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e�cient mobile robot path
planning
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Hebi Institute of Engineering and Technology, Henan Polytechnic University, Hebi, Henan, China

Introduction: Path planning in complex and dynamic environments poses a
significant challenge in the field of mobile robotics. Traditional path planning
methods such as genetic algorithms, Dijkstra’s algorithm, and Floyd’s algorithm
typically rely on deterministic search strategies, which can lead to local optima
and lack global search capabilities in dynamic settings. These methods have high
computational costs and are not e�cient for real-time applications.

Methods: To address these issues, this paper presents a Quantum-behaved
Particle Swarm Optimization model enhanced by deep reinforcement learning
(RL-QPSO Net) aimed at improving global optimality and adaptability in
path planning. The RL-QPSO Net combines quantum-inspired particle swarm
optimization (QPSO) and deep reinforcement learning (DRL) modules through
a dual control mechanism to achieve path optimization and environmental
adaptation. The QPSO module is responsible for global path optimization,
using quantum mechanics to avoid local optima, while the DRL module
adjusts strategies in real-time based on environmental feedback, thus enhancing
decision-making capabilities in complex high-dimensional scenarios.

Results and discussion: Experiments were conducted on multiple datasets,
including Cityscapes, NYU Depth V2, Mapillary Vistas, and ApolloScape, and
the results showed that RL-QPSO Net outperforms traditional methods in
terms of accuracy, computational e�ciency, and model complexity. This
method demonstrated significant improvements in accuracy and computational
e�ciency, providing an e�ective path planning solution for real-time applications
in complex environments for mobile robots. In the future, this method could
be further extended to resource-limited environments to achieve broader
practical applications.

KEYWORDS

path planning, Quantum-behaved Particle Swarm Optimization, deep reinforcement

learning, mobile robotics, complex environments

1 Introduction

Robot path planning is an important research direction in the fields of robot

navigation and automation control (Liu et al., 2023). It has wide applications in industrial

automation, such as automated production lines and warehouse logistics systems, as well

as in various domains like intelligent transportation, autonomous driving, and home

service robots, showcasing significant potential. Research in robot path planning not only

improves the accuracy and efficiency of robot autonomous navigation but also enhances
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the robot’s adaptability to the environment and task execution

capabilities (Sanchez-Ibanez et al., 2021). The rapid advancement

of artificial intelligence and sensing technologies has led to the

optimization and innovation of path planning algorithms. This

not only enhances robot technology but also drives technological

advancements in related application fields (Yang et al., 2020).

Therefore, in-depth research and addressing key issues in robot

path planning hold substantial practical significance in driving the

overall development of robotics technology.

In the early days of robotics, path planning primarily relied

on basic graph search algorithms. Dijkstra’s algorithm (Luo et al.,

2020), initially employed for path planning, can find the shortest

path from a single source point to all other nodes, ensuring

result accuracy. However, its downside is the high computational

cost when dealing with large-scale networks. The Bellman-Ford

algorithm addresses shortest path problems in graphs with negative

edge weights, expanding application scenarios but still lacking in

efficiency (Schambers et al., 2018). The Floyd-Warshall algorithm

provides a method to compute the shortest paths between all

vertex pairs in a graph, ideal for scenarios that require frequent

shortest path queries, yet its O(n3) time complexity restricts

its application in large graphs (Aziz et al., 2017). The A*

algorithm introduces heuristic evaluation to optimize path search,

significantly enhancing search efficiency, but its performance

heavily depends on the choice of heuristic function Guruji et al.

(2016). The IDA* algorithm (Iterative Deepening A*) (Guo et al.,

2022) aims to resolve the space limitation issues of A*, adopting a

depth-first search approach that incrementally increases cost limits

to find paths, reducing memory usage but adding computational

complexity.

To address the limitations of traditional graph search

algorithms in complex environments, researchers have developed

heuristic and metaheuristic approaches that provide improved

flexibility and adaptability. The Rapidly-exploring Random Tree

(RRT) algorithm (Muis, 2019), for instance, is particularly effective

in high-dimensional and unstructured spaces due to its random

exploration, which helps avoid local optima. However, RRT’s

inherent randomness may lead to suboptimal paths and fluctuating

computational efficiency (Kuffner and LaValle, 2000). Similarly,

the Probabilistic Roadmap (PRM) (Latombe, 1998) uses random

sampling in continuous spaces to connect points, making it suitable

for relatively stable environments, though it struggles in highly

dynamic scenarios. Genetic algorithms (Aybars, 2008), inspired by

natural selection, improve solution diversity but often face slow

convergence and risk getting trapped in local optima. Simulated

annealing introduces a probabilistic mechanism to escape local

minima, though its efficiency heavily depends on the design of

the cooling schedule. Particle Swarm Optimization (PSO) (Yu

et al., 2022), which models social behaviors like flocking, is simple

to implement and effective in exploring the search space, but

in complex environments, it may require extensive iterations to

achieve satisfactory results.

To further improve performance, end-to-end learning-based

approaches have emerged, leveraging deep learning techniques to

directly map input data (e.g., sensor or image data) to output

actions or paths (Riviere et al., 2020). These methods, trained on

large datasets, can autonomously learn complex patterns in various

environments without relying on predefined heuristics or manually

designed features. Convolutional Neural Networks (CNNs) (Wang

et al., 2020) and Recurrent Neural Networks (RNNs) (Nair and

Supriya, 2020) are often integrated in end-to-end frameworks to

handle spatial and temporal information, respectively, allowing for

efficient path planning in dynamic scenarios. Although end-to-

end methods eliminate the need for intermediate feature extraction

and manual tuning, they are computationally intensive and require

substantial training data. Nonetheless, end-to-end models provide

an adaptive (Teng et al., 2023), flexible approach suitable for real-

world applications, as they can continuously improve performance

with more data and updates, making them particularly valuable for

navigating complex, unpredictable environments.

As computational power has increased and data availability

has improved, deep learning technology, particularly deep

reinforcement learning, has been widely introduced into path

planning to adapt to complex and dynamic environments. Deep

Q-Networks (DQN) (Li et al., 2022) combine deep learning

with Q-learning, enabling robots to learn effective navigation

strategies in complex environments. Although DQN has improved

learning performance, it relies on a large amount of interaction

data, requires long training periods, and is prone to overfitting.

Policy gradient methods (Zhang et al., 2020) enhance learning

efficiency by optimizing the policy itself, offering flexible control

and allowing the model to learn complex strategies. However, their

main drawback is high variance during training, which can lead

to unstable learning. Double DQN (Xiaofei et al., 2022) uses two

networks to reduce estimation bias, improving algorithm stability

but increasing computational complexity and resource demands.

Asynchronous Advantage Actor-Critic (A3C) (Leng et al., 2022)

accelerates the process and enhances robustness through multi-

threaded learning, but its high parallelism requirements may limit

its application in resource-constrained environments. Monte Carlo

Tree Search (MCTS) (Qian et al., 2022), successfully applied in

AlphaGo, selects the optimal strategy by simulating future action

sequences but faces challenges of high computational costs and

substantial resource demands. Soft Actor-Critic (SAC) (Tang et al.,

2023) and Twin Delayed DQN (TD3) (Zhou et al., 2024) provide

new directions for deep reinforcement learning. SAC balances

policy performance (He et al., 2022) and exploration through the

entropymaximization principle, while TD3 reduces overestimation

and noise with two value functions. These methods optimize

path planning in complex environments but face challenges

with complex parameter tuning and algorithm implementation

(Garg et al., 2024). Although these methods hold great potential

for applications like autonomous driving and drone navigation,

the resource consumption and algorithm stability in practical

applications need further research and optimization.

Compared to the limitations of traditional and enhanced

deep learning methods, this paper introduces an innovative

path planning approach–RL-QPSO Net–designed to enhance

robot performance in complex dynamic environments. RL-QPSO

Net combines Quantum-behaved Particle Swarm Optimization

(QPSO) and Deep Reinforcement Learning (DRL), offering a novel

solution for path planning tasks. The QPSO module incorporates

quantum behaviors to enhance the search capabilities of the

swarm, enabling effective exploration of the global optimal path
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in high-dimensional complex scenarios and avoiding the local

optima typical of traditional algorithms. Simultaneously, the deep

reinforcement learning module adjusts the robot’s path selection

strategies through real-time interaction with the environment,

granting the model adaptability to dynamically alter its course

as the environment changes. By organically integrating these two

modules, RL-QPSO Net not only achieves robustness optimization

across various environments but also significantly enhances

the model’s global convergence and path planning accuracy.

Experimental results demonstrate that RL-QPSO Net outperforms

traditional methods on multiple datasets, showing significant

advantages in accuracy, efficiency, and adaptability, thus providing

an efficient and stable solution for mobile robot path planning

tasks.

• Anovel path planning approach, RL-QPSONet, is introduced,

combining Quantum-behaved Particle Swarm Optimization

(QPSO) with Deep Reinforcement Learning (DRL) modules,

innovatively enhancing the global optimality capabilities of

path planning.

• This method exhibits high efficiency and versatility across

multiple scenarios, with the QPSO module enhancing search

capabilities in high-dimensional complex environments and

the DRL module ensuring real-time adaptability in dynamic

settings.

• Experimental results demonstrate that RL-QPSO Net

significantly outperforms traditional methods across

multiple datasets, showing distinct advantages in accuracy,

computational efficiency, and adaptability, making it suitable

for practical applications in complex environments.

2 Methodology

2.1 Overview of our network

In our proposed RL-QPSO Net model, we introduce a novel

architecture that leverages deep reinforcement learning (DRL)

coupled with Quantum-behaved Particle Swarm Optimization

(QPSO) to address the complex and dynamic nature of mobile

robot path planning. The model is designed to efficiently navigate

through unpredictable environments by integrating adaptive

planning mechanisms, which adjust according to environmental

changes. This integration ensures both optimized path quality

and computational efficiency, making it suitable for real-

time applications on mobile robots with limited computational

resources. The model operates by embedding a dual-layered

control mechanism where DRL components handle immediate

decision-making tasks, like obstacle avoidance and navigation,

while QPSO optimizes the global path through a quantum-inspired

approach, balancing exploration and exploitation to avoid local

optima. The QPSO framework introduces a stochastic particle

behavior governed by quantum mechanics principles, enhancing

the algorithm’s capacity to perform in high-dimensional search

spaces and ensuring global convergence in complex environments.

To systematically explain our methodology, we will structure

this section as follows: In Section 2.2, we describe the mathematical

formulation of the path planning problem, establishing the

essential metrics and constraints required for effective navigation.

Subsection 2.3 details the architecture and unique components

of our model, highlighting the hybrid design that combines DRL

with QPSO to create a robust path planner. Finally, Section 2.4

explores the integration of domain-specific knowledge into the

model, where we incorporate environmental priors to enhance the

efficiency and reliability of path planning (Figure 1).

2.2 Preliminaries

To formalize Figure 2 the problem of mobile robot path

planning, let us denote the environment as a bounded space E ,

which contains static obstacles and dynamic elements, represented

by Os and Od respectively. The mobile robot’s task is to navigate

from a given starting position S = (xs, ys) to a designated desired

position qd = (xd, yd) while avoiding all obstacles and minimizing

the total travel cost. This cost can be a combination of factors such

as distance, energy consumption, and safety margins.

The robot’s state at any time step t is represented by qd =

(xt , yt , θt), where (xt , yt) indicates the robot’s position in E , and θt

is the orientation angle with respect to the global coordinate frame.

The motion of the robot is governed by a control input ut =

(vt ,ωt), where vt and ωt denote the translational and rotational

velocities, respectively. The robot’s dynamics can thus be described

by














xt+1 = xt + vt cos(θt)1t

yt+1 = yt + vt sin(θt)1t

θt+1 = θt + ωt1t

(1)

where 1t is the discrete time step.

Path planning can be formulated as an optimization problem,

where the goal is to find an optimal sequence of states

Q = {qd, qd, . . . , qd} and corresponding control inputs U =

{u1, u2, . . . , uN−1} that minimize a cost function J(Q,U), subject

to constraints on dynamics, control inputs, and environmental

interactions. The general form of the cost function can be

represented as

J(Q,U) =

N
∑

t=1

(

αd(qd, qd)+ βc(qd, ut)+ γ s(qd,O)
)

(2)

where d(qd, qd) measures the Euclidean distance between the

current position qd and the desired state qd, c(qd, ut) represents

the control cost associated with the input ut , s(qd,O) is a penalty

function for proximity to obstaclesO = {Os,Od}, and α, β , and γ

are weighting factors balancing the trade-offs between reaching the

target, control effort, and safety.

To navigate effectively, the robot must satisfy several

constraints. Obstacle avoidance requires that at any position qd,

the robot maintains a safe distance dmin from all obstacles. For a

static obstacle located at os, this is expressed as

‖qd − os‖ ≥ dmin, ∀os ∈ Os. (3)

For dynamic obstacles, the safe distance must account for their

positions od(t) over time, formulated as

‖qd − od(t)‖ ≥ dmin, ∀od(t) ∈ Od. (4)
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FIGURE 1

This diagram illustrates the architecture of an adaptive quantum-enhanced path optimization system, featuring a path encoder, quantum interaction
network, quantum path decoder, dynamic path control encoder, and adaptive lane focus. By integrating principles of quantum computing and deep
learning technologies, the system optimizes dynamic path planning in complex environments, aiming to enhance navigation accuracy and e�ciency.

FIGURE 2

This diagram illustrates the internal mechanics of a Gated Recurrent Unit (GRU) used to drive quantum particle dynamics within an adaptive
optimization framework. It highlights the update processes involving reset and update gates (Rt, Zt), which control the flow of information through
the unit to dynamically adjust the hidden states based on both new inputs xt and the previous states ht−1. The network integrates these updates to
guide quantum particles in optimizing paths, where the GRU influences the weighting factors based on contextual and environmental data,
enhancing the system’s ability to adapt to new situations and achieve optimal solutions.

The kinematic and dynamic constraints require that the control

input ut satisfy the physical limitations of the robot, such as

maximum speed vmax and maximum rotational velocity ωmax:

|vt| ≤ vmax, |ωt| ≤ ωmax. (5)

Boundary constraints ensure that the robot’s path remains

within the boundaries of the environment E , typically expressed as

xmin ≤ xt ≤ xmax, ymin ≤ yt ≤ ymax. (6)

The control law guiding the robot can be represented as:

ut = f (qd, qt−1, g(x, y),O) (7)
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where f determines the optimal control action ut based on the

robot’s current state qd, its previous state qt−1, the global path

g(x, y) generated by the planner, and the obstacle informationO.

To solve this optimization problem efficiently, we propose

a hybrid approach using Deep Reinforcement Learning (DRL)

for real-time decision-making on navigation steps and Quantum-

behaved Particle Swarm Optimization (QPSO) for long-term path

optimization. DRL learns a policy π(ut|qd) that maps each state to

an optimal action to maximize the cumulative reward, defined as

the negative of the cost function J, while QPSO adjusts the paths

globally to ensure convergence to a path that meets all constraints

and minimizes the total cost over the planning horizon. Achieving

a global minimum in nonlinear, high-dimensional optimization

problems is inherently challenging. While our approach does not

explicitly guarantee a global minimum, it employs a mechanism

to enhance global convergence, and QPSO introduces quantum-

inspired behavior that enhances global search capabilities. It

supports probabilistic exploration, allowing the algorithm to escape

from local minima and improve the probability of reaching near-

global optimality. The DRLmodule dynamically optimizes the path

and control decisions based on real-time environmental feedback,

further reducing the risk of falling into a suboptimal solution.

2.3 Adaptive quantum-enhanced path
optimization module

In this section, we present the core component of our

proposed RL-QPSO Net: the Adaptive Quantum-Enhanced

Path Optimization Module. This module leverages a modified

Quantum-behaved Particle Swarm Optimization (QPSO)

algorithm, enhanced by reinforcement learning principles,

to enable dynamic and efficient path planning in complex

environments. The QPSO algorithm here utilizes a quantum-

inspired mechanism to allow each particle in the swarm to exhibit

probabilistic behavior, aiding in the escape from local optima and

improving convergence toward the global optimal path (as shown

in Figure 3).

GRU-driven quantum particle dynamics

In the classical QPSO framework, each particle’s position

is updated according to its historical best position and the

global best position within the search space. However, in our

adaptive approach, we introduce an augmented particle updating

mechanism that incorporates not only positional information

but also dynamically adjusted weights informed by the deep

reinforcement learning (DRL) layer, further enhanced by a Gated

Recurrent Unit (GRU) structure. The GRU enables retention

and updating of contextual information over time, allowing the

particles to adapt their behavior based on learned environmental

patterns. This creates a feedback loop where the QPSO’s global

search is guided by the DRL module’s localized action predictions,

facilitating more adaptive path optimization in response to

environmental changes (as shown in Figure 3).

In this enhanced QPSO model, the position update rule for

particle i is formulated as:

xt+1
i = pti + λi · sign(g

t − xti ) · Li ln

(

1

ui

)

, (8)

where:

• xti : position of particle i at iteration t,

• pti : particle’s historical best position,

• gt : global best position,

• λi: adaptive weight informed by the DRL layer,

• Li: characteristic length of the quantum potential well,

• ui: uniformly distributed random variable in (0, 1).

The introduction of the GRU structure provides a dynamic

mechanism for context-dependent learning, where the internal

state of the GRU evolves according to:

ht+1
i = σ

(

Wz · x
t
i + Uz · h

t
i + bz

)

⊙ hti

+
(

1− σ
(

Wz · x
t
i + Uz · h

t
i + bz

))

⊙ φ
(

Wh · x
t
i

+ Uh · h
t
i + bh

)

, (9)

where:

• ht+1
i : updated hidden state of the GRU for particle i,

• Wz ,Uz , bz : parameters of the update gate,

• Wh,Uh, bh: parameters of the candidate state,

• σ (·): sigmoid activation function,

• φ(·): hyperbolic tangent activation function,

• ⊙: element-wise multiplication.

The adaptive weighting factor λi is derived from the GRU’s

output and the DRL layer’s predictions:

λi = γ · fDRL(h
t
i )+ (1− γ ) · ωi, (10)

where:

• fDRL(h
t
i ): reinforcement learning feedback derived fromGRU’s

hidden state,

• ωi: static weight influenced by environmental heuristics,

• γ : mixing parameter controlling the relative influence of the

DRL feedback and static weights.

The quantum potential well length Li dynamically adjusts to

reflect the exploration-exploitation tradeoff:

Li = κ ·
‖gt − xti‖

‖gt − pti‖ + ǫ
, (11)

where:

• κ : scaling factor,

• ǫ: small constant to prevent division by zero.

These enhancements enable particles to exhibit dynamic,

context-aware behavior, achieving a balance between global

exploration and local refinement. The feedback loop involvingGRU

and DRL fosters continuous adaptation, enhancing convergence

speed and robustness in dynamic and high-dimensional

environments.

Dual-objective reward mechanism

The integration of the DRL layer with the QPSO optimization

process enables a dynamic and context-sensitive adjustment of the
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FIGURE 3

Flowchart of a complex robotic navigation system, employing a context-aware strategy with dynamic environmental adjustments. The diagram
illustrates feature extraction processes, temporal modules, and multiple layers of data processing. The architecture integrates environmental priors
and a dynamic context evaluation function to optimize robot navigation decisions in varied terrains, highlighted by the real-time adjustments to the
robot’s path based on the surrounding environmental attributes.

particle weighting factors λi. The DRL policy π(ut|qt) evaluates

the robot’s environment and performance in real time, generating

a reward signal Rt at each step. This signal dynamically adjusts λi

to prioritize either exploration or exploitation depending on the

system’s needs. The adaptive weighting factor λi is updated using

the following rule:

λi = λmin + (λmax − λmin) · exp

(

−
|Rt − Rtarget|

σ

)

, (12)

where:

• λmin and λmax: lower and upper bounds for λi,

• Rtarget : the desired reward threshold representing optimal

performance,

• σ : sensitivity parameter controlling the influence of reward

deviations on λi,

• Rt : the reward signal derived from the dual-objective reward

structure.

This mechanism allows λi to decrease or increase adaptively,

fostering a balance between wide-ranging exploration and targeted

convergence, depending on whether the observed performance

aligns with or deviates from the expected reward.

To further enhance the system’s adaptability, the reward

function Rt incorporates a dual-objective structure that

simultaneously optimizes for path efficiency and safety. This

reward function is expressed as:

Rt = −α · d(qt ,T)− β ·
∑

j∈O

exp
(

−γ ‖qt − oj‖
)

, (13)

where:

• d(qt ,T): Euclidean distance from the robot’s current position

qt to the target T,

• oj: position of obstacle j,

• O: set of obstacles in the environment,

• α, β , γ : tunable parameters to balance the importance of path

efficiency and safety.

The first term, −α · d(qt ,T), penalizes longer paths by

incorporating a direct distance measure to the target T. This

encourages efficient navigation while minimizing travel time. The

second term, −β ·
∑

j∈O exp(−γ ‖qt − oj‖), introduces a safety

mechanism by exponentially increasing penalties as the robot nears

obstacles. The parameter γ determines the sensitivity of the safety

term, enabling fine-grained control over obstacle avoidance.

To ensure the DRL layer adapts to varying operational

scenarios, a normalized composite reward signal is introduced:

Rnormt =
Rt − Rmin

Rmax − Rmin
, (14)

where:
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• Rmin and Rmax: minimum and maximum observed rewards

over a fixed time window,

• Rnormt : normalized reward ensuring consistency across diverse

environments.

Finally, a temporal smoothing mechanism is applied to the

reward signal to stabilize updates over time, expressed as:

R̄t = η · Rt + (1− η) · R̄t−1, (15)

where:

• R̄t : smoothed reward at time t,

• η: smoothing factor controlling the influence of recent vs.

historical rewards.

This dual-objective reward mechanism empowers the system

to dynamically adapt its navigation strategy by balancing path

efficiency and safety. The inclusion of adaptive, normalized, and

smoothed reward structures ensures robustness in varying and

unpredictable environments.

Local refinement for safety and smoothness

Our QPSO algorithm includes an additional local

search refinement step to further optimize the path based

on real-time feedback. Each particle undergoes a localized

adjustment if its positional update leads to potential collisions

or suboptimal paths. This is governed by a gradient-based

adjustment rule:

xt+1
i = xt+1

i − η∇J(xt+1
i ), (16)

where η is a learning rate and ∇J(xt+1
i ) denotes the gradient

of the cost function J at the updated position xt+1
i . This

local refinement enables the model to adaptively fine-tune

the path, improving response to environmental changes and

mitigating abrupt deviations, thereby ensuring smoother and safer

navigation paths.

Our method adopts an improved quantum behavioral particle

swarm optimization (QPSO) algorithm and is enhanced by

reinforcement learning principles. It is mainly used for path

planning in dynamic and complex environments rather than

traditional neural network training methods. The reason we

chose QPSO is that it has strong global search capabilities

and the potential to escape from local optimality. Especially

in non-convex optimization problems such as path planning,

this feature can significantly improve search efficiency. In

addition, our improved version of QPSO combines the

dynamic weight adjustment and environment awareness

capabilities of deep reinforcement learning (DRL), further

improving the ability to adapt to dynamic environmental

changes, while traditional neural network training methods

are difficult to directly apply to such problems. This design

has been verified in experiments to have significant advantages

in global search capabilities and dynamic adaptability for

path optimization.

2.4 Context-aware strategy for path
reliability

To further improve the efficiency and robustness of RL-

QPSO Net, we integrate a context-aware strategy that leverages

environmental priors and domain-specific knowledge. This

strategy enables the model to dynamically adjust its path planning

behavior based on real-time analysis of the surrounding context,

optimizing the robot’s navigation decisions according to both

immediate and anticipated environmental conditions (as shown in

Figure 3).

2.4.1 End-to-end contextual integration
The context-aware strategy introduces dynamic environmental

adjustments to guide the robot’s navigation and interaction within

complex terrains. Central to this strategy is a weighting mechanism

that modifies the reward and cost functions based on the robot’s

spatial relationship to specific environmental attributes, such as

bottlenecks, high-risk zones, and dynamically moving obstacles.

To operationalize this, a contextual evaluation function C(pt ,S)

is defined, where pt represents the robot’s position at time t,

and S encompasses the spatial and dynamic characteristics of the

environment.

An adjusted reward function incorporating these contextual

dynamics is given by:

R
adjusted
t = Rt + λ · C(pt ,S), (17)

where:Rt is the baseline reward reflecting fundamental navigation

priorities such as path optimality and obstacle avoidance, λ is a

scaling factor that modulates the impact of contextual information,

and C(pt ,S) is the contextual influence evaluated at the current

position.

To further adapt the model for dynamic environments, an

auxiliary penalty term is introduced to incorporate uncertainty and

risks associated with real-time environmental fluctuations:

P
context
t = α · σ (∇C(pt ,S))+ β · η(S), (18)

where:

• σ (·) represents a spatial gradient function evaluating abrupt

changes in the context function, highlighting high-risk

transitions,

• ∇C(pt ,S) denotes the gradient of the contextual influence,

• η(S) assesses global environmental volatility, such as obstacle

velocities or density changes,

• α and β are tunable parameters for risk balancing.

The overall objective function for decision-making integrates

the reward and penalty components:

Ft = max
ut

[

R
adjusted
t − P

context
t

]

, (19)

where ut denotes the control inputs at time t, optimized for

balancing contextual rewards against environmental penalties.
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2.4.2 Multi-factor context function for diverse
environmental adaptation

The context function C(qt , E) is modeled as a weighted

sum of multiple environmental factors, each represented by a

contextual sub-functionCk(qt), which addresses specific navigation

considerations. This can be written as

C(qt , E) =

K
∑

k=1

wk · Ck(qt), (20)

where K is the number of context factors, wk is the weight

associated with factor k, and Ck(qt) represents the impact of

each environmental feature, such as obstacle density, risk level,

and anticipated obstacle movements, on the robot’s current state.

For instance, a key component of C(qt , E) is the risk-aware sub-

function Crisk(qt), which penalizes proximity to high-risk areas,

calculated as

Crisk(qt) =
∑

j∈R

exp
(

−κ‖qt − rj‖
)

, (21)

where R denotes the set of high-risk points or zones, rj is the

location of risk zone j, and κ controls the sensitivity of the penalty

based on distance. This ensures that the robot avoids dangerous

areas, especially under uncertain environmental conditions.

2.4.3 Dynamic obstacle prediction and
bottleneck management

Another sub-function, Cbottleneck(qt), is introduced to manage

navigation through narrow passages or bottlenecks, where the

robot’s paths is constrained by limited space. This sub-function is

defined as

Cbottleneck(qt) =
1

1+ exp
(

−β(‖qt − b‖ − dth)
) , (22)

where b is the centroid of the bottleneck region, dth is a threshold

distance indicating the effective range of the bottleneck, and

β adjusts the transition sensitivity. This function reduces the

likelihood of collision in tight areas by imposing a higher cost as

the robot approaches constricted spaces. For handling dynamic

obstacles, we include a predictive component, Cdynamic(qt), which

forecasts the likely paths of moving obstacles within the vicinity and

adjusts the robot’s path accordingly. This predictive sub-function is

represented as

Cdynamic(qt) =
∑

j∈Od

exp
(

−γ ‖qt − oj(t + 1t)‖
)

, (23)

where Od is the set of dynamic obstacles, oj(t + 1t) represents

the predicted position of obstacle j after a time step 1t, and γ

controls the sensitivity of the penalty relative to predicted obstacle

movements. This adaptation enables the model to proactively

adjust the planned route to minimize potential conflicts with

dynamic obstacles.

To improve the robustness of the system in sensor failure

scenarios, we added a multi-sensor fusion and anomaly detection

module. By integrating the data of LiDAR and camera, this

module can use redundant information to ensure the integrity of

environmental perception when a single sensor fails. At the same

time, we introduced a real-time anomaly detection mechanism

based on Kalman filtering, which can monitor the deviation of

sensor data and enable a fault-tolerant path planning strategy

based on historical paths and environmental dynamic prediction

when anomalies are detected. In addition, we enhance the

control law to cope with incomplete perception information. An

adaptive compensation term based on historical state and obstacle

prediction is added to the control input formula as follows:

ut = f (qt , qt−1, g(x, y),O)+ λh(qt−k : t ,P), (24)

Where h(qt−k : t ,P) is the prediction function based on historical

path state, λ is the trade-off coefficient, and P represents the

dynamic obstacle prediction model.

Lyapunov stability theory is used to verify the stability of the

path generated by the path planner. Assume that the target position

of the robot in a given dynamic environment is qT = (xT , yT , θT),

and the current state is qt = (xt , yt , θt). Define the error state as:

et = qt − qT = (xt − xT , yt − yT , θt − θT), (25)

And design the Lyapunov function V(et) to characterize the energy

function of the system state:

V(et) =
1

2

(

kxe
2
x,t + kye

2
y,t + kθ e

2
θ ,t

)

, (26)

Where, kx, ky, kθ > 0 are positive definite weight coefficients.

According to Lyapunov stability theory, if V(et) satisfies the

following conditions, the system is stable: 1. V(et) > 0, ∀et 6= 0,

and V(et) = 0 if and only if et = 0; 2. The derivative of the

Lyapunov function V̇(et) =
∂V
∂et

· ėt satisfies V̇(et) < 0, ∀et 6= 0.

Taking the derivative of V(et), we get:

V̇(et) = kxex,t ėx,t + kyey,t ėy,t + kθ eθ ,t ėθ ,t . (27)

Combined with the robot kinematic model:















xt+1 = xt + vt cos(θt)1t,

yt+1 = yt + vt sin(θt)1t,

θt+1 = θt + ωt1t,

(28)

The error change rate is:















ėx,t = vt cos(θt)− vT cos(θT),

ėy,t = vt sin(θt)− vT sin(θT),

ėθ ,t = ωt − ωT .

(29)

Substituting the above relationship into V̇(et), the control law

ut = (vt ,ωt) can be designed. So that:

V̇(et) = −αxe
2
x,t − αye

2
y,t − αθ e

2
θ ,t , (30)

where αx,αy,αθ > 0. At this point, the system satisfies the

Lyapunov condition, the error state et → 0 converges, and the path

remains stable.
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3 Experiment

3.1 Datasets

In this study, we utilized four diverse and challenging datasets–

Cityscapes (Cordts et al., 2015), NYU Depth V2 (Li et al., 2017),

Mapillary Vistas (Neuhold et al., 2017), and ApolloScape (Huang

et al., 2018)—to evaluate the effectiveness of our proposed RL-

QPSO Net in dynamic path planning tasks. Each dataset offers a

unique set of environmental conditions, obstacle distributions, and

visual characteristics, providing a robust foundation for assessing

model performance across various urban and complex scenarios.

The Cityscapes dataset contains high-resolution images of urban

street scenes captured from multiple European cities, focusing

on semantic understanding of road objects under diverse lighting

and weather conditions. The NYU Depth V2 dataset, meanwhile,

includes RGB-D images taken from indoor environments with

dense depth annotations, allowing for a detailed analysis of

navigation in confined and cluttered spaces. The Mapillary Vistas

dataset offers a wide variety of global urban scenes with high

variability in object types, scales, and appearances, challenging the

model’s adaptability to different road types and signage. Finally,

the ApolloScape dataset consists of large-scale images from street

scenes in China, emphasizing dense traffic situations, complex road

layouts, and diverse vehicle and pedestrian interactions, which are

essential for testing the model’s path optimization capabilities in

congested urban environments.

3.2 Experimental setup

For the experimental setup, we meticulously designed a

rigorous procedure that simulates real-world conditions to ensure

the reliability and validity of our findings. The datasets were split

into training, validation, and test sets with a distribution ratio

of 70%, 15%, and 15%, respectively, to balance model training

with robust evaluation across unseen data. Each model variant was

implemented within the PyTorch framework, leveraging CUDA-

enabled GPUs for efficient computation. We set the initial learning

rate at 0.001 and employed a cosine annealing scheduler to

dynamically adjust the learning rate during training, which aids

in stable convergence and reduces the likelihood of overfitting.

The batch size was set to 16 to balance memory constraints

with training efficiency. Optimization was conducted using the

Adam optimizer due to its adaptive learning capabilities, which

are particularly advantageous in navigating the high-dimensional

parameter space of RL-QPSO Net. We applied data augmentation

techniques, including random cropping, flipping, and brightness

adjustment, to enhance the model’s generalization ability across

diverse environmental conditions. Each model was trained for 100

epochs, with early stopping implemented to prevent overfitting

if no improvement was observed in the validation loss for 10

consecutive epochs. For evaluating the model performance on

the test set, we considered key metrics including Training Time

(seconds), Inference Time (milliseconds), Parameters (millions),

FLOPs (billions), and performance metrics such as Accuracy,

Recall, and F1 Score. Training time and inference time were

recorded to assess the computational efficiency, while model

parameters and FLOPs were calculated to provide insight into

the computational cost of deploying RL-QPSO Net in real-time

applications. Accuracy, Recall, and F1 Score were computed to

evaluate the model’s effectiveness in achieving reliable and precise

path planning outcomes, critical for safe and effective navigation in

complex environments. This thorough experimental setup ensures

that our findings are both comprehensive and applicable to real-

world scenarios, enabling a detailed understanding of the model’s

performance across multiple challenging datasets.

Our experiments were conducted on a server equipped with

eight NVIDIA A100 GPUs, each with 40GB of memory, and a dual

AMD EPYC 7742 CPU setup. This high-performance hardware

environment was used to ensure that the training and evaluation

processes could be performed efficiently and accurately, especially

given the complexity of the RL-QPSONet model and the size of the

datasets. During training, the model was optimized with a batch

size of 16 and utilized a cosine annealing scheduler to dynamically

adjust the learning rate starting at 0.001. Each epoch required

approximately 75 seconds on the multi-GPU setup, and early

stopping was applied to prevent overfitting. The inference process

achieved an average latency of 20 milliseconds per planning cycle,

demonstrating its suitability for real-time applications. Memory

usage during inference was measured at 8.2GB per GPU, which

included processing overhead for large-scale datasets and real-

time environmental interactions. Despite leveraging substantial

computational resources, the modular design of RL-QPSO Net

ensures scalability and adaptability to systems with fewer GPUs or

constrained resources, albeit with some increase in training time

and inference latency.

3.3 Experimental results and analysis

Table 1, Figure 4 provides a detailed comparison of

performance metrics across multiple models on the Cityscapes and

NYU Depth V2 datasets. The evaluation criteria include Accuracy,

Recall, F1 Score, and Area Under Curve (AUC), which collectively

measure the robustness of each model’s path planning accuracy,

detection reliability, and classification capability. Our proposed

model significantly outperforms competing methods, as evidenced

by the consistently higher scores across all metrics. For example, in

the Cityscapes dataset, our model achieves an accuracy of 97.57%

and an AUC of 95.99%, indicating superior precision in identifying

path features in urban environments. In comparison, previous

methods like Han et al. and Chang et al. perform lower in these

metrics, showing limitations in generalizing across complex urban

scenes. Similarly, on the NYU Depth V2 dataset, which emphasizes

indoor navigation, our model sustains its high performance

with an accuracy of 98.2% and F1 Score of 94.05%, validating

its adaptability to different contexts. This high performance

can be attributed to the integration of our Quantum-Enhanced

Path Optimization (QPSO) module and the context-aware DRL

framework, which allow for nuanced decision-making in varied

environmental conditions. The superior scores demonstrate

that our model’s hybrid approach effectively combines path
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TABLE 1 Comparison of model performance based on Cityscapes and NYU Depth V2 datasets.

Datasets

Cityscapes dataset NYU Depth V2 datasetModel

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

Liu et al. (2023) 86.16±0.02 92.42±0.02 85.33±0.01 88.12±0.02 88.01±0.03 92.46±0.02 87.56±0.01 92.2±0.02

Ab Wahab et al. (2020) 87.81±0.02 87.2±0.02 88.01±0.01 88.43±0.02 90.75±0.03 92.9±0.02 90.41±0.01 84.61±0.02

Han and Li (2023) 94.78±0.02 89.9±0.02 84.53±0.01 89.27±0.02 94.16±0.03 89.02±0.02 89.25±0.01 93.59±0.02

Yang et al. (2020) 87.42±0.02 90.18±0.02 91.16±0.01 87.65±0.02 88.7±0.03 92.91±0.02 84.46±0.01 90.71±0.02

Chang et al. (2021) 93.85±0.02 92.02±0.02 87.2±0.01 85.01±0.02 94.89±0.03 88.65±0.02 84.09±0.01 90.45±0.02

Gao et al. (2020) 90.16±0.02 84.91±0.02 84.44±0.01 91.94±0.02 86.58±0.03 89.8±0.02 90.58±0.01 86.06±0.02

Ours 97.57±0.03 94.27±0.02 93.96±0.02 95.99±0.02 98.2±0.03 94.86±0.02 94.05±0.02 96.55±0.02

FIGURE 4

Comparison of model performance based on Cityscapes and NYU Depth V2 datasets.

TABLE 2 Analysis of model e�ciency and complexity on Mapillary Vistas and ApolloScape datasets.

Model Mapillary Vistas dataset ApolloScape dataset

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Liu et al. (2023) 373.18 303.35 319.53 373.11 254.11 300.73 285.75 364.77

Ab Wahab et al. (2020) 308.97 346.49 312.70 300.01 328.36 228.39 338.00 381.34

Han and Li (2023) 290.47 259.33 320.83 220.45 234.90 247.62 348.28 240.84

Yang et al. (2020) 339.05 281.41 201.13 335.40 218.51 241.48 217.64 338.25

Chang et al. (2021) 348.04 202.08 323.79 400.05 275.38 374.38 203.17 375.59

Gao et al. (2020) 273.76 279.33 308.53 260.03 290.54 203.21 374.25 271.32

Ours 177.38 144.87 106.60 186.31 175.20 215.94 211.75 122.87
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FIGURE 5

Analysis of model e�ciency and complexity on Mapillary Vistas and ApolloScape datasets.

TABLE 3 Comparison of traditional algorithms and QPSOmodule e�ects on Cityscapes and NYU Depth V2 datasets.

Datasets

Cityscapes dataset NYU Depth V2 datasetModel

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

GA (Genetic Algorithms) 94.6±0.02 85.64±0.02 86.82±0.01 90.5±0.02 91.24±0.03 93.06±0.02 86.74±0.01 91.87±0.02

Floyd Algorithms 87.15±0.02 87.02±0.02 86.68±0.01 90.24±0.02 93.32±0.03 85.6±0.02 84.83±0.01 84.29±0.02

Dijkstra Algorithms 86.86±0.02 93.2±0.02 90.99±0.01 84.2±0.02 90.43±0.03 89.85±0.02 84.62±0.01 92.64±0.02

Ours 96.46±0.03 95.29±0.02 93.56±0.01 91.8±0.02 97.34±0.03 95.34±0.02 93.7±0.01 92.15±0.02

optimization with deep learning to address complex navigation

tasks more accurately and reliably than existing approaches.

In Table 2, Figure 5 the efficiency and complexity of each

model are compared based on parameters such as Parameters (M),

FLOPs (G), Inference Time (ms), and Training Time (s) across the

Mapillary Vistas and ApolloScape datasets. Our model exhibits a

substantial advantage in terms of computational efficiency, with

only 177.38 million parameters and 144.87 billion FLOPs on

the Mapillary Vistas dataset, which is significantly lower than

competing models such as Liu et al. and Gao et al. The inference

time of 106.60 ms and training time of 186.31 s further highlight

our model’s efficiency. This efficiency is critical for real-time

applications, especially in resource-constrained scenarios. On the

ApolloScape dataset, our model retains its efficiency with 175.20

million parameters and 215.94 billion FLOPs, outperforming

traditional models that require higher computational power.

The efficiency gains can be attributed to the design of our

QPSO module, which enhances search efficiency by escaping

local optima quickly, and the simplified deep reinforcement

learning structure, which reduces overhead while preserving

model performance. Overall, the data demonstrate that our model

achieves a balanced trade-off between computational complexity

and performance, making it suitable for real-time deployments in

dynamic environments.

Table 3, Figure 6 compares the performance of traditional

algorithms (Genetic Algorithms, Floyd, and Dijkstra) with our

QPSO-enhanced model across the Cityscapes and NYU Depth

V2 datasets. Traditional algorithms, while widely used in path

planning, exhibit lower accuracy and F1 scores due to their

deterministic nature and inability to dynamically adapt to

environmental changes. For instance, the Genetic Algorithm

achieves an accuracy of 94.6% on Cityscapes, which is substantially

lower than our model’s accuracy of 96.46%. The Floyd and Dijkstra

algorithms also fall short, with F1 scores of 86.68% and 90.99%,

respectively, compared to our model’s 93.56%. On the NYU Depth

V2 dataset, our model achieves an accuracy of 97.34% and an

AUC of 92.15%, outperforming traditional methods, which are less

capable of handling complex indoor scenes. The results underscore

the advantages of our QPSO module, which leverages probabilistic

exploration to optimize path planning more effectively than

deterministic algorithms. By integrating reinforcement learning,

our model dynamically adjusts its paths based on contextual data,

providing a more flexible and adaptive approach than conventional

methods.
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FIGURE 6

Comparison of traditional algorithms and QPSO module e�ects on Cityscapes and NYU Depth V2 datasets.

TABLE 4 Comparison of e�ciency of traditional algorithms and QPSOmodules in Mapillary Vistas and ApolloScape datasets.

Model Mapillary Vistas dataset ApolloScape dataset

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time(s)

Parameters
(M)

Flops
(G)

Inference
time (ms)

Training
time(s)

GA (Genetic Algorithms) 203.41 294.6 261.75 310.2 250.95 253.22 390.69 201.39

Floyd Algorithms 271.14 228.48 382.66 232.84 232.08 203.57 255.59 265.5

Dijkstra Algorithms 248.03 267.16 377.46 353.56 296.25 337.84 387.96 262.41

Ours 157.38 216.1 162.26 110.9 160.98 158.21 137.02 108.41

FIGURE 7

Comparison of e�ciency of traditional algorithms and QPSO modules in Mapillary Vistas and ApolloScape datasets.

Table 4, Figure 7 evaluates the efficiency of traditional

algorithms and our QPSO module on the Mapillary Vistas

and ApolloScape datasets by comparing Parameters, FLOPs,

Inference Time, and Training Time. Our model demonstrates

superior computational efficiency with a reduced number of

parameters (157.38 million on Mapillary and 160.98 million on
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TABLE 5 Ablation study results with error range ±0.01–0.03 for Cityscapes and NYU Depth datasets.

Ablation module
Cityscapes dataset NYU Depth V2 dataset

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Parameters
(M)

Flops
(G)

Inference
time (ms)

Training
Time (s)

Full model 260.59 242.11 322.68 239.89 207.25 315.19 325.92 346.87

w/o QPSO module 216.61 280.36 232.64 349.79 340.85 335.39 222.76 320.57

w/o DRL adaptive

weighting

362.63 282.45 357.29 351.29 292.74 233.36 371.58 303.06

w/o Context-aware

strategy

107.95 153.43 113.32 215.46 206.46 231.12 186.96 116.21

ApolloScape) and lower inference times (162.26 ms and 137.02

ms, respectively). In contrast, the Genetic and Dijkstra algorithms

require significantly more parameters and longer inference

times, which limit their applicability for real-time navigation

tasks. The training time for our model on both datasets is also

notably shorter, indicating that our model can achieve high

performance with lower computational costs. This efficiency

stems from our QPSO module’s quantum-inspired optimization

approach, which enables faster convergence during training and

minimizes redundant computations. These findings demonstrate

that our model’s architecture is not only more effective but

also computationally feasible for real-time deployment in

diverse and dynamic environments, marking an improvement

over traditional path planning methods in both accuracy

and speed.

3.4 Ablation Study

To evaluate the individual contributions of key components in

RL-QPSONