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Introduction: Assistive robots and human-robot interaction have become

integral parts of sports training. However, existing methods often fail to

provide real-time and accurate feedback, and they often lack integration of

comprehensive multi-modal data.

Methods: To address these issues, we propose a groundbreaking and innovative

approach: CAM-Vtrans—Cross-Attention Multi-modal Visual Transformer. By

leveraging the strengths of state-of-the-art techniques such as Visual

Transformers (ViT) andmodels like CLIP, alongwith cross-attentionmechanisms,

CAM-Vtrans harnesses the power of visual and textual information to provide

athletes with highly accurate and timely feedback. Through the utilization of

multi-modal robot data, CAM-Vtrans o�ers valuable assistance, enabling athletes

to optimize their performance while minimizing potential injury risks. This novel

approach represents a significant advancement in the field, o�ering an innovative

solution to overcome the limitations of existing methods and enhance the

precision and e�ciency of sports training programs.

KEYWORDS

assistive robotics, human-machine interaction, balance control, movement recovery,

vision-transformer, CLIP, cross-attention

1 Introduction

In the field of sports technology, the application of deep learning and machine learning

techniques to enhance training efficiency and athlete performance has become a hot

topic of research (Zheng et al., 2020). These technologies can accurately analyze athletes’

movements and provide real-time feedback, helping athletes improve their skills more

effectively (Pan et al., 2019). However, while existing technologies can handle single data

sources such as video or biosensor data, their capabilities are still insufficient when it comes

to integrating and processing multiple types of data (Herman et al., 2021), especially when

simultaneously dealing with visual information and verbal instructions. This limitation

highlights the need for the development of new methods to comprehensively understand

and guide athlete training.

Traditional methods primarily rely on symbolic AI and knowledge representation

for Taekwondo action recognition. Expert systems, for example, simulate human experts’

decision-making processes by encoding their knowledge and provide explicit explanations

for each recognition result. Yang et al. (2021) proposed a multi-knowledge representation

framework for big data AI applications. Additionally, a comprehensive review by

Himabindu et al. (2023) showcased the combination of symbolic reasoning and deep

learning in neural-symbolic AI, highlighting its various applications and developments

across different domains. Rule-basedmethods, on the other hand, utilize a set of predefined

rules for action recognition. These methods demonstrate high determinism and reliability,

performing well even in the face of complex or diverse actions. Jin et al. (2022) introduced
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a deep reinforcement learning system for automatic symbol

grounding discovery, while the research by Ilager et al. (2023)

showcased the cost-saving benefits of symbolic representation

in edge AI applications. Furthermore, logistic regression, as

a statistical method, learns features from training data for

classification decisions. It not only finds important applications

in action recognition but also significantly improves classification

accuracy. The study by Insuasti et al. (2023) demonstrated the

application of logistic regression in sports action recognition,

while Wu et al. (2022) further explored the use of fuzzy logic in

symbolic representation, enhancing the symbolic foundations of

AI. These methods offer advantages such as strong interpretability

and transparency in the decision-making process. However,

these methods have limitations in handling complex and

diverse actions as well as limited capabilities in processing

large-scale data.

To address the limitations of traditional algorithms, data-

driven and machine learning-based approaches have been

employed in multi-modal robot-assisted sports training. These

approaches mainly utilize methods such as decision trees, random

forests, and multi-layer perceptrons to tackle the challenges.

This approach offers advantages such as efficient handling of

large-scale data, high accuracy, and the ability to handle non-

linear problems. For instance, Tjondronegoro and Chen (2006)

automated event classification in sports videos using decision

tree methods, while Jose et al. (2023) applied decision tree

algorithms in predicting athlete performance. Furthermore,

Morciano et al. (2023) used random forest algorithms to predict

performance indicators of soccer players, demonstrating their

superiority in handling biomechanical data, and Yagin et al. (2023)

showcased the high accuracy of random forests in determining the

positions of professional soccer players. Lastly, Aresta et al. (2022)

highlighted the superior performance of multi-layer perceptrons

in classifying elite and novice fencers based on biomechanical data,

while Bakthavatchalam et al. (2022) demonstrated the efficient

predictive performance of multi-layer perceptrons in agriculture.

However, these methods have challenges such as overfitting, high

computational costs, and strong reliance on large amounts of

annotated data.

To overcome the limitations of statistical and machine learning

algorithms, deep learning-based approaches have been used for

Taekwondo action recognition, primarily employing Convolutional

Neural Networks (CNN), reinforcement learning, and Transformer

models. These methods offer higher accuracy and the ability

to handle complex data. Firstly, Convolutional Neural Networks

efficiently extract image features and have shown remarkable

performance in predicting sports game outcomes and recognizing

athlete actions. For example, Chen et al. (2020) used CNN to

predict NBA game results with an accuracy of 91%, while Liu

(2022) utilized CNN to improve action detection rates in sports

videos. Secondly, reinforcement learning demonstrates significant

potential in sports training by continuously adjusting strategies

to optimize the decision-making process. The reinforcement

learning approach proposed by Jia et al. (2020) improved players’

winning rates in basketball training, and the research by Du et al.

(2021) showcased the application of reinforcement learning in

esports. Lastly, Transformer models, known for their advantages

in handling sequential data, have been used for time-series

analysis of motion signals, showing impressive performance.

Dirgová Luptáková et al. (2022) achieved 99.2% accuracy in human

activity recognition using the Transformer model, while Hauri and

Vucetic (2023) combined Transformer with LSTM for team activity

recognition in basketball games. However, these methods have

challenges such as high computational complexity and a demand

for large-scale training data.

Considering these challenges, this study proposes a novel

approach, CAM-Vtrans: Real-time Sports Training UtilizingMulti-

modal Robot Data, to address the limitations of traditional and

machine learning algorithms, such as poor adaptability to complex

environments, high computational costs, and dependency on large

labeled datasets. CAM-Vtrans combines Vision Transformer (ViT),

CLIP, and cross-attention mechanisms. ViT divides the image

into multiple small patches and encodes them as a sequence,

utilizing the self-attention mechanism to process these sequences

and capture complex relationships within the image. This approach

is particularly effective in handling sports activity images with

rich details. The introduction of the CLIP model enables the

system to understand training instructions in natural language

and combines them with visual data to provide context-aware

feedback. Through the cross-attention mechanism, this system

further optimizes the fusion of different modalities, making the

transformation from visual information to language descriptions

more accurate and efficient. This integrated approach not only

enhances the accuracy and efficiency of sports training analysis but

also significantly reduces the computational burden and reliance on

extensive labeled data.

The main contributions of this research can be summarized as

follows:

• CAM-Vtrans is an innovative approach that combines Vision

Transformer (ViT), the CLIP model, and cross-attention

mechanisms to process and analyze multi-modal robot data

in real-time, enhancing the accuracy of feedback in sports

training.

• This method performs exceptionally well in various

multi-scenario applications, efficiently handling complex

sports activity images. It possesses broad applicability and

adaptability, providing reliable support for different training

requirements.

• Experimental results demonstrate that CAM-Vtrans

significantly outperforms traditional methods in action

recognition and feedback accuracy, greatly improving the

effectiveness of sports training while reducing computational

costs and reliance on large-scale annotated data.

2 Related work

2.1 Assisting sports training

In recent years, machine learning has made significant

progress in assisting sports training tasks. Traditional sports

training methods heavily rely on coaches’ experience and intuition,

which often suffer from subjectivity and lack of precision. The
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introduction of machine learning has made the training process

more scientific and systematic. Classic machine learning algorithms

such as decision trees, random forests, and logistic regression

have been widely applied in areas such as athlete performance

prediction and injury risk assessment. For example, decision tree-

based systems can provide personalized training recommendations

by analyzing athletes’ physiological and training data (Jose et al.,

2023). However, these traditional machine learning methods

also have some notable drawbacks and limitations (Tang et al.,

2023). Firstly, these methods require high-quality and large

quantities of labeled data to train models, which can be costly to

acquire. Moreover, traditional machine learning algorithms exhibit

limitations when dealing with complex and multi-dimensional

sports data. For instance, while random forests can handle

non-linear relationships to some extent, they still struggle with

highly complex and dynamically changing sports data (Morciano

et al., 2023). Additionally, these methods lack interpretability and

explainability, making it difficult to provide clear explanations

for training outcomes and limiting their practical applications

(Dong et al., 2024). To overcome these limitations, deep learning

methods have gradually become a research focus in the field of

sports training. Deep learning, by constructing multi-layer neural

networks, can better capture complex features and patterns, thus

improving the predictive accuracy and robustness of models.

However, deep learning methods also face challenges such as high

computational costs, long training times, and dependence on large-

scale annotated data, which still need to be further addressed in

practical applications (Wang et al., 2024)

2.2 Transformer models

Since its introduction in 2017, the Transformer model has

achieved groundbreaking advancements across multiple domains.

Its unique self-attention mechanism and parallel processing

capabilities have made Transformers particularly prominent

in natural language processing (NLP) tasks. For instance,

models like BERT and GPT, which are based on Transformer

architecture, have demonstrated significant effectiveness in tasks

such as language understanding, text generation, and machine

translation. The Transformer model addresses the inefficiencies

and vanishing gradient problems associated with traditional

sequential models like RNNs and LSTMs by processing input

sequences in parallel and dividing them into smaller chunks

(Lu et al., 2024). Beyond NLP, the Transformer model has

also shown strong capabilities in the field of computer vision

(CV). Vision Transformer (ViT), by dividing images into fixed-

size patches and processing these patches as input sequences,

has achieved performance comparable to or even surpassing

that of convolutional neural networks (CNNs). ViT has excelled

in tasks such as image classification, object detection, and

image segmentation, proving the potential of Transformers

in handling visual data (Hu et al., 2019). In addition, the

Transformer model has wide-ranging applications in time series

data analysis, recommendation systems, and game AI. In

time series data analysis, Transformers can effectively capture

long-term dependencies, enhancing prediction accuracy. In

recommendation systems, Transformers model user behavior

sequences to provide more precise recommendations. In game

AI, Transformers, combined with deep reinforcement learning,

optimize strategy selection.

2.3 Sports action recognition

Sports action recognition is a crucial research area in sports

science and computer vision, aiming to automatically identify

and evaluate athletic performance by analyzing athletes’ motion

data. Traditional action recognition methods primarily rely on

feature engineering-based machine learning algorithms, such as

support vector machines, decision trees, and random forests. These

methods extract features from motion data for classification and

recognition, achieving certain levels of effectiveness (Zhao et al.,

2020). With the development of deep learning technologies, the

advantages of convolutional neural networks (CNNs) in image

and video processing have become increasingly apparent, leading

to their widespread application in sports action recognition.

CNNs can automatically learn and extract high-level features

from data, significantly improving the accuracy and robustness

of action recognition (Zou et al., 2019). Additionally, temporal

models in deep learning, such as long short-term memory

networks (LSTMs) and Transformer models, have been applied to

action recognition, better handling time series data and capturing

dynamic changes in actions. However, despite the impressive

performance of deep learning methods in action recognition,

several challenges and limitations persist. First, deep learning

models require large-scale annotated data, and acquiring and

annotating sports action data is costly, limiting the effectiveness

of model training. Second, deep learning models have high

computational complexity, requiring substantial computational

resources and time for training and inference, which can be a

bottleneck in real-time applications. Moreover, existing action

recognition models still face difficulties in handling complex

and diverse actions, making it challenging to adapt to various

sports scenarios and action types. To address these issues,

researchers are exploring multi-modal data fusion methods,

combining visual, auditory, and tactile data to enhance the

accuracy and robustness of action recognition (Li et al.,

2018). Additionally, emerging technologies such as reinforcement

learning and self-supervised learning are being introduced to action

recognition to reduce reliance on annotated data and improve

model generalization. Despite these advancements, achieving

efficient, accurate, and robust sports action recognition remains

a challenging research topic, necessitating further exploration

and innovation.

3 Methodology

3.1 Overview of our network

In this research, we propose a multimodal robotic system that

combines Vision Transformer (ViT), CLIP, and cross-attention

mechanisms for real-time feedback and guidance in sports

training. The main innovation of this system lies in the use
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FIGURE 1

The overall framework diagram of the proposed method is presented.

of advanced visual and language processing models to analyze

athletes’ performances in-depth and provide immediate guidance

and feedback.

Figure 1 shows the overall framework diagram of the

proposed method.

Textual information is inputted from the L-Branch branch

and is segmented into words or subwords. The text is then

transformed into fixed-dimensional vector representations through

an embedding layer. These text vectors are linearly projected and

inputted into the corresponding Transformer Encoder. Images

are inputted from the S-Branch, and each branch’s image is

divided into fixed-sized patches. After linear projection, the

image patches are inputted into their respective Transformer

Encoders. The image and text features interact and fuse through

a Cross-Attention mechanism. The Cross-Attention layer takes

features from the image and text encoders, calculates the

correlation between them, and generates a fused multimodal

feature representation. The fused multimodal features are further

processed by a Multi-Scale Transformer Encoder layer to capture

features at different scales, enhancing the expressive power of

the features. Finally, a Multi-Layer Perceptron (MLP) head is

used for tasks such as classification or regression. In the revised

version, we will update Figure 1 to visually illustrate the processing

and flow of textual information, including adding a schematic

diagram of text input, demonstrating the processing of text

through the embedding layer and linear projection layer, and

clarifying the interaction between image and text features in the

Section 3.4.

Differentiation from prior work:While the combination of ViT,

CLIP, and Cross-Attention has been proposed in other domains,

our research is the first to apply it to real-time sports coaching

systems. Unlike previous studies, our research focuses on effectively

integrating visual and textual data in dynamic and real-time sports

training environments. Specifically, our proposed CAM-Vtrans

system takes into account the continuity and complexity of sports

actions during its design. Through optimized Cross-Attention

mechanisms andmulti-scale feature extractionmodules, the system

is able to provide stable and accurate feedback even with high-

frequency inputs.

Overcoming limitations of previous methods: Previous

methods often suffer from low computational efficiency and long

feedback latency when dealing with real-time multimodal data.
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In this research, we address these limitations by introducing the

ViT-Adapter module, which enhances feature extraction efficiency.

Through optimized Cross-Attention mechanisms, we achieve

faster and more accurate multimodal data fusion. Compared to

traditional single-modal or inefficient multimodal methods, the

CAM-Vtrans system significantly reduces inference time and

improves the accuracy of real-time feedback, overcoming the

limitations of previous methods in terms of real-time performance

and data fusion.

Reasons for method selection: We chose the combination

of ViT, CLIP, and Cross-Attention because these techniques

have demonstrated excellent performance in handling complex

visual and textual data. ViT is renowned for its powerful visual

feature extraction capabilities, while CLIP effectively maps visual

and textual data to the same feature space, enabling cross-

modal understanding. The Cross-Attention mechanism efficiently

establishes correlations between different modalities, enhancing

information fusion. These characteristics make them well-suited

for application in sports training scenarios that involve large

amounts of visual and textual data and require real-time feedback.

Therefore, the selection of these methods is not random but

based on their superiority in multimodal data processing and

real-time performance.

Firstly, the Vision Transformer (ViT) is employed to process

video data captured frommultiple cameras. ViT divides each frame

into several image patches, converts these patches into a sequence

of vectors, and processes them with self-attention mechanisms to

identify key visual information. This approach allows the model

to focus on specific regions within the image that are relevant to

the movement technique, improving the accuracy and granularity

of motion analysis. Simultaneously, the CLIP model is utilized

to process and parse natural language inputs such as coach

instructions or verbal feedback from athletes. CLIP learns from a

large corpus of image-text pairs, establishing intuitive associations

between image content and textual descriptions. This enables CLIP

to directly relate language descriptions to visual data, providing

robust support for precise understanding of movement techniques

and coach’s intentions. In the implementation workflow, once the

athlete starts training, the system collects video and audio data in

real-time. The visual and language data are processed separately by

ViT and CLIP, respectively, and then fed into the cross-attention

layer. In this layer, the system analyzes the correlations and

interactions between visual and language information, optimizing

the fusion process to extract the most valuable insights from

the inputs. The core of the cross-attention mechanism lies in its

ability to dynamically adjust the focus on different data sources

based on specific training scenarios, providing more personalized

and goal-oriented training recommendations. After performing

these analyses, the system generates specific feedback reports,

including action correction guidelines, performance evaluations,

and improvement suggestions. This feedback can be presented

directly to the athlete through a graphical user interface or sent

to the coach via mobile devices. Additionally, the system includes

a feedback adjustment module that allows the coach to fine-tune

the level and frequency of feedback as needed, ensuring training

continuity and adaptability. The focal point of the entire system

design is to ensure real-time and accurate feedback, making the

training process more intelligent and efficient. The aim is to

maximize athletes’ performance and training effectiveness through

technological means.

3.2 Vision-transformer

Vision Transformer (ViT) (Miyazawa et al., 2022) is a deep

learning model that applies the Transformer architecture to

process visual data. Traditionally, Convolutional Neural Networks

(CNNs) have been the dominant approach for visual tasks,

FIGURE 2

A schematic diagram of the principle of vision-transformer model.
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but ViT introduces a novel paradigm by leveraging the self-

attention mechanism of Transformers (Papadakis and Spyrou,

2024). Figure 2 is a schematic diagram of the principle of Vision-

transformer Model.

The ViT-Adapter consists of the following components: Firstly,

the Spatial Prior Module is responsible for initially extracting

spatial features from the input image. The image first goes through

the Stem layer, generating a series of feature maps (F1, F2, F3, ...,

Fsp) that capture spatial information at different scales, preparing

for the subsequent feature injection. Secondly, the Spatial Feature

Injector is one of the key modules of the ViT-Adapter. It injects

the spatial features (Fsp) extracted by the Spatial Prior Module

into the intermediate features (Fvit) of the ViT using a Cross-

Attention mechanism. Specifically, the intermediate features of the

ViT serve as the Query, while the spatial features act as the Key

and Value. The Cross-Attention calculates the fused features (Fsp +

Fvit). Then, the Multi-Scale Feature Extractor further processes the

fused features through multiple Cross-Attention layers and a Feed-

Forward Neural Network (FFN) to enhance the expressive power

of multi-scale features, enabling the model to better capture image

details and global information. Additionally, the ViT-Adapter

inserts Injector and Extractor modules between each block of the

ViT. The Injector module injects the features from the Spatial

Prior Module into the current ViT features, while the Extractor

module extracts useful information from the fused features for the

next Transformer Block to use. Finally, after being processed by

multiple Transformer Blocks and ViT-Adapter modules, the final

features are fed into a Multi-Layer Perceptron (MLP) head for

tasks such as classification, detection, or segmentation. Through

these improvements, the ViT-Adapter significantly enhances the

ViT model’s ability to capture spatial features when processing

images, improving its performance in various visual tasks.

