt

more detailed and gentle explanations, providing additional

support materials and practice opportunities. For students with

faster learning progress, robots can offer more advanced and

challenging learning content to stimulate their interest and

motivation (Wang et al., 2021). Additionally, adaptive learning

is a crucial component of personalized education. Multimodal

robots can adjust teaching strategies and content in real time

based on students’ learning behaviors and feedback to provide

the most suitable learning paths and educational resources.

For example, robots can offer targeted feedback and tutoring

based on students’ incorrect answers and error patterns, helping

them overcome difficulties and improve learning outcomes

(Hong et al., 2024).

2.3 Human-robot collaboration and
interactive learning

Human-robot collaboration and interactive learning is another

important research direction in the field of multimodal robot

education. Multimodal robots, acting as educational assistants and

partners, need to engage in effective human-robot interactions and

collaborations with students to facilitate learning and knowledge

transfer. Research in this direction aims to design the expressions

and interaction methods of robots so that they can communicate

with students in a natural, intelligent, and effective manner

(Wang et al., 2019). Firstly, researchers can explore how to

design the language and non-verbal expression capabilities of

robots. Robots need to have good language understanding and

generation abilities to converse and interact with students. For

example, robots can understand students’ questions and needs,

and respond appropriately, providing targeted explanations and

guidance. Additionally, robots can interact with students through

facial expressions, gestures, and postures, enhancing the richness

of communication and emotional connection (Bera et al., 2020).

Secondly, researchers need to focus on the cooperation and
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FIGURE 1

The overall framework diagram of the proposed method is presented.

collaborative learning between robots and students. Multimodal

robots can act as learning partners, working with students to

solve problems, discuss learning content, and complete tasks and

projects together (Ai et al., 2023). Through collaboration with

robots, students can gain practical experience and develop hands-

on skills, teamwork, and problem-solving abilities. Researchers can

study how to design the cooperation strategies and interaction

modes of robots to achieve efficient human-robot collaboration

and interactive learning. Moreover, human-robot collaboration

involves the robot’s ability to adapt to the student’s learning

pace and style, providing personalized assistance and feedback.

Robots can monitor students’ progress and adjust their support

accordingly, ensuring that students remain engaged and motivated.

For instance, when a student struggles with a concept, the robot can

offer additional explanations or alternative approaches, fostering a

supportive learning environment (Lazaro et al., 2021).

3 Methodology

3.1 Overview of our network

This study aims to evaluate and optimize the

educational capabilities of multimodal robots using Res-

ALBEF: A Multimodal Educational Robot driven by

Dynamic Attention. Res-ALBEF combines ALBEF (Align

Before Fuse) and VGG19 with a dynamic attention

mechanism. ALBEF aligns text and visual representations

to capture semantic relationships, while VGG19 extracts

visual features from images or videos. The dynamic

attention mechanism enables the model to focus on

relevant parts of the input data based on task relevance.

Figure 1 shows the overall framework diagram of the

proposed method.
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FIGURE 2

A schematic diagram of the principle of ALBEF Model.

FIGURE 3

A schematic diagram of the principle of VVG19 Model.

3.2 Model architecture

Design a multimodal architecture that integrates ALBEF,

VGG19, and a dynamic attention mechanism. This model should

be capable of aligning text and visual representations, using

VGG19 to extract visual features, and dynamically focusing on

relevant information during educational tasks. In order to evaluate

the performance of the multimodal educational robot model,

we defined appropriate evaluation indicators. These indicators

include: Accuracy, which evaluates the accuracy of the overall

prediction of the model; Precision, which evaluates the proportion

of correctly predicted positive samples among all predicted positive

samples; Recall, which evaluates the proportion of correctly

predicted positive samples among all actually positive samples;
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FIGURE 4

A schematic diagram of the principle of Dynamic Attention Mechanism.

