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Over the past few years, a growing number of researchers have dedicated

their e�orts to focusing on temporal modeling. The advent of transformer-

based methods has notably advanced the field of 2D image-based vision tasks.

However, with respect to 3D video tasks such as action recognition, applying

temporal transformations directly to video data significantly increases both

computational and memory demands. This surge in resource consumption is

due to the multiplication of data patches and the added complexity of self-

aware computations. Accordingly, building e�cient and precise 3D self-attentive

models for video content represents as a major challenge for transformers. In

our research, we introduce an Long and Short-term Temporal Di�erence Vision

Transformer (LS-VIT). This method incorporates short-term motion details into

images by weighting the di�erence across several consecutive frames, thereby

equipping the original image with the ability to model short-term motions.

Concurrently, we integrate a module designed to understand long-term motion

details. This module enhances the model’s capacity for long-term motion

modeling by directly integrating temporal di�erences from various segments

via motion excitation. Our thorough analysis confirms that the LS-VIT achieves

high recognition accuracy across multiple benchmarks (e.g., UCF101, HMDB51,

Kinetics-400). These research results indicate that LS-VIT has the potential for

further optimization, which can improve real-time performance and action

prediction capabilities.

KEYWORDS

action recognition, motion extraction, temporal crossing fusion, Vision Transformer,

deep learning

1 Introduction

The rise in the popularity of short video content has led to an increase in the

public willingness to share snippets of their daily lives on various social media platforms.

Therefore, the internet is flooded with videos every day, turning these visual snippets into

a treasure trove of information ripe for video analysis. The information embedded in these

videos, especially the dynamic actions they capture, is closely correlated with temporal

aspects–consider the difference between closing and opening a door. Overlooking the

temporal dimension can lead tomisinterpretation of these actions as identical, highlighting

the importance of accurately modeling time in video analysis. The prevailing method

for understanding videos efficiently involves mapping out temporal information on a

graph, which is then analyzed utilizing 2D Convolutional Neural Networks (CNNs) (Wang

et al., 2016; Zhou et al., 2018; Karpathy et al., 2014; Simonyan and Zisserman, 2014).
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However, this approach encounters a significant hurdle with

respect to temporal modeling. Specifically, 2D CNNs, when applied

to single frames, does not suffice in capturing the essence of

temporal information, presenting a major challenge in recognizing

video actions over time. In response to this challenge, the field

has witnessed significant advancements in video action recognition,

largely fueled by the advent of 3D Convolutional Neural Networks

(3D CNNs) and their factorized variants (Carreira and Zisserman,

2017; Feichtenhofer et al., 2018; Lin et al., 2019; Qiu et al.,

2017). These networks are adept at learning both spatial and

temporal patterns, albeit at the cost of higher computational

demands (Tran et al., 2015; Chen et al., 2018). An alternative

strategy has been introduced, focusing on the implicit learning of

motion characteristics from static images, either through factorized

versions or by leveraging temporal convolutional features (Xie

et al., 2018; Tran et al., 2017; Qiu et al., 2017). Thus, crafting

an effective temporal module for 2D CNNs that features a

robust capability for motion detection while maintaining low

computational requirements remains a challenge.

The burgeoning success of Transformer-based methodologies

in image (Dosovitskiy et al., 2021; Liu et al., 2021; Yuan et al.,

2021; Han et al., 2021; Touvron et al., 2020; Chen et al., 2021)

processing tasks has spurred researchers to extend this success to

video processing challenges (Bertasius et al., 2021; Arnab et al.,

2021; Liu Z. et al., 2022). In particular, video data is segmented into

3D patches, which are then analyzed utilizing a combination of Self-

Attention (SA) mechanisms and Feed-Forward Networks (FFN)

for the extraction of spatio-temporal features. The introduction of

the temporal dimension in video data significantly amplifies the

quantity of patches, thereby causing a surge in both computational

and memory requirements. This surge is attributed to the quadratic

increase in the complexity of computations for the multi-head SA,

a cornerstone of the Transformer architecture. Efforts to mitigate

the computational demands of spatio-temporal multi-head SA have

traditionally concentrated on partitioning the computation across

spatial and temporal dimensions for separate processing (Bertasius

et al., 2021; Arnab et al., 2021). For instance, Timesformer

(Bertasius et al., 2021) implements an approach where an initial

spatial-only SA is applied in the Transformer encoder, followed

by a temporal-only SA. Similarly, ViViT (Arnab et al., 2021)

incorporates additional temporal-only Transformer encoders after

the initial spatial-only encoder phase. Despite these advancements,

such factorization methods invariably introduce extra parameters

and increase computational load for temporal SA, especially when

compared to spatial-only Transformer networks. This raises a

critical question: Is it possible to imbue 2D Transformers with the

capability to model temporal SA effectively, thus bridging the gap

between image-based and video-based tasks without significantly

increasing the parameter count and computational burden, as 2D

CNNs learn motion features through temporal convolution.

To address the challenges presented, our approach is anchored

in the theoretical foundation of short-term and long-term

temporal modeling as introduced by TDN (Wang et al.,

2021). We introduce a network termed Long and Short-term

Temporal Difference Vision Transformer (LS-VIT) that adeptly

captures spatio-temporal Self-Attention (SA) features. LS-VIT is

inspired by the Vision Transformer (ViT) (Dosovitskiy et al., 2021)

image model, yet innovatively incorporates the Long-term

Motion Information Module (LMIM) and the Short-term Motion

Information Frame (SMIF). These modules are uniquely crafted

yet serve complementary functions in harvesting temporal

information over varying durations, thereby equipping ViT with

enhanced spatio-temporal modeling capabilities. In addressing

short-term temporal dynamics, we adopt TSN’s approach of

sparse temporal sampling, leveraging RGB differencing for short-

term temporal depiction. This is optimized by the Temporal

Difference Inhibition (TDI) method, which mitigates noise

disruptions from image differencing, integrating this optimized

data back into the original image. This process enriches a

single frame with the motion details of adjacent frames, offering

the information of movement. Recognizing motion involves a

nuanced understanding of both short-term and long-term temporal

information. The challenge intensifies when considering the effect

of motion subject displacement on action recognition within

sparsely sampled images. A significant hurdle is conveying motion

information across widely separated frames. LMIM addresses

this by streamlining feature channels and applying temporal

differencing, thereby enhancing its capability to process long-term

temporal information. In addition, both LMIM and SMIF employ

bidirectional differencing, a choice aimed at capturing motion-

inspired cross-segment variations.

Our LS-VIT introduces a straightforward yet adaptable

approach for simulating video motion, facilitating the integration

of image task-based Visual Transformer (VIT) methods into video

analytics. To comprehensively demonstrated LS-VIT’s efficiency,

we integrated the Long-termMotion Information Module (LMIM)

and Short-term Motion Information Frame (SMIF) in the VIT

framework and carried out evaluations utilizing two benchmark

datasets, UCF101, HMDB51, and Kinetics-400. The results of these

experiments emphasize the robust performance of our LS-VIT

across both datasets. Moreover, we undertook a thorough ablation

study to further confirm the utility of LMIM and SMIF. Overall, our

primary contributions are encapsulated within three key areas:

1. We propose the network of Long and Short-term Temporal

Difference Vision Transformer (LS-VIT), a strategy that facilitates

effective spatial-temporal Self-Attention (SA) modeling within

a 2D Transformers architecture. Our approach is not merely

offering an efficient image representation; it also involves design

of the module’s structure. Through ablation studies on LS-VIT,

we collected valuable insights that could steer future studies into

temporal difference modeling.

2. We develop the Temporal Difference Inhibition (TDI)

method for the Short-term Motion Information Frame

(SMIF), which enhances the integration of short-term motion

details into the image. It achieves this by reducing the noise

disruptions arising from the temporal variances among the

omitted segments, thus capturing short-term temporal elements

more effectively.

3. We also introduce the Long-term Motion Information

Module (LMIM), a module that melds with existing 2D

Transformers. Its distinctive feature lies in its capacity to

encapsulate the long-term temporal dynamics of video

activities without necessitating extra parameters or increasing

computational demands.
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2 Related work

Action recognition represents a fundamental challenge

remained to be resolved in vision, prompting the development

of numerous deep learning methodologies (Tran et al., 2015;

Feichtenhofer et al., 2016b; Rohrbach et al., 2015; Yang

et al., 2020; Piergiovanni and Ryoo, 2018; Feichtenhofer

et al., 2016a; Martínez et al., 2019; Zheng et al., 2020; Zhao

et al., 2018; Li et al., 2020; Qiu et al., 2017). Predominantly,

these strategies are divided into two categories based

on their underlying network architectures: those based

on Convolutional Neural Networks (CNN) and those

utilizing Transformers.

2.1 CNN-based methods

CNN-based methods represent a cornerstone in action

recognition, employing either 3D convolution (Tran et al.,

2015; Carreira and Zisserman, 2017; Feichtenhofer et al.,

2018) or integrating 2D-CNN (Wang et al., 2019; Lin et al.,

2019; Qiu et al., 2017) with temporal modeling to establish

robust backbone networks. For instance, Tran et al. introduced

C3D (Tran et al., 2015), a 3D CNN derivative of the VGG

model, designed to extract spatio-temporal features from

video sequences by applying 3D convolution to the VGG

framework. Similarly, I3D (Carreira and Zisserman, 2017)

extends the concept by transforming the 2D convolutional

filters of the Inception V1 model into 3D, enhancing its

capacity to analyze video data over time. Another innovative

approach, Slowfast (Feichtenhofer et al., 2018), operates through

dual 3D-CNN branches that analyze video at varying frame

rates–one targeting high and the other low frame rates–to

optimize video analysis accuracy. Considering the significant

computational demands of 3D-CNN, there appears to be

a growing trend toward enriching 2D-CNN with temporal

components. For instance, P3D (Qiu et al., 2017) innovatively

separates 3D convolution into a combination of 1D temporal

and 2D spatial convolutions, progressively incorporating 3D

convolution layers. This strategy enables the effective capture

of spatio-temporal details in videos, thereby enhancing action

recognition capabilities. TSM (Lin et al., 2019) introduces a novel

approach by employing a module that facilitates the shifting

of sub-channels to the left or right, offering an alternative to

the traditional fixed 1D temporal convolution through group

weighting. In addition, TEA (Li et al., 2020) integrates a temporal

excitation mechanism with an information collecting module to

more effectively seize motion details and expand the temporal

field of perception. Similarly, TEINet (Liu et al., 2020) merges

temporal excitation with inter-frame interaction mechanisms,

utilizing a motion enhancement module and in-depth 1D

convolution for superior temporal modeling. Nonetheless, despite

their advancements, CNN-based approaches face challenges

in effectively modeling long-range dependencies in or across

video frames, which can hamper their overall performance in

action recognition.

2.2 Transformers-based methods

Recently, the adaptation of Transformers for 2D vision tasks

(Dosovitskiy et al., 2021; Liu et al., 2021; Yuan et al., 2021;

Han et al., 2021; Touvron et al., 2020; Chen et al., 2021) has

witness a significant surge, especially in video action recognition

(Bertasius et al., 2021; Arnab et al., 2021; Liu Z. et al., 2022;

Zhang H. et al., 2021). This approach differs significantly from

the 3D convolution methods traditionally utilized in CNNs or

their factorized variants. Transformers primarily handle the spatio-

temporal correlations in videos through a method referred to

as spatio-temporal self-attention (SA) modeling. This allows for

the computation of all SAs in a block-wise manner. However, it

is important to note that this method is both computationally

intensive and prone to having too many parameters, similar

to the challenges faced with 3D CNNs. In response to these

challenges, several studies have introduced methods to lessen

the computational load of joint spatio-temporal SA modeling.

For instance, Timesformer (Bertasius et al., 2021) introduces

a method that segregates the video into individual frame-level

segments, applying separate temporal and spatial SA, followed

by a temporal SA after each spatial one. ViViT (Arnab et al.,

2021) takes a step further in enhancing the capture of temporal

dynamics and relationships in videos by layering temporal

Transformer encoders atop the spatial encoder outputs. Video

Swin Transformer (Liu Z. et al., 2022), on the other hand,

aims at reducing both computational complexity and memory

usage by segmenting the local window across both spatial and

temporal dimensions for self-attention. TPS (Xiang et al., 2022)

distinguishes itself by incorporating a block-transfer and channel-

transfer module, aiming to optimize the Transformer’s ability to

model temporal aspects.

Currently, the predominant method for modeling time

series in videos utilizes 2D and 3D CNNs. TSM (Lin et al.,

2019) was among the first to suggest temporal modeling

between video frames to effectively understand motion features.

TRN (Zhou et al., 2018) builds upon this by integrating

multiscale features across the temporal dimension to bolster

temporal inference. STM (Jiang et al., 2019) introduces a novel

block, deviating from the traditional residual block, to better

represent spatio-temporal and motion features. Both TEA (Li

et al., 2020) and TEINet’s (Liu et al., 2020) innovations lie

in utilizing temporal difference operations to architect their

network models. TDN (Wang et al., 2021) adopts a multi-

scale temporal difference modeling strategy to capture motion

details comprehensively, facilitating end-to-end action recognition.

TPS (Xiang et al., 2022), building upon TSM’s foundation,

offers block transfer as a complementary enhancement. The

effectiveness of temporal modules in 2D CNNs inspired the

development of LS-VIT, aimed at enhancing spatial Transformers

with the capacity for spatio-temporal feature learning without

the necessity for additional parameters. In addition, SMIF and

LMIM introduce methods for generating images with short-

term motion information features, the former through temporal

differencing and the latter by reducing channel feature numbers,

addressing the issue of excessive motion information variance

between successive frames.
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3 Methodology

In this section, we evaluate the architecture of the Long

and Short-term Temporal Difference Vision Transformer (LS-

VIT), which converts spatial Transformers to spatio-temporal

Transformers through the integration of the Long-term Motion

Information Module (LMIM) and the Short-term Motion

Information Frame (SMIF). We will further describe both the

LMIM and SMIF approaches specifically.

3.1 Overview

Illustrated in Figure 1, our Long and Short-term Temporal

Difference Vision Transformer (LS-VIT) is proposed for video-

level action learning and leverages the full spectrum of video

data. Our primary contribution lies in the application of temporal

difference operators at both the network’s front end and internally

within the Vision Transformer (VIT) framework. In constructing

the LS-VIT, we prioritize the integration of short-term motion

data right at the input phase to establish the Short-term

Motion Information Frame (SMIF). Concurrently, we incorporate

a pluggable Long-term Motion Information Module (LMIM)

incorporated into the architecture via residual connections,

selectively reducing channel information to mitigate issues of

motion misalignment that arise with long-term motion.

Videos vary in length, and we address this by dividing a given

video, V , into T non-overlapping segments. From each segment,

we extract frames, referred to as X, characterized by the shape of

[B,T,C,H,W]. where B represents the batch size or the number of

videos processed simultaneously, T denotes the sequence length of

the frames, C stands for the number of feature channels, andH and

W signify the frame’s height and width, respectively. This division

results in a total of T frames I = [I1, . . . , IT], where the shape of I is

[C,H,W]. The SMIF is designed to enrich the image with localized

motion details, thereby enhancing its descriptive capability:

SMIF : Îi = Ii + D (Ii) (1)

Where Îi denotes the image enhanced with short-term motion

details, extracted from analyzing motion between adjacent frames

of Ii, and D represents the differential image highlighting frame

changes. F denotes the frame-level attributes extracted by feeding

the 2D Transformer with these frames, where F = [F1, . . . , FT].

The LMIM mainly utilizes the temporal structure across frames to

enhance the representation of frame-level features:

LMIM : F̂i = Fi + Fi ⊙ L (Fi) (2)

Where, Fi represents the features input to the encoder, and

L denotes the LMIM module, which is inserted into the Self-

Attention (SA) module of an existing 2D Transformer block.

This module aggregates information from other temporal frames,

transforming the spatial features Fi into spatiotemporal features

F̂i. This approach enables the model to comprehend the temporal

structure within extended motion sequences by layering multiple

LMIMs. The detailed methodology will be described in the

following subsection.

3.2 Short-term motion information

In the analysis of action videos, we have observed that

the data from adjacent frames are highly correlated, selecting

a single frame from each video segment captures only the

spatial aspects of the action will inevitably overlook crucial

temporal information. Therefore, we propose a Short-term

Motion Information Frame (SMIF) method, which produces

an RGB image for each frame containing motion information

that integrates the visual appearance and motion details of the

neighboring frames, characterizing the video information in terms

of images. Through this approach, a more comprehensive and

profound understanding and analysis of video action information

is achieved.

Specifically, our SMIF approach is specifically designed to

enhance the network’s input by integrating the temporal differences

across frames, thereby enabling the derived single-frame RGB

images to encapsulate local movement. As depicted in Figure 2,

for each sampled frame Ii, we extract the two adjacent frames

immediately before and after it, in a localized window centered on

Ii to make a short-term image set Si = [Ii−2, Ii−1, Ii, Ii+1, Ii+2].

We then calculate the differences between these consecutive

frames in pairs to identify short-term temporal difference

sequence Di:

Di = [Ii−2 − Ii−1, Ii−1 − Ii, Ii − Ii+1, Ii+1 − Ii+2] (3)

To enhance the precision of motion trend information for

action recognition, the proposed method leverages bidirectional

information (Li et al., 2023), achieving sufficient capture of motion

features and critical visual cues without the need for introducing

excessive parameters. Specifically, we denote Ii−1 and Ii+1 as the

adjacent frames within the same segment for the Ii frames from

segment i. Thus, could obtain the forward and backward temporal

differences as:

D
f
i = {Ii − Ii−1} (4)

Db
i = {Ii − Ii+1} (5)

Considering that subtracting adjacent frames results in only

N-1 temporal difference frames, we prepend and append a zero

frame to both the forward temporal difference sequence D
f
i and

the backward temporal difference sequence Db
i . This adjustment

ensures that the summation of forward and backward frame

differences is staggered at the zero frame, thereby simplifying

the computation of the overall temporal difference. To maintain

consistency, we continue to use D
f
i and Db

i to denote these

sequences after restoration, and based on these frames, we compute

the total temporal difference sequences:

Di = D
f
i + Db

i (6)
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FIGURE 1

Summary the overall framework of long and short-term motion di�erences. The SMIF e�ectively transforms multiple sparsely sampled motion

segments into a series of keyframes. These keyframes are then fed into a Vision Transformer (VIT) model integrated with a Long-term Motion

Information Module (LMIM). The VIT shares the same parameters across all segments.

FIGURE 2

Overview of the proposed Short-term Motion Information Frame. The resulting short-term frame di�erence image is combined with the original

image by di�erencing the original image after doing time di�erence suppression on it. ⊕ denotes the element-wise sum.

Considering that in some adjacent frames, subtle changes in

human motion may result in temporal difference frames lacking

temporal information, we compute the average of the overall

temporal differences to comprehensively capture global temporal

information. This approach effectively adjusts and restores the

temporal difference sequence to T frames:
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D(Ii) = AVG(Di−2,Di−1,Di,Di+1,Di+2) (7)

Image noise and illumination changes can cause short-term

temporal differences that mistakenly register as motion, even when

only the target figure itself is actually transforming. To address

this, inspired by the motion focus concept from SSTSA (Alfasly

et al., 2024), we propose the Temporal Difference Inhibition (TDI)

method, as depicted in Figure 3. Here, we introduce a threshold

α to the differential frame image, setting pixel values below this

threshold to zero, thus minimizing noise-induced discrepancies:

D(T−1,c,h,w) =
{

0, if (D ≤ α × k)

D+ β × k, if (D > α × k)
(8)

Where α is the threshold value and 1 ≥ α ≥ 0, k = Imax − Imin

acting as the scale factor to adjust for the range of pixel intensity

values in the input image–i.e., k = 255 for non-normalized inputD.

Additionally, β serves as an enhancementmultiplier, amplifying the

pixels indicative of actual movement, thereby enhancing motion

detection while suppressing irrelevant changes.

3.3 Long-term motion information

While the SMIF frame-based representation excels in

encapsulating local spatio-temporal information, its application

is confined to intra-segment video analysis, thereby limiting its

scope in probing the extended temporal dimensions of action

models. Drawing inspiration from META (Ye et al., 2022) and

CLS-Net (Xue et al., 2023), our attempt at LMIM focuses on

leveraging inter-segmental data to bolster the representation of

prolonged temporal information. This is achieved through a

bidirectional multiscale temporal difference module, tailored for

long-duration analysis.

Figure 4 illustrates the Long-termMotion Information Module

(LMIM), which is integrated into the block l. This module is

designed to optimize challenges arising from spatial displacements

between frames of long-term motion information, while also

reducing feature dimensions to enhance computational efficiency.

Specifically, the segment features input into the model are

represented as F with dimensions [B,T,N,C]. By employing

channel feature averaging, we reduce the feature dimensions of F

to 1/r of the original size, obtaining a new feature representation

F̂ with dimensions [B,T,N,C/r]. Subsequently, we calculate the

temporal differences across all segments:

Cf = F̂i − ˆFi−1 (9)

Cb = F̂i − ˆFi+1 (10)

After obtaining the bidirectional temporal differences, a

method similar to SMIF is employed to convert them back

to the original T segments. To capture temporally salient

features, the Sigmoid function is applied to normalize the learned

attention coefficients, generating a temporal attention map. A

hyperparameter δ is used to regulate the intensity of the temporal

attention map. Based on empirical practices [such as in TDN

(Wang et al., 2021)], δ is set to 0.5, ensuring that the attention-

enhanced features are primarily driven by the original features:

Ac = Sigmoid(Cf + Cd)− δ (11)

Since the temporal attention map can simultaneously capture

both spatially and semantically relevant features, it enhances the

spatio-temporal representation of the features:

Fi ⊙ L(Fi) = Fi ⊙ Ac (12)

where ⊙ is the element-based multiplication, this approach

not only integrates the original frame-level representations but

also enhances them through the residual connection defined in

Equation 2. The strategy of combining multiplication and addition

effectively activates key information within the original features,

enabling the network to focus on both spatially and semantically

relevant features. Simultaneously, it maintains the integrity of

background features to a certain extent, thereby achieving accurate

action recognition. SMIF and LMIM complement each other by

providing information to each other and assisting the model in the

extraction of features.

4 Experiments

In this section, we present the results of our LS-VIT

experiments. First, we outline the datasets assessed and the precise

methodologies employed. The following sections are dedicated

to exploratory ablation studies focused on LS-VIT’s architecture,

resulting in a comparative analysis against leading-edge methods.

4.1 Datasets and implementation details

4.1.1 Video datasets
We evaluate ourmodel on two datasets, UCF101 (Soomro et al.,

2012) and HMDB51 (Kuehne et al., 2013). UCF101 is a collection

of 13,320 internet-sourced video clips, categorized into 101 human

action classes. Conversely, HMDB51, with its 6,776 video clips

sourced from a diverse array of origins including films and

internet videos, catalogs 51 varieties of human actions. Kinetics-

400 (Carreira and Zisserman, 2017) is a large-scale YouTube video

dataset comprising approximately 300,000 video clips across 400

categories. This dataset includes a wide range of activities from

daily life, with some categories being highly correlated with specific

objects of interaction or contextual scenes.

4.1.2 Training
In this paper, the model is chosen to be based on the VIT

implementation, and T = 16 frames are extracted from each video.

MixUp data augmentation is applied with an alpha value of 0.8,

and label smoothing is set to 0.1. By convention (Wang et al., 2018;

Feichtenhofer et al., 2018), we adjust the shorter dimension of video

frames to 256 pixels during the training phase, and cropping these

to a uniform 224× 224 pixel dimension. The LS-VIT fine-tuning of
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FIGURE 3

Overview of the temporal di�erence inhibition studied in the Short-term Motion Information Frame.

FIGURE 4

Illustration of the Long-term Motion Information Module. The channel feature dimensions are reduced, and then, after di�erential processing, a dot

product on the channel is done with the original feature. ⊙ denotes the element-wise matrix multiplication. ⊕ denotes the element-wise sum.

the model is achieved on the K400 dataset, utilizing the ImageNet

(Deng et al., 2009) dataset as a foundational resource. Key training

parameters include an initial learning rate of 0.003, a learning rate

decay of 0.001, across a total training span of 50 cycles. Experiments

are conducted on a GTX 3090 with a memory of 24 GB.

4.2 Ablation studies

This paper also describes a comprehensive set of

experiments conducted primarily on the HMDB51 dataset,

leveraging the VIT-B backbone network (Dosovitskiy
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TABLE 1 E�ect of di�erent scales on SMIF, where X denotes the original

image and D denotes the average frame di�erence.

Ratio Top 1

0.8X+0.2D 74.3%

0.7X+0.3D 74.8%

0.6X+0.4D 75.6%

0.5X+0.5D 75.4%

0.4X+0.6D 75.7%

0.3X+0.7D 75.4%

0.2X+0.8D 74.7%

The bold values represent the highest accuracy.

et al., 2021)–pre-trained utilizing ImageNet21k and K400

datasets. These experiments, designed with T = 16 and

D = 5 parameters, were adopted to provide clarity through

ablation experiments.

4.2.1 Research on the e�ectiveness of SMIF
The Short-term Motion Information Frame is produced by

integrating the short-term frame difference image with the base

image with a further process of scaling and weighting after

considering the critical nature of traditional image pixel values.

As illustrated in Table 1, various base images, when merged with

differing magnitudes of frame difference, yield different modes

of image representation. We assess how varying scales affect the

precision of the resultant image. Notably, in short-term motion

information imagery, an enhanced representation is achieved when

the frame difference image’s proportion surpasses that of the

base image. This improvement is attributed to the suppression

of temporal discrepancies in the frame difference image, thereby

enriching its integration with the base image and more effectively

conveying motion information.

4.2.2 The influence of threshold and
enhancement factor on SMIF

By setting a pixel-level change threshold α, static regions

are subdued, thus simplifying the task of accentuating dynamic

sections. This study indicates that overlooking minor pixel

fluctuations allows for a sharper focus on the essence of movement,

despite the fact that pixels across successive motion frames exhibit

variability in motion intensity. In this context, we employed the

LS-VIT model, experimenting with four thresholds: α = 0.02,

α = 0.05, α = 0.07, and α = 0.1. The findings, presented in the

initial segment of Table 2, demonstrate that a threshold of α = 0.02

outperforms its counterparts, effectively considering up to 98% of

pixel activity as significant motion. Thereafter, we explore the effect

of the amplification factor, β , which scales the intensity of motion

in active regions by a factor of β , while static regions are rendered

inert. Experimenting with values β = 0.02, β = 0.05, β = 0.07,

and β = 0.1, and the second part of Table 2 indicates that LS-VIT

performs best with β = 0.07.

TABLE 2 E�ect of di�erent thresholds α as well as enhancement

multiplicity β on SMIF.

α β Top 1

0 0 75.7%

0.02 0 75.9%

0.05 0 75.6%

0.07 0 75.8%

0.1 0 75.2%

0.02 0.02 76.1%

0.02 0.05 76.2%

0.02 0.07 76.5%

0.02 0.1 75.8%

The bold values represent the highest accuracy.

TABLE 3 E�ect of di�erent channel feature reduction number ratios r on

the LMIM.

Reduce quantity Top 1

1 71.7%

2 71.9%

3 71.4%

4 71.5%

6 72.0%

8 70.6%

The bold values represent the highest accuracy.

4.2.3 Research on the impact of di�erent channel
reduction rates in LMIM on LS-VIT

In Section 3 Methodology, the study evaluates the rationale for

proposing LMIM, which aims at reducing the number of channel

features to better alignmotion information. Specifically, for the VIT

during the Attention phase, the number of channel features stands

at C = 768. To streamline the computational process and adjust

tensor shapes more efficiently, various reduction quantities were

experimented with, including r = 2, r = 3, r = 4, r = 6, and

r = 8. According to Table 3, it is observed that reducing the image

channels to 1/6 of their original number (r = 6) offers a more

effective solution to the image alignment challenge, demonstrating

optimal performance of LMIM in this context.

4.2.4 E�ect of SMIF vs. LMIM on LS-VIT
SMIF and LMIM are integrated at different points in the

model, each contributing uniquely to the processing of long-

term and short-term motion information. This complementary

action is assessed by comparing the optimal performances of

both SMIF and LMIM in enhancing LS-VIT identification, as

outlined in Table 4. Individually, SMIF and LMIM enhance VIT

identification capabilities, with SMIF demonstrating a slight edge

over LMIM. However, combining them does not significantly

amplify the results. The reason for this phenomenon is that the

SMIF encompasses not only the spatial information essential for
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TABLE 4 Impact of SMIF and LMIM on the model;
√

indicates that the

module was used; - indicates that it was not used.

SMIF LMIM Top 1

- - 69.1%

-
√

72.0%

√
- 76.5%

√ √
76.9%

TABLE 5 Impact of SMIF with di�erent LMIM reduction ratios.

SMIF_Ration LMIM_Ration Top 1

0.4X+0.6D 1 77.0%

0.4X+0.6D 2 76.7%

0.4X+0.6D 3 76.3%

0.4X+0.6D 4 76.4%

0.4X+0.6D 6 76.8%

0.4X+0.6D 8 76.0%

The bold values represent the highest accuracy.

action representation but also a portion of short-term motion

information. In the context of the Vision Transformer (VIT), the

focus is predominantly on the SMIF. As a result, when both the

SMIF and LMIM are employed concurrently, the contribution

of the LMIM becomes less pronounced. This observation led

to a further study, particularly focusing on LMIM’s channel

reduction effect on LS-VIT. The findings, illustrated in Table 5,

indicate that the combination of SMIF and LMIM is most

effective at a reduction ratio of r = 1, suggesting that for

extracting short-term motion information, LS-VIT benefits from

a minimal reduction in channels. At this rate, the module utilizes

uncompressed features for temporal differences, this minimal

reduction avoids overly compressing the channels, thus adequately

capturing long-term motion information without compromising

the model’s effectiveness.

4.3 Comparison with the state of the art

In Table 6, we adhered to the universally accepted evaluation

protocol for this dataset to maintain an equitable benchmark. The

findings from these tests indicate that our model surpasses both

TSM and TDN in performance metrics, especially significant when

the input consists of 16 frames. Considering the action categories

in the HMDB51 dataset have a high correlation to motion data, the

capacity for temporal analysis is crucial. Our model demonstrates

proficiency in capturing and leveraging temporal data, leading to a

enhancement in recognition capabilities.

Further comparative analysis was carried out against the latest

leading methods on the UCF-101 dataset, with detailed results

presented in Table 7. Echoing the patterns observed with the

HMDB51 dataset, our LS-VIT model delivers performance on

par with other leading models under the condition of utilizing

16 frames as input. It is important to highlight that the UCF-

101 dataset’s comparatively limited scope allows most models to

reach near-peak accuracy levels, particularly when pre-trained

with “ImageNet + K400.” For instance, TDN’s accuracy peaks at

97.4%. Against this backdrop of high baseline accuracies, enhancing

model performance poses a significant challenge. Nonetheless, the

comparative data emphasizes that our LS-VIT model manages to

closely match, if not rival, the performance of the current SOTA

models. This proves the robustness’ of LS-VIT in its competitive

edge in the field.

In Table 8, we present a detailed report of the experimental

results on the Kinetics400 dataset, which focuses on scene-based

action recognition, and compare our findings comprehensively

with current state-of-the-art techniques. The data clearly show

that our proposed LS-VIT model achieves a top-1 accuracy of

74.9%. This performance significantly surpasses most (2+1D)

CNN-based methods such as TSM and TEA, and is comparable

to the TDN model. Compared to Transformer-based methods

like Timesformer and Vidtr, LS-VIT also excels in accuracy

performance and significantly reduces FLOPS, further highlighting

its advantages in both performance and computational efficiency.

While methods like Timesformer and Videoswin demonstrate

strong performance in video processing, their efficiency is limited

by a heavy reliance on three-dimensional convolutions, which

undoubtedly increases computational costs. In contrast, LS-VIT

not only excels in accuracy but also significantly reduces FLOPS,

further highlighting its advantages in both performance and

computational efficiency. Although TEA and TSM are known

for their computational efficiency, they may struggle to capture

subtle spatiotemporal details. In such cases, LS-VIT, through

its innovative bidirectional motion capture strategy, provides

superior performance. By leveraging the synergistic functionality

of the SMIF and LMIM modules, LS-VIT accurately captures

and analyzes motion information without imposing additional

computational burdens.

To more intuitively evaluate the performance of LS-VIT on the

HMDB51 and UCF101 datasets, we have visualized the confusion

matrices and presented them in Figure 5. In this figure, the intensity

of the red color in the diagonal elements represents the prediction

accuracy of the model for each class; the deeper the red, the higher

the prediction accuracy for that category.

5 Conclusions and discussions

To address the challenge of detecting actions within videos, our

study introduces the LS-VIT network, which analyzes both long-

and short-term motion differences. This network is specifically

designed to model temporal information in a bidirectional manner,

effectively capturing motion trends from both forward and

backward perspectives. This approach aims to overcome common

hurdles such as high computational demand and inefficient use of

temporal data that plague current methodologies.

We conducted rigorous testing of the LS-VIT network across

three widely recognized benchmark datasets, allowing for a

thorough analysis of each component. The results, obtained

under consistent experimental conditions, indicate that the LS-VIT

network demonstrates effective utilization of temporal information,
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TABLE 6 Comparison with state-of-the-art methods on HMDB51.

Model Pretrain FLOPS Params Top 1

TSM (Lin et al., 2019) K400 65G 24.3M 73.2%

STM (Jiang et al., 2019) K400 66.5G 24M 73.3%

TEA (Li et al., 2020) K400 70G 24.3M 72.2%

TDN (Wang et al., 2021) K400 72G 24.8M 76.3%

TCM (Liu Y. et al., 2022) K400 105G 49M 77.5%

Timesformer (Bertasius et al., 2021) K400 196G 122.2M 72.7%

Video-Swin (Liu Z. et al., 2022) K400 282G 88.1M 72.2%

Vidtr (Zhang Y. et al., 2021) K400 179G 61M 74.4%

MSVL (Chen et al., 2024) ImageNet 158G 27.3M 72.9%

LS-VIT (Ours) K400 134.9G 85.69M 77.0%

The bold values represent the highest accuracy.

TABLE 7 Comparison with state-of-the-art methods on UCF101.

Model Pretrain FLOPS Params Top 1

TSM (Lin et al., 2019) K400 65G 24.3M 96.0%

STM (Jiang et al., 2019) K400 66.5G 24M 96.2%

TEA (Li et al., 2020) K400 70G 24.3M 96.9%

TDN (Wang et al., 2021) K400 72G 24.8M 97.4%

TCM (Liu Y. et al., 2022) K400 105G 49M 97.2%

Timesformer (Bertasius et al., 2021) K400 196G 122.2M 94.7%

Video-Swin (Liu Z. et al., 2022) K400 282G 88.1M 97.6%

Vidtr (Zhang Y. et al., 2021) K400 179G 61M 96.6%

MSVL (Chen et al., 2024) ImageNet 158G 27.3M 97.6%

LS-VIT(Ours) K400 134.9G 85.69M 97.1%

The bold values represent the highest accuracy.

TABLE 8 Comparison with state-of-the-art methods on Kinetics400.

Model Pretrain FLOPS Params Top 1

TSM (Lin et al., 2019) ImageNet 65G 24.3M 72.6%

STM (Jiang et al., 2019) ImageNet 66.5G 24M 73.7%

TEA (Li et al., 2020) ImageNet 70G 24.3M 74.0%

TDN (Wang et al., 2021) ImageNet 72G 24.8M 75.5%

Timesformer-L (Bertasius et al., 2021) ImageNet 2380G 121.4M 80.7%

Video-Swin (Liu Z. et al., 2022) ImageNet 282G 88.1M 82.7%

Vidtr (Zhang Y. et al., 2021) ImageNet 179G 61M 78.6%

LS-VIT (Ours) ImageNet 134.9G 85.69M 74.9%

The bold values represent the highest accuracy.

offering improvements over its predecessors in the field of

action recognition.

Our model performs well with actions involving complex

motion patterns, such as dance or martial arts. However,

it may struggle to capture sufficient motion information

for actions with smaller ranges or slower speeds, such as

subtle facial expressions or finger movements, which can

affect recognition accuracy. Additionally, the model is

primarily optimized for single-person action recognition,

and challenges increase in multi-person interaction scenarios

due to the need to account for dynamic interactions and

occlusion issues.
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FIGURE 5

Confusion matrix of LS-VIT on the HMDB51 (A) and UCF101 (B).

Future research will focus on testing the model on more

diverse datasets, including multi-person interaction scenarios and

domain-specific actions, to evaluate and improve its generalization

ability. Subsequent work may extend this method to other areas,

such as action prediction and real-time action detection. We

also plan to emphasize improving training speed and reducing

inference time while exploring applications of this approach in

action prediction.
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