The Vision Transformer (ViT) model operates by dividing

an input image into smaller patches, which are then flattened

into a sequence of 1D vectors capturing local visual information.

These patches are linearly projected into higher-dimensional

embeddings, serving as the input to the Transformer model. The

Transformer architecture, composed of multiple identical layers

each containing a self-attention mechanism and a feed-forward

neural network, captures both global and local dependencies within

the sequence of patches. During self-attention, patches exchange

information and capture long-range dependencies, with attended

representations aggregated and combined with original patch

representations using residual connections. This process refines

the patch representations based on contextual information. After

multiple layers, the final image representation is obtained, which

can be used for tasks like image classification, object detection,

or segmentation. ViT’s advantages include capturing global and

local information, scalability, and learning from raw pixels without

hand-engineered features. However, its self-attention mechanism’s

quadratic computational complexity is a limitation. In real-time

feedback for multimodal robots in sports training, ViT analyzes

visual information to understand and provide guidance on body

movements. Trained on annotated sports videos, ViT extracts

relevant features and captures spatial relationships, enabling the

robot to offer accurate, context-aware feedback by leveraging self-

attention to focus on critical image regions and dependencies

between patches.

The input image is divided into patches, resulting in a sequence

of patches, denoted by xi, where i represents the index of each

patch. Each patch is then linearly projected to a higher-dimensional

embedding space using a learnable linear transformation. Let’s

denote the projected embeddings as zi.

The self-attentionmechanism in ViT is defined by the following

equations (Equation 1):

Attention(Q,K,V) = softmax

(

QKT

√

dk

)

V (1)

Here, Q, K, and V are the query, key, and value matrices,

respectively. They are derived from the projected embeddings zi as

follows:

Q = ZWQ K = ZWK V = ZWV (2)

In these equations, Z is the matrix obtained by stacking the

projected embeddings zi, andWQ,WK , andWV are learnable linear

transformation matrices (Equation 2).

The self-attention mechanism calculates the attention weights

between patches by computing the dot product similarity between

the query and key matrices, scaled by the square root of the

dimension dk. The softmax function is applied to obtain the

attention weights, which are then used to weight the values V .

The attended representations are computed as follows

(Equation 3):

SelfAtt(Z) = Attention(Q,K,V) (3)

The attended representations are then combined with the

original patch embeddings using a residual connection, resulting

in the intermediate representations:

Intermediate(Z) = LayerNorm(Z + SelfAtt(Z)) (4)

Here, LayerNorm denotes layer normalization (Equation 4).

The intermediate representations are then passed through

a feed-forward neural network (FFN) with two linear

transformations and a non-linear activation function, typically a

GELU activation:

FFN(Z) = GELU(Intermediate(Z)W1 + b1)W2 + b2 (5)

W1, W2, b1, and b2 are learnable parameters of the feed-

forward network (Equation 5).

The output of the ViT model is obtained by stacking multiple

layers of self-attention and feed-forward networks. The final

representation of the image is typically obtained by applying mean

pooling to the patch embeddings.

In summary, Vision Transformer is a powerful model for

visual processing that replaces traditional convolutional approaches

with self-attention mechanisms. Its ability to capture global and

local dependencies makes it well-suited for understanding and

analyzing visual data in real-time feedback and guidance systems

for multimodal robots in sports training.
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3.3 CLIP

CLIP (Contrastive Language-Image Pretraining) is a deep

learning model that learns to associate images and their

corresponding text descriptions (Dobrzycki et al., 2023). It aims to

bridge the gap between vision and language modalities, enabling

cross-modal understanding and reasoning. The key idea behind

CLIP is to leverage large-scale pretraining on a dataset of image-text

pairs, allowing the model to learn rich representations that capture

the semantic relationship between visual and textual information

(Koh et al., 2024). The basic principle of the CLIP model involves

jointly training a vision encoder and a text encoder. The vision

encoder processes images and maps them to a high-dimensional

latent space, while the text encoder processes textual descriptions

andmaps them to the same latent space. The encoders are trained to

ensure that corresponding image-text pairs are closer to each other

in the latent space compared to non-corresponding pairs. Figure 3

is a schematic diagram of the principle of CLIP Model.

The training process of CLIP involves several key steps:

first, the input image is encoded by a vision encoder, typically

a convolutional neural network (CNN), which extracts visual

features and projects them into a latent space using a learnable

linear transformation. Simultaneously, the input text description

is encoded by a text encoder based on a Transformer architecture,

which tokenizes the text, applies word embeddings, and processes

it through multiple Transformer layers to produce the text’s

representation in the latent space. CLIP utilizes a contrastive

loss function to maximize the similarity between corresponding

image-text pairs while minimizing the similarity between non-

corresponding pairs, achieved by measuring the cosine similarity

between their latent representations. Pretraining on large-scale

datasets, such as Conceptual Captions and ImageNet, enables

CLIP to learn generalizable representations capturing the semantic

relationship between images and texts. After pretraining, CLIP

can be fine-tuned for downstream tasks like image classification,

object detection, or image captioning. In real-time feedback and

guidance for multimodal robots in sports training, CLIP is crucial

for understanding and associating visual and textual information.

By aligning and reasoning about sports movements based on

annotated image-text pairs, CLIP allows the robot to understand

textual annotations related to key movements, techniques, and

performance indicators. Leveraging the pretrained CLIP model,

the robot can generate real-time feedback and guidance based on

its comprehension of the athlete’s movements and the semantic

context provided by textual information.

Let’s consider an image-text pair with an image I and a text

description T.

Image Encoding: The image I is processed by a vision encoder,

typically a convolutional neural network (CNN), to extract visual

features. Let’s denote the image representation as vI . Text Encoding:

The text description T is processed by a text encoder, typically a

Transformer-based architecture, to encode the textual information.

Let’s denote the text representation as vT . Similarity Measurement:

The similarity between the image and text representations is

measured using cosine similarity. It can be calculated as:

Similarity(vI , vT) =
vI · vT

|vI | · |vT |
(6)

Here, · denotes the dot product, and | · | represents the

Euclidean norm (Equation 6).

Contrastive Loss: CLIP utilizes a contrastive loss function to

train the model. Given a positive pair (an image-text pair that

matches) and a set of negative pairs (image-text pairs that do not

match), the contrastive loss encourages the positive pair to have a

higher similarity than the negative pairs. The contrastive loss can

be formulated as:

Loss = − log

(

exp(Similarity(vI , vT))
∑N

j=1 exp(Similarity(vI , vTj ))

)

(7)

Here, N represents the number of negative pairs, and

vTj denotes the text representation of the j-th negative pair

(Equation 7).

The loss function aims to maximize the similarity between

the positive image-text pair while minimizing the similarities

between the positive pair and negative pairs. During training, the

model optimizes the parameters of the image and text encoders to

minimize the contrastive loss. This process enables the model to

learn representations that associate images and their corresponding

text descriptions. In summary, CLIP is a powerful model that

combines image and text encoders to learn joint representations

of visual and textual information. Its large-scale pretraining on

image-text pairs enables it to capture the semantic relationship

between these modalities. In the context of real-time feedback and

guidance in sports training, CLIP enhances the multimodal robot’s

understanding and reasoning capabilities, facilitating personalized

feedback and guidance based on the combination of visual and

textual information.

3.4 Cross-Attention

Cross-Attention is a key component in models that handle

multi-modal tasks, such as image captioning, visual question

answering, and image-text matching (Kim et al., 2023). It enables

the model to attend to relevant information from one modality

(e.g., images) based on the input from another modality (e.g.,

text). The basic principle of Cross-Attention involves computing

attention weights between elements in two different modalities

and using these weights to combine the information effectively

(Björkstrand et al., 2023).

Figure 4 is a schematic diagram of the principle of

Cross-Attention.

Encoding: The image is typically encoded using a convolutional

neural network (CNN), which extracts visual features from the

image. The text description is encoded using a recurrent neural

network (RNN) or a Transformer-based architecture, generating

a sequence of hidden states. Query, Key, and Value: The hidden

states from the text description serve as the query, while the

visual features from the image act as the key and value. These

query, key, and value representations are used to compute

attention weights. Attention Calculation: The attention weights are

computed by measuring the similarity between the query and key

representations. This can be achieved through various methods,

such as dot product, scaled dot product, or bilinear attention.
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FIGURE 3

A schematic diagram of the principle of CLIP model.

FIGURE 4

A schematic diagram of the principle of Cross-Attention.

The attention weights determine how much each visual feature

should contribute to the final attended representation. Weighted

Combination: The attention weights are used to weight the values

(visual features) associated with each key. The weighted values are

then combined to form the attended representation. This process

allows the model to focus on the most relevant visual information

based on the text query. Integration: The attended representation is

integrated with the original text representation, typically through

concatenation or element-wise addition. This integration step

enables the model to capture the cross-modal interactions and

create a fused representation that combines both text and visual

information. The Cross-Attention mechanism plays a crucial role

in multi-modal tasks by allowing the model to attend to relevant

visual information conditioned on the textual input. It enables

the model to align and associate the text and visual modalities,

facilitating a comprehensive understanding and reasoning about

the given input.

For example, in image captioning, the Cross-Attention

mechanism helps the model generate descriptive captions by

attending to relevant image regions while generating each word

of the caption. In visual question answering, Cross-Attention

allows the model to attend to specific image regions that are

relevant to answering the question posed in the text. In image-text

matching, Cross-Attention helps align and measure the similarity

between image and text representations for tasks such as retrieval

and ranking.
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Let’s consider two modalities, Modality A and Modality B, with

their respective representations: Query (Q), Key (K), and Value (V).

The Cross-Attention mechanism involves the following steps:

Compute Attention Weights: The attention weights are

calculated by measuring the similarity between the query

representation (Q) and the key representation (K). One common

approach is to use the dot product:

AttentionWeights = softmax

(

Q · KT

√

dk

)

(8)

Here, dk represents the dimensionality of the key representation

(K). The softmax function ensures that the attention weights sum

up to 1 (Equation 8).

Weighted Combination: The attention weights are used to

weight the values (V) associated with each key. The weighted values

are then combined to obtain the attended representation:

AttendedRepresentation = AttentionWeights · V (9)

The above Equation 9 represent a simplified version of Cross-

Attention and assume single-head attention. In practice, multi-

head attention is often employed to capture different aspects and

provide richer representations. Cross-Attention allows the model

to attend to relevant information in one modality based on the

input from another modality. It enables the model to align and

associate the information across modalities, facilitating tasks that

involve multi-modal understanding, generation, and reasoning.

Cross-Attention is a fundamental mechanism in multi-modal

models that allows the model to attend to relevant information

from one modality based on the input from another modality.

It facilitates the fusion of text and visual information, enabling

comprehensive understanding and reasoning in tasks involving

multiple modalities.

4 Experiment

4.1 Datasets

This article uses the following four datasets:

OpenImages Dataset (Kuznetsova et al., 2020): OpenImages

is a large-scale dataset consisting of annotated images from a

wide range of categories. It contains over 9 million images with

annotations for object detection, segmentation, and classification

tasks. The dataset provides a diverse collection of visual data for

training and evaluating computer vision models.

Objects365 Dataset (Shao et al., 2019): Objects365 is another

comprehensive dataset that focuses on object detection and

instance segmentation. It contains over 365 object categories, with

more than 2 million labeled instances. The dataset is designed to

cover a wide range of object classes and poses, providing a rich

resource for training and evaluating object recognition models.

MSCOCO Dataset (Lin et al., 2014): MSCOCO (Microsoft

Common Objects in Context) is a widely used benchmark dataset

for object detection, segmentation, and captioning tasks. It consists

of around 330,000 images, each annotated with object bounding

boxes, segmentation masks, and image captions. MSCOCO offers

a diverse set of images with multiple object instances and complex

scenes, making it suitable for training and evaluating models in

various visual tasks.

VG-Gap Dataset (Santana et al., 2015): VG-Gap is a dataset

specifically focused on visual grounding and referring expression

comprehension. It includes images from the Visual Genome

dataset, accompanied by referring expressions that describe specific

objects or regions within the images. The dataset is designed to

facilitate research on understanding natural language instructions

and grounding them to visual content.

4.2 Experimental details

In the experiment of our real-time feedback and guidance

method for sports training based on a multimodal robot system, we

utilized four widely recognized datasets: OpenImages, Objects365,

MSCOCO, and VG-Gap, for training and validation of systems

based on Vision Transformer (ViT), CLIP, and cross-attention

mechanism. The training-validation split was set to 80% and

20% respectively. We designed two main experiments: metric

comparison experiment and ablation experiment to evaluate and

validate the performance and effectiveness of the systems. In

the metric comparison experiment, we first established baseline

models using traditional Convolutional Neural Networks (CNNs)

and Long Short-Term Memory networks (LSTMs) as control

groups for the same tasks. Subsequently, we deployed our

multimodal system and focused on evaluating key performance

metrics such as training time (in seconds), inference time (in

milliseconds), model parameters (in millions), computational

complexity (in billions of FLOPs), accuracy, AUC, recall, and

F1 score. To ensure the experiment’s accuracy, each model

was run on the same hardware and software environment

to eliminate the influence of external variables. Each model

was trained and tested on an equal amount of data to ensure

the comparability of results. Specifically, we utilized 8 A100

GPUs for training, employed the Adam optimizer, and set the

following hyperparameters: learning rate of 0.001, batch size

of 32, and 50 training epochs. We implemented the models

using the Python programming language and the PyTorch

framework. In the ablation experiment, we systematically removed

key components from the system: first the cross-attention

mechanism, then the CLIP module, and finally the Vision

Transformer. We observed the impact of each modification on

the model’s performance. This approach helped us understand the

contribution of each component to the overall system performance

and identify indispensable parts in the system. Throughout the

process, the aforementioned performance metrics were used to

evaluate and quantify the importance and effectiveness of each

component. Through these experiments, we gained detailed

insights into the specific impact of different modules on the

system’s performance. We were also able to compare the efficiency

and effectiveness of our approach in handling complex sports

training scenarios with traditional methods. The in-depth analysis

of the experimental results not only validated the effectiveness

of our approach but also demonstrated the potential application

value of multimodal interactive systems in real-time sports

training guidance. Additionally, these experimental results
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provide valuable data support and practical experience for

future research in this field, contributing to further optimization

and development of more efficient and accurate training

assistance systems.

Algorithm 1 shows the training process of the proposed

method.

Input: OpenImages Dataset, Objects365 Dataset,

MSCOCO Dataset, VG-Gap Dataset

Output: Trained ViT-Net model

Initialize ViT-Net model with pre-trained

weights;

Initialize optimizer with suitable learning rate;

Initialize loss function (e.g., cross-entropy);

while not converged do

Sample a mini-batch of images and corresponding

labels from the training dataset;

for each image do

Encode the image using Vision Transformer;

for each object in the image do

Encode the object using CLIP;

Apply Cross-Attention mechanism to

combine visual and textual features;

Forward propagate the input through the

ViT-Net;

Compute the predicted probabilities for

each class;

end

Calculate the loss between predicted

probabilities and ground truth labels;

Update the model parameters using

backpropagation;

Apply optimization step to update the

weights;

end

Evaluate the model on the validation dataset;

Calculate performance metrics (e.g., Accuracy,

Recall, Precision);

if performance metrics have improved then

Save the current model weights as the best

model;

end

end

return Trained ViT-Net model

Algorithm 1. ViT-Net training.

4.3 Experimental results and analysis

Table 1 presents the performance comparison between our

proposed model and models from other researchers on the

OpenImages and Objects365 datasets. This comparison experiment

focuses on four main performance metrics: Accuracy, Recall,

F1 Score, and AUC (Area Under the Curve), which collectively

evaluate the overall performance of the models in classification

tasks. Accuracy measures the proportion of correct predictions

made by the model, Recall focuses on the proportion of relevant

instances identified by the model out of all relevant instances, F1

Score is the harmonic mean of Precision and Recall, providing an

overall performance assessment, while AUC measures the overall

performance of the model in predicting different classes. The

results demonstrate that our model outperforms other methods

in all metrics, particularly exhibiting outstanding performance

on the Objects365 dataset, showcasing its superior image parsing

and classification capabilities. This can be attributed to our

model’s ability to effectively combine the characteristics of Vision

Transformer and CLIP, better understanding image content and

contextual information through cross-attention mechanisms.

Table 2 showcases the comparison of computational efficiency

on the MSCOCO and VG-Gap datasets, covering model

parameters, computational complexity (FLOPs), inference

time, and training time. Parameters and FLOPs reflect the

complexity of the model and the computational resources required

at runtime, with lower values indicating a lighter and more efficient

model. Inference time and training time are directly related to the

practical application of the model, with lower inference time and

training time indicating real-time and cost-effective deployment.

Our model demonstrates excellent performance in these metrics as

well, particularly showcasing significant advantages in inference

time and training time, proving its efficiency and practicality in

real-world deployment.

We compared our method with GPT-3.5 using the OpenAI

API, and the results are presented in Tables 1, 2. Our model

outperforms GPT-3.5 in key metrics such as accuracy, recall,

Inference Time(ms) and Training Time(s), as evaluated on the

OpenImages, Objects365, MSCOCO, and VG-Gap datasets. In

Table 2, the inference time is reported for every 10 images.

Therefore, an inference time of 192 ms corresponds to every 10

images, which means the inference time per frame is 19.2 ms. This

translates to approximately 52 frames per second (FPS), meeting

the real-time requirement of 25 FPS. Additionally, by applying

pruning and distillation techniques to our algorithm, we further

optimized the model to achieve close to 60 FPS without significant

loss in performance. Hence, our method satisfies the real-time

demands in practical applications.

Table 3 focuses on the ablation experiment analyzing the

impact of the Cross-Attention Module on the OpenImages and

Objects365 datasets. The experimental setup involves removing or

modifying the Cross-Attention Module and observing the changes

in Accuracy, Recall, F1 Score, and AUC. AM (Attention Module),

Seif-AM (Self-Attention Module), and Dynamic-AM (Dynamic

Attention Module) represent different configurations of the

Cross-Attention Module. By comparing these configurations, we

discovered that the complete Cross-Attention Module significantly

enhances all performance metrics, demonstrating its crucial role

in integrating visual and textual information and improving the

overall recognition capability of the model. Our model experiences

a performance decline when the Cross-Attention mechanism
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TABLE 1 Performance comparison on OpenImages and Objects365 datasets.

Model OpenImages dataset Objects365 dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

MPR (Zheng et al., 2020) 96.44± 0.03 89.75± 0.02 84.51± 0.01 86.08± 0.02 93.62± 0.03 89.28± 0.02 88.03± 0.01 87.84± 0.02

STVE (Bergamasco et al., 2012) 92.88± 0.03 90.21± 0.02 91.18± 0.01 84.7± 0.02 95.08± 0.03 88.08± 0.02 88.67± 0.01 86.04± 0.02

ULR (Pan et al., 2019) 93.85± 0.03 87.11± 0.02 90.42± 0.01 84.39± 0.02 87.92± 0.03 91.28± 0.02 85.06± 0.01 87.25± 0.02

MIISE (Faria et al., 2016) 90.69± 0.03 84± 0.02 84.28± 0.01 91.8± 0.02 87.42± 0.03 92.19± 0.02 85.43± 0.01 88.49± 0.02

CMSRM (Wang and Liang,

2023)

93.26± 0.03 89.06± 0.02 90.3± 0.01 85.72± 0.02 86.34± 0.03 86.12± 0.02 83.78± 0.01 88.33± 0.02

MAT (Zou et al., 2019) 85.57± 0.03 85.73± 0.02 84.55± 0.01 84.72± 0.02 87.23± 0.03 87.38± 0.02 84.85± 0.01 87.83± 0.02

GPT-3.5 95.57± 0.03 95.73± 0.02 91.55± 0.01 89.32± 0.02 88.23± 0.03 90.38± 0.02 89.15± 0.01 87.73± 0.02

CAM-Vtrans 96.97 ± 0.03 95.29 ± 0.02 94.03 ± 0.01 95.72 ± 0.02 98.26 ± 0.03 94.98 ± 0.02 92.84 ± 0.01 96.63 ± 0.02

In the context of multimodal robot-assisted sports training, various methods have been proposed to enhance the effectiveness of training systems. The MPR model (Zheng et al., 2020) focuses on recognizing motion patterns of exoskeleton robots using a multimodal

machine learning approach, which is crucial for understanding and improving athletic performance. The STVE method (Bergamasco et al., 2012) provides skill training within multimodal virtual environments, offering a simulated yet immersive training experience.

The ULR system (Pan et al., 2019) is designed for upper limb rehabilitation using robot-aided feedback, combining multiple modalities to enhance recovery and training outcomes. The MIISE framework (Faria et al., 2016) enables multimodal interaction with robotic

devices in simulated environments, facilitating a comprehensive training experience through various sensory inputs. The CMSRMmodel (Wang and Liang, 2023) leverages a cross-modal self-attention mechanism for controlling robot volleyball motion, which can be

particularly beneficial for sports requiring precise control and coordination. Lastly, the MAT approach (Zou et al., 2019) focuses on passive force control in a multimodal astronaut training robot, aiming to improve training effectiveness in challenging environments

by integrating different sensory and control modalities. The bold fonts in the table represent the best results.

TABLE 2 Computational e�ciency on MSCOCO and VG-Gap datasets.

Method MSCOCO dataset VG-Gap dataset

Parameters(M) Flops(G) Inference
time(ms)

Training
time(s)

Parameters(M) Flops(G) Inference
time(ms)

Training
time(s)

MPR (Zheng et al., 2020) 246.98± 0.02 314.46± 0.03 337.79± 0.01 302.67± 0.02 387.91± 0.02 316.27± 0.03 380.31± 0.01 362.18± 0.02

STVE (Bergamasco et al., 2012) 265.50± 0.02 339.35± 0.03 282.47± 0.01 350.08± 0.02 320.78± 0.02 304.25± 0.03 273.47± 0.01 239.12± 0.02

ULR (Pan et al., 2019) 202.81± 0.02 380.08± 0.03 299.94± 0.01 237.91± 0.02 323.53± 0.02 381.44± 0.03 332.22± 0.01 390.26± 0.02

MIISE (Faria et al., 2016) 301.68± 0.02 237.67± 0.03 201.48± 0.01 347.54± 0.02 355.63± 0.02 315.60± 0.03 384.33± 0.01 263.49± 0.02

CMSRM (Wang and Liang, 2023) 230.91± 0.02 296.74± 0.03 381.06± 0.01 344.62± 0.02 370.59± 0.02 258.13± 0.03 278.78± 0.01 239.78± 0.02

MAT (Zou et al., 2019) 381.30± 0.02 381.89± 0.03 268.60± 0.01 362.22± 0.02 206.74± 0.02 372.37± 0.03 294.31± 0.01 317.34± 0.02

GPT-3.5 241.30± 0.02 331.39± 0.03 248.10± 0.01 252.22± 0.02 296.74± 0.02 182.37± 0.03 224.11± 0.01 267.36± 0.02

CAM-Vtrans 194.13 ± 0.02 213.04 ± 0.03 192.35 ± 0.01 217.18 ± 0.02 132.25 ± 0.02 178.90 ± 0.03 117.04 ± 0.01 216.80 ± 0.02

The MPR model (Zheng et al., 2020) focuses on recognizing motion patterns of exoskeleton robots using a multimodal machine learning approach, which is crucial for understanding and improving athletic performance. The STVE method (Bergamasco et al., 2012)

provides skill training within multimodal virtual environments, offering a simulated yet immersive training experience. The ULR system (Pan et al., 2019) is designed for upper limb rehabilitation using robot-aided feedback, combining multiple modalities to enhance

recovery and training outcomes. The MIISE framework (Faria et al., 2016) enables multimodal interaction with robotic devices in simulated environments, facilitating a comprehensive training experience through various sensory inputs. The CMSRM model (Wang

and Liang, 2023) leverages a cross-modal self-attention mechanism for controlling robot volleyball motion, which can be particularly beneficial for sports requiring precise control and coordination. Lastly, the MAT approach (Zou et al., 2019) focuses on passive force

control in a multimodal astronaut training robot, aiming to improve training effectiveness in challenging environments by integrating different sensory and control modalities. The bold fonts in the table represent the best results.
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TABLE 3 Ablation study of Cross-Attention module on OpenImages and Objects365 datasets.

Model OpenImages dataset Objects365 dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

AM 91.59± 0.03 87.53± 0.02 86.1± 0.01 88.37± 0.02 95.45± 0.03 93.14± 0.02 90.24± 0.01 87.5± 0.02

Seif-AM 87.93± 0.03 85.41± 0.02 89.35± 0.01 92.55± 0.02 95.21± 0.03 85.76± 0.02 88.34± 0.01 92.73± 0.02

Dynamic-AM 90.48± 0.03 93.62± 0.02 84.88± 0.01 92.59± 0.02 86.36± 0.03 90.29± 0.02 89.53± 0.01 93.36± 0.02

CAM-Vtrans 96.51 ± 0.03 94.27 ± 0.02 92.36 ± 0.01 93 ± 0.02 97.03 ± 0.03 95.28 ± 0.02 94.26 ± 0.01 92.81 ± 0.02

The bold fonts in the table represent the best results.

TABLE 4 Computational e�ciency in ablation study of Cross-Attention module on MSCOCO and VG-Gap datasets.

Method MSCOCO dataset VG-Gap dataset

Parameters(M) Flops(G) Inference
time(ms)

Training time(s) Parameters(M) Flops(G) Inference
time(ms)

Training time(s)

AM 344.46± 0.02 225.62± 0.03 345.44± 0.01 228.51± 0.02 369.39± 0.02 266.69± 0.03 310.45± 0.01 286.33± 0.02

Seif-AM 369.19± 0.02 269.31± 0.03 263.81± 0.01 281.41± 0.02 303.00± 0.02 297.53± 0.03 201.25± 0.01 327.54± 0.02

Dynamic-AM 219.41± 0.02 360.93± 0.03 366.43± 0.01 303.11± 0.02 303.48± 0.02 267.01± 0.03 357.18± 0.01 256.34± 0.02

CAM-Vtrans 172.13 ± 0.02 201.61 ± 0.03 165.47 ± 0.01 140.40 ± 0.02 162.70 ± 0.02 123.92 ± 0.03 229.97 ± 0.01 100.67 ± 0.02

The bold fonts in the table represent the best results.
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is removed, but even in this case, it still outperforms other

configurations, showcasing the robustness of our approach.

Table 4 further explores the impact of the Cross-Attention

Module on computational efficiency, covering the MSCOCO

and VG-Gap datasets. The experimental results show that after

removing or modifying the Cross-Attention Module, our model

performs best in terms of model parameters, computational

complexity, inference time, and training time. This result not

only reaffirms the efficiency of our model but also highlights

the importance of the Cross-Attention mechanism in optimizing

the model’s computational path and reducing unnecessary

computations. Overall, these experimental results thoroughly

demonstrate the superiority of our proposed approach in handling

complex multi-modal data, making it suitable for applications

in scenarios such as sports training that require fast and

accurate feedback.

Conducting validation in a real-world physical environment

can indeed enhance the persuasiveness of the paper. However,

we currently face some limitations and challenges. Firstly, high-

quality video recording and processing require appropriate

hardware devices, including high-definition cameras and powerful

computational resources. We are actively seeking resource support

to ensure access to the necessary equipment and computing

capabilities. Secondly, it is necessary to establish a suitable

video recording experimental setup to ensure data quality and

consistency. We are planning and designing a standardized

recording environment to capture high-quality motion training

videos while minimizing the impact of environmental variables

on experimental results. Additionally, self-recorded videos may

introduce additional data processing and annotation work,

increasing the complexity and workload of the experiments. To

address this issue, we plan to develop semi-automated annotation

tools and data preprocessing workflows to improve efficiency and

reduce the workload. Lastly, factors such as lighting, background,

and motion complexity in self-recorded videos may differ

significantly from public datasets. This may require additional

adjustments and optimizations to the model. We will fine-tune the

model based on self-recorded videos to ensure its high performance

and accuracy in different environments and conditions. In future

work, we will continue to overcome these challenges and gradually

achieve analysis and validation of self-recorded videos. We will

report relevant results in subsequent research. Once again, thank

you for the valuable suggestions provided by the reviewer, as

they will help us further improve the research and enhance its

practical value.

5 Conclusion and discussion

This research addresses the issue of real-time feedback and

guidance in sports training and proposes a multimodal robotic

system named CAM-Vtrans: Real-time Sports Training Utilizing

Multi-modal Robot Data, which combines Vision Transformer

(ViT), CLIP, and Cross-Attention mechanisms. This method

leverages advanced deep learning techniques to process and

integrate complex visual and textual data, aiming to provide more

accurate and effective training feedback. The experiments are

divided into performance comparison and ablation experiments,

conducted on the OpenImages, Objects365, MSCOCO, and

VG-Gap datasets. The results demonstrate that our model

outperforms other state-of-the-art models in key metrics such

as accuracy, recall, F1 score, and AUC. Additionally, it exhibits

excellent computational efficiency, validating the effectiveness and

practicality of the proposed approach.

Despite the positive outcomes, there are still some limitations to

be addressed. Firstly, although the model performs well onmultiple

datasets, its generalization to other unseen types of sports activity

data has not been validated, and further testing and optimization

are needed in a broader range of sports activities. Secondly, while

the current model exhibits real-time processing capability, there

is still room for improvement in scenarios requiring extreme

real-time performance. Future research should focus on reducing

inference time and enhancing processing speed. Additionally,

exploring the model’s application across a wider array of sports

activities and incorporating more diverse and complex datasets

will be critical for ensuring its robustness and versatility. Further

development of adaptive feedback mechanisms that tailor guidance

to the specific needs of different sports disciplines could also

enhance the system’s effectiveness and user experience.
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