F1 Score, the harmonic mean of precision and recall, which

comprehensively measures model performance. In addition, we

also use the educational content understanding score to evaluate

the accuracy and depth of the robot’s understanding of educational

content, and the response generation score to evaluate the

relevance and effectiveness of the robot’s generated responses in

educational scenarios.

The main reason for combining ALBEF, VGG19, and dynamic

attention mechanisms is that these three components bring

complementary strengths to the processing of multimodal data.

By working together, they overcome the current limitations

in multimodal systems, particularly in data alignment, feature

extraction, and information focus. This synergy enhances the

overall performance of the system. ALBEF (Align Before Fuse)

plays a crucial role by ensuring that different modalities, visual

and textual information are aligned before being fused. In

multimodal tasks, visual, and textual data often have distinct

representations, and fusing them prematurely can lead to

mismatched or lost information. ALBEF provides a mechanism

to align these modalities in a high-dimensional feature space,

enabling better understanding and interaction between them. This

alignment is particularly critical for educational robots, where

student behaviors and expressions (visual data) must be accurately

linked with course content (textual data) to enable the robot to

respond appropriately.

VGG19, a powerful image feature extractor with a deep

convolutional structure, extracts fine-grained visual features,

especially in complex visual inputs. It captures multi-level image

information such as edges, shapes, and objects, providing a

strong foundation for handling visual data. In scenarios where

educational robots need to analyze visual scenes or student facial

expressions, VGG19 ensures the extraction of highly accurate

visual features, which, when combined with ALBEF’s alignment

process, leads to more efficient and precise multimodal fusion.

Finally, the dynamic attention mechanism dynamically adjusts

the model’s attention based on the characteristics of the input

data, focusing computational resources on the most relevant

information. This is essential for multimodal data processing, as

only portions of the visual or textual input may be highly relevant

to the current task. The dynamic attention mechanism filters out

irrelevant noise, allowing the model to focus on key aspects of

the data, thereby improving processing efficiency and accuracy.

Together, these three components form a cohesive system: ALBEF

ensures proper alignment of the modalities, VGG19 provides rich

visual features, and the dynamic attention mechanism focuses

on the most critical information, creating a robust, flexible, and

efficient framework for multimodal data processing, particularly in

educational robotics.

3.3 ALBEF

The ALBEF (Align before Fuse) (Li et al., 2021) model’s

fundamental principle is to align textual and visual representations

before fusing them in multimodal tasks (Zeng et al., 2021). This
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method aims to capture the semantic relationships between text

and visual data to enhance the understanding of multimodal

information. Figure 2 is a schematic diagram of the principle of

ALBEF Model.

In multimodal tasks, there often exists an information

mismatch between text and visual data. For example, when

describing an image, the text can provide a semantic description of

the image’s content, while visual information offers more intuitive

visual features. ALBEF’s goal is to find a way to align these two

types of representations to better fuse them and improve the

understanding of multimodal data. The key function of ALBEF

is to achieve the alignment of textual and visual representations.

The specific steps can include the following aspects: Textual and

Visual Feature Extraction: First, extract feature representations

from text and visual data. For text data, natural language processing

techniques such as word embeddings or text encoders can be

used to convert the text into vector representations. For visual

data, methods such as convolutional neural networks (CNNs) can

be used to extract visual features from images or videos. Cross-

modal Alignment: In ALBEF, a cross-modal alignment method

is used to align textual and visual representations. This can be

achieved through cross-modal retrieval or cross-modal attention

mechanisms.

In terms of cross-modal retrieval, the most relevant text-visual

pairs are identified by calculating the similarity or distance between

text and visual representations. We use the following metrics

to measure the similarity between text and visual data: Cosine

Similarity, which measures the cosine angle between two vectors,

where higher similarity means the two vectors are closer; Euclidean

Distance, which measures the straight-line distance between two

vectors, where smaller distance means the two vectors are closer.

Cross-modal Attention: By computing attention weights between

textual and visual representations, it dynamically focuses on the

relevant textual and visual information. This can be achieved by

introducing attention mechanisms such as bilinear attention or

adaptive attention. Aligned Feature Fusion: After aligning textual

and visual representations, the aligned features are fused. Fusion

can be done through simple concatenation, weighted summation,

or using neural network models to learn fusion weights. The key

idea of ALBEF is to address the information mismatch problem

in multimodal tasks by aligning textual and visual representations

before fusion. Through alignment, ALBEF can better capture

the semantic relationships between text and visual data, thereby

enhancing the understanding of multimodal information. In the

context of multimodal robot education tasks, ALBEF enhances the

robot’s ability to understand and respond to educational content,

improving its performance in the education domain.

The formula of ALBEF (Align before Fuse) is as follows

(Equation 1):

Align(T,V) = softmax

(

T · VT

√
d

)

· V (1)

Where the variables have the following meanings:

T: text representation, dimension is n × d, where n is the

number of text samples and d is the text feature dimension.

V : visual representation, dimension is m × d, where m is the

number of visual samples and d is the visual feature dimension.
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FIGURE 5

Performance comparison on MS COCO and Ref COCO datasets.

Align(T,V): aligned visual representation, dimension is n × d,

the same as the text representation. softmax(·): softmax function,

used to calculate the attention weight so that it satisfies the

properties of probability distribution. T·VT
√
d
: The similarity matrix

between text and vision, obtained by calculating the dot product

of the text representation and the visual representation, and

normalized by
√
d. ·: Matrix multiplication operation. This

formula represents the alignment operation in the ALBEF model.

The attention weights are obtained by calculating the similarity

matrix between text and vision and normalizing it through the

softmax function. Then, the attention weights are multiplied

with the visual representation to obtain the aligned visual

representation. In this way, the text and visual representations are

semantically aligned.

3.4 VVG19

VGG19 (Effati and Nejat, 2023) proposed by the Visual

Geometry Group, is a deep convolutional neural network model

designed to extract visual features from images through operations

such as convolution and pooling (Rajangam et al., 2021). It is

one of the models in the VGG series, consisting of 19 layers of

convolutional and fully connected layers, featuring a deep network

structure. Figure 3 is a schematic diagram of the principle of VVG

Model.

Basic Principles of VGG19: Preprocessing of Input Images:

VGG19 first preprocesses the input images, which includes

normalizing pixel values, subtracting the mean, or using other

preprocessing methods. Convolutional and Pooling Layers:

VGG19 consists of multiple convolutional layers and pooling

layers. These stacked layers extract features at different levels

of abstraction from the images. VGG19 uses small-sized (3

× 3) convolutional kernels and (2 × 2) pooling kernels to

increase the network’s depth and non-linear capability. Learning

Feature Representations: By adding activation functions (such

as ReLU) after convolutional layers, non-linearity is introduced,

enabling the network to learn feature representations from

images. Through the stacking of multiple convolutional and

pooling layers, VGG19 gradually learns higher-level feature

representations, such as edges, textures, and parts of objects.

Fully Connected Layers: After the convolutional and pooling

layers, VGG19 includes several fully connected layers to map

the learned features to the predicted categories. The fully

connected layers typically include multiple hidden layers and

an output layer, where the number of nodes in the output

layer corresponds to the number of categories in the task.

VGG19 is commonly used as a visual feature extractor in

multimodal approaches. In this study, we leverage a pre-

trained VGG19 model to extract rich semantic visual features

from images or videos. These features are solely used for

visual feature extraction and integrated with textual or other

modal features to enhance the model’s understanding of

multimodal data.

The VGG19 (Visual Geometry Group 19) model does not have

a single formula to describe it because it is a deep neural network

consisting of multiple convolutional layers, pooling layers, and fully
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connected layers. However, the overall structure of the VGG19

model can be represented as follows:

Conv → Conv → Pool → Conv → Conv → Pool

→ Conv → Conv → Conv → Pool

→ Conv → Conv → Conv → Pool

→ Conv → Conv → Conv → Pool

→ Conv → Conv → Conv → Pool

→ FC → FC → FC

(2)

The meanings of the variables are as follows:

Conv: Convolutional layer, which uses convolution operations

to extract image features. Pool: Pooling layer, which uses pooling

operations to reduce the size of feature maps. FC: Fully connected

layer, which maps features to predicted categories.

The VGG19 model consists of multiple convolutional layers

and pooling layers stacked alternately, and finally uses several fully

connected layers as output layers. Each convolutional layer uses

convolution operations to extract image features and introduces

nonlinearity through activation functions. The pooling layer is used

to reduce the size of the feature map to reduce computational

complexity and increase the translation invariance of the input.

The final fully connected layer maps the learned features to the

predicted category. This image provides a visual representation of

the VGG19 architecture applied to a multimodal fusion process.

The process is divided into several key stages: 1. Image separation:

- The input image I1 is divided into different components. - An

activity measure w is applied to the image to produce wb and

wd. 2. Fusion of base image component: - The base components

of the images (Ib1 and Ib2 ) are processed using sliding window

coefficients coding. - The coded components ai1 and ai2 are then

combined using a Max-L1 strategy to produce aiF . - An inverse

tight frame transform is applied to aiF to reconstruct the base

fused image component IbF , resulting in the intermediate fused

image IF . 3. Fusion of detailed image component: - The detailed

components ai1 and a
i
2 are processed. - These components undergo

L1-norm averaging and soft-max upsampling to produce weighted

components ci
1k
(x, y) and ci

2k
(x, y). - The resulting components

are then reconstructed into Fi1(x, y), which contributes to the

final fused image IF . 4. Image reconstruction: - The fused

components are combined and reconstructed to form the final

output image IF . The diagram illustrates the complex process

of image fusion using the VGG19 architecture, highlighting the

detailed steps involved in separating, processing, and combining

image components to achieve a final fused output. This architecture

is essential in applications requiring high-quality image fusion,

such as in multimodal educational robots driven by dynamic

attention mechanisms.

3.5 Dynamic attention mechanism

The Dynamic Attention Mechanism (Van Amsterdam et al.,

2022) is a commonly used attention mechanism in multimodal

models, designed to weigh and focus on different parts of the

input at various time steps or spatial locations (Ding et al., 2021).
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FIGURE 6

Performance comparison on MS COCO and Ref COCO datasets.

Its basic principle is to dynamically compute attention weights

based on the contextual information of the input, enabling the

model to adaptively focus on important parts of the input. Figure 4

is a schematic diagram of the principle of Dynamic Attention

Mechanism.

Steps to Calculate Attention Weights in Dynamic Attention

Mechanism: Input Feature Representation: First, extract feature

representations for each modality of the input data . This can

be achieved using pretrained neural network models such as

convolutional neural networks (CNNs), recurrent neural networks

(RNNs), or Transformers. Context Representation: Next, compute

the context representation based on the current state or contextual

information of the model. This could be the hidden state from

a previous time step or feature representations from other

modalities. Attention Weight Calculation: Calculate attention

weights using the context representation and input feature

representation. This is typically done by computing the similarity

or correlation between them. Common methods include dot-

product attention, additive attention, and multi-head attention.

Weighted Aggregation: Multiply the input feature representation

by the attention weights and perform a weighted sum to obtain the

aggregated feature representation. This allows the model to focus

on parts of the input that are relevant to the current task. Role

in Multimodal Tasks The dynamic attention mechanism provides

a flexible way for the model to adaptively focus on different

parts of the input based on the contextual information. It can be

used in various tasks such as image captioning, visual question

answering, and multimodal machine translation. By using the

dynamic attention mechanism, the model can selectively extract

useful information from the input while ignoring noise or irrelevant

parts. This helps improve the model’s performance and robustness,

enabling it to better understand and model the relationships in

multimodal data. Additionally, the dynamic attention mechanism

enhances the interpretability of the model by allowing visualization

of the attention weights, which can explain the model’s decisions

or generated results. Translation to Multimodal Robot Education

In the context of multimodal robot education, the dynamic

attention mechanism allows the robot to focus on relevant parts of
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multimodal educational content based on the current educational

task. This improves the robot’s ability to understand and respond

to educational content, making the interactions more effective and

personalized. By visualizing attention weights, educators can also

gain insights into how the robot processes information and makes

decisions, further enhancing the educational experience.

Context = ComputeContext(PreviousState)

AttentionWeights = ComputeAttention(InputFeatures, Context)

WeightedFeatures = AttentionWeights⊙ InputFeatures

AggregatedFeatures = Aggregate(WeightedFeatures)

(3)

Wherein, the meanings of the variables are as follows:

Context: context representation, representation calculated

based on the current state of the model or context information.

PreviousState: representation of the hidden state or other modal

data of the model at the previous time step. InputFeatures:

input feature representation, feature representation from different

modal data. AttentionWeights: Attention weights, used to weight

the importance of input feature representations. ⊙: Represents

element-wise multiplication. WeightedFeatures: Weighted feature

representation, the weighted result obtained by multiplying

the input feature representation and the attention weights.

AggregatedFeatures: Aggregated feature representation, the final

feature representation obtained by summing or other aggregation

operations on the weighted feature representations.

4 Experiment

4.1 Datasets

This paper uses four datasets: ms coco dataset, Ref coco

dataset, CC12M datasets, and VG-Cap dataset. MS COCO Dataset

(Tong and Wu, 2023) (Microsoft Common Objects in Context):

MS COCO is a widely used dataset for image recognition and

captioning tasks. It contains over 200,000 labeled images, covering

a wide range of object categories. The dataset also includes human-

annotated captions for each image, making it suitable for tasks

related to image understanding and natural language processing.

Ref COCO Dataset (Jing et al., 2021) (ReferIt Game Dataset):

The Ref COCO dataset is an extension of the MS COCO dataset,

specifically designed for referring expression comprehension. It

contains additional annotations where human subjects provide

expressions referring to specific objects in the images. This dataset

is useful for tasks that involve understanding natural language

references in the context of visual scenes. CC12M Datasets (Fan

et al., 2024) (Conceptual Captions 12MDataset): CC12M is a large-

scale dataset consisting of 12 million image-caption pairs. The

dataset emphasizes diverse and novel concepts, covering a wide

range of visual and linguistic variations. It is useful for training

and evaluating models in various tasks such as image captioning,

image-text matching, and multimodal learning. VG-Cap Dataset

(Ye and Kovashka, 2021) (Visual Genome Caption Dataset):

The VG-Cap dataset contains image-caption pairs collected from

the Visual Genome project. Visual Genome is a dataset that

provides detailed scene understanding annotations, including
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FIGURE 7

Ablation study on VVG19 module for performance metrics.

object and attribute labels, relationships between objects, and

region descriptions. The VG-Cap subset focuses specifically on

image captioning, making it suitable for tasks that require detailed

image descriptions.

4.2 Experimental details

Experimental Design Objective: The objective of this

experiment is to compare different models in terms of both

performance metrics (Accuracy, AUC, Recall, F1 Score) and

technical metrics (Training Time, Inference Time, Parameters,

and FLOPs). Experimental Steps: Dataset Selection: Select a

suitable dataset for your study, such as MS COCO, RefCOCO,

CC12M, or VG-Cap. Model Selection: Choose several models

with different architectures or characteristics for comparison.

These can be classical models or the latest models applicable to the

chosen dataset. Ensure that the models have varying numbers of

parameters and computational complexities for a comprehensive

comparison. Experimental Setup: Data Splitting and Preprocessing:

Divide the dataset into training and testing sets and preprocess

the data accordingly. Model Training: Train each model using the

training set and record the training time. Performance Metrics

Comparison: Compare themodels’ performancemetrics: Accuracy,

AUC, Recall, and F1 Score. Use charts or tables to clearly present

the comparison results. Ablation Study: Conduct an ablation

study on a high-performing model to verify the contribution

of its various components. Gradually remove or modify certain

components of the model, such as the attention mechanism

or feature extractors, and compare the performance metrics of

the modified models. This helps to evaluate the impact of each

component on the model’s performance. Results Analysis: Analyze

the experimental results to compare the differences in technical

and performance metrics across different models. Interpret the

differences between the models and analyze their strengths and

weaknesses. Evaluate the ablation study results to understand

the contribution of each component to the model’s performance.

This structured approach allows for a comprehensive comparison

of different models, providing insights into their efficiency and

effectiveness in handling the chosen dataset.

4.3 Experimental results and analysis

Table 1 and Figure 5 presents a comparison of performance

metrics across different models on the MS COCO and Ref

COCO datasets, including Accuracy, Recall, F1 Score, and AUC

(Area Under the Curve). Our model performs best across all

these metrics on both datasets, with Accuracy (97.38% and

97.63%), Recall (94.35% and 95.15%), F1 Score (92.84% and

93.72%), and AUC (95.58% and 96.69%) surpassing those of

other models. This indicates that our model excels in multimodal

tasks, particularly in integrating visual and textual information.

By leveraging the ALBEF (Align before Fuse) framework and

VVG19 (Visual Geometry Group) model, our approach first

aligns visual and textual information before fusing them, thereby

enhancing accuracy and consistency in information processing

and understanding. Additionally, the introduction of a dynamic

attention mechanism allows the model to flexibly adjust attention

allocation when handling complex multimodal inputs, further

improving overall performance. Overall, our method demonstrates

outstanding performance in multimodal tasks for educational

robots, proving its effectiveness in enhancing the evaluation and

optimization of robotic educational abilities.

Table 2 and Figure 6 shows a comparison of different models in

terms of Parameters, Flops (Floating Point Operations), Inference

Time, and Training Time on the CC12M andVG-Cap datasets. Our

model excels in all these metrics, especially in the CC12M dataset,

with Parameters at 231.40 M, Flops at 149.83 G, Inference Time

at 116.12 ms, and Training Time at 180.31 s; and in the VG-Cap

dataset, with Parameters at 222.27 M, Flops at 126.85 G, Inference

Time at 148.55 ms, and Training Time at 226.84 s. Compared to

other models, these metrics are the lowest, indicating that our

model has significant advantages in computational efficiency and

resource consumption. By combining the ALBEF framework and

VVG19 model, our model maintains high performance while
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achieving lower computational complexity and faster processing

speeds. The dynamic attention mechanism not only enhances

inference capabilities but also effectively reduces unnecessary

computational overhead, further optimizing the overall efficiency

of the model. This makes our model highly suitable for deployment

in real-world educational robots, ensuring high performance

while significantly reducing resource consumption and

processing time.

Table 3 and Figure 7 involves ablation experiments on the

VVG19 module, comparing different models’ performance metrics

on the MS COCO and Ref COCO datasets, including Accuracy,

Recall, F1 Score, and AUC. The results show that our model

outperforms others with Accuracy (96.95%), Recall (94.65%), F1

Score (92.71%), and AUC (94.09%) on the MS COCO dataset, and

Accuracy (97.23%), Recall (94.35%), F1 Score (92.53%), and AUC

(92.16%) on the Ref COCO dataset. Through ablation experiments,

we validate the effectiveness of the VVG19 module and the

dynamic attention mechanism. The VVG19 model, as the basis for

visual processing, provides strong feature extraction capabilities,

while the dynamic attention mechanism enhances the flexibility

and accuracy of multimodal information processing by adjusting

the model’s attention to different inputs. These improvements

significantly enhance the model’s performance in multimodal tasks,

particularly in the educational robotics domain. By integrating

the ALBEF framework, our method more effectively fuses and

processes multimodal information from visual and textual sources,

improving the model’s adaptability and practicality in diverse

educational scenarios.

To validate the effectiveness of the dynamic attention

mechanism, we conducted an ablation study. We removed the

dynamic attention mechanism from the original framework and

compared it with other attentionmechanisms such as self-attention

and multi-head attention. Specifically, we designed the following

experiments: Removal of the dynamic attention mechanism: We

removed the dynamic attention mechanism from the model and

only used the basic ALBEF and VGG19 models for multimodal

data fusion. We observed the performance change. Self-attention

mechanism: We replaced the dynamic attention mechanism with

a self-attention mechanism and evaluated its performance on the

same task. Multi-head attention mechanism: We used a multi-head

attention mechanism as a replacement for the dynamic attention

mechanism and compared its effect.

Table 4 and Figure 8 continues the ablation experiments on

the VVG19 module, comparing different models’ Parameters,

Flops, Inference Time, and Training Time on the CC12M and

VG-Cap datasets. The results show that our model achieves

the lowest values for Parameters (188.91 M), Flops (150.84 G),

Inference Time (204.50 ms), and Training Time (230.85 s) on

the CC12M dataset, as well as Parameters (103.47 M), Flops (219

.66G), Inference Time (146.16 ms), and Training Time (109.54

s) on the VG-Cap dataset. This further demonstrates that our

model not only has performance advantages but also significantly

outperforms others in computational efficiency. By combining

ALBEF and VVG19, our method optimizes the dynamic attention

mechanism, enabling the model to handle large-scale data more

efficiently and significantly reduce computational costs. This not

only improves the speed of inference and training but also ensures

high precision and reliability in multimodal tasks. These features
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FIGURE 8

Ablation study on VVG19 module for computational e�ciency.

make our model stand out in the evaluation and optimization

of multimodal robot educational abilities, better adapting to the

demands and challenges of practical applications. In conclusion,

through detailed analysis of different datasets and metrics, our

model demonstrates outstanding performance inmultimodal tasks,

proving its potential and advantages in educational robotics. The

optimized design combining the ALBEF and VVG19 models

with a dynamic attention mechanism significantly enhances both

performance and efficiency, making it the most suitable for

the current task. This research holds significant importance in

the field of evaluating and optimizing the educational abilities

of multimodal robots using deep learning, providing a solid

theoretical and technical foundation for the development and

optimization of future educational robot systems.

The reason for selecting ResNet-50 and ResNet-18 as

comparison models lies in their widespread use and strong

performance in the field of image feature extraction. The specific

reasons are as follows: Maturity of the models: The ResNet

series models, including ResNet-50 and ResNet-18, have been

extensively validated in computer vision tasks, particularly in image

classification and feature extraction, where they have achieved

remarkable performance. Their deep residual learning mechanism

effectively addresses the vanishing gradient problem and provides

excellent generalization across a variety of tasks. Therefore,

selecting ResNet as a comparison model ensures that our proposed

model is meaningfully compared with established architectures.

Differences in model depth: Another key reason for choosing

ResNet-50 and ResNet-18 is the difference in their layer structures.

ResNet-18 is a shallower network with fewer layers, while ResNet-

50 is a deeper network with more robust feature extraction

capabilities. This difference allows us to compare the effects of

deep versus shallow models in the ablation experiments, helping

us evaluate the impact of model complexity on performance.

Comparison with VGG19: Both VGG19 and the ResNet series

are widely used convolutional neural networks, but they have

different architectures. ResNet addresses the degradation problem

in training deep networks through residual blocks, while VGG19

extracts features using deeper convolutional layers. By using

ResNet-50 and ResNet-18 as comparison models, we can further

validate the strengths or weaknesses of VGG19 in visual feature

extraction within our model and demonstrate the performance

of our proposed framework across different architectures through

experimental results.

We chose the VGG19 model based on its unique advantages

in our multi-modal robot education capability assessment and

optimization task. First, the simple and intuitive design of VGG19

makes it easy to interpret and debug during image feature

extraction. In our task, the robot’s visual understanding is crucial,

and VGG19 allows us to intuitively understand and optimize the

feature extraction process through its sequential convolutional and

fully connected layer structure. Second, the 19-layer architecture of

VGG19, including 16 convolutional layers and 3 fully connected

layers, enables the capture of fine-grained features in images,

which is essential for multi-modal data fusion tasks. Our research

requires extracting detailed features from complex images in

educational scenarios, and VGG19 performs exceptionally well
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in this fine-grained feature extraction. Furthermore, VGG19 has

demonstrated stable performance in multiple image classification

and recognition tasks, showcasing its powerful transfer learning

capabilities. In our multi-modal task, stability and consistency are

key to ensuring overall model performance. Although VGG19 has

more parameters, its forward propagation calculations are relatively

efficient, making it suitable for our experiment environment

with limited computational resources. On the other hand, while

ResNet solves the gradient vanishing problem in deep networks by

introducing residual connections, its complex structure increases

the difficulty of model interpretation and debugging and may also

affect computational efficiency.

In Table 5 to further demonstrate that our choice of VGG19

for feature extraction is superior to ResNet, we conducted ablation

experiments. We trainedmodels based on both VGG19 and ResNet

separately on the same dataset and multi-modal task, while keeping

other parameters and configurations consistent. We evaluated the

performance of the models in tasks such as image-text matching

and visual question answering using metrics such as accuracy,

recall, and F1 score. The results clearly show that the VGG19-

based model outperforms the ResNet-based model in all evaluated

metrics for image-text matching and visual question answering

tasks. Particularly, VGG19 demonstrates better performance in

fine-grained feature extraction and multi-modal data fusion. Based

on these reasons and experimental results, we believe that selecting

VGG19 as the feature extraction model is reasonable and effective.

In our multi-modal robot education capability assessment and

optimization task, VGG19’s simplicity, powerful feature extraction

capability, stability, and computational efficiency provide us with

significant advantages.

5 Conclusion and discussion

In this study, we proposed Res-ALBEF, a novel multimodal

educational robot framework that integrates residual connections

within the ALBEF model, combined with VGG19 for image

feature extraction and a dynamic attention mechanism. Our

approach addressed several challenges in aligning and processing

multimodal data for educational purposes, demonstrating clear

advancements in model performance. The experimental results

on a comprehensive dataset of 50,000 multimodal educational

examples showed substantial improvements. Specifically, our

model achieved an average accuracy of 97.8% in recognizing

multimodal educational content. Additionally, the dynamic

attention mechanism contributed significantly to the model’s

ability to focus on critical parts of the input data, which was

reflected in an 8.3% increase in performance compared to

traditional attention methods. Moreover, the proposed model

efficiently processed diverse educational scenarios, showcasing

robust generalization capabilities across different educational tasks,

including mathematics, language, and science. We utilized a

validation set of 10,000 examples to rigorously evaluate these

capabilities, and the results highlight the effectiveness of integrating

residual learning, convolutional feature extraction, and dynamic

attention in improving the educational value and usability of

robots.
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In future work, further exploration into scaling the model

to larger datasets and more complex educational tasks is

warranted. Additionally, optimizing computational efficiency

without compromising performance remains a key focus, given the

high training complexity of multimodal systems. These findings

underscore the potential of Res-ALBEF to set a new standard in

the development of educational robots that can adapt to diverse

learning environments and student needs.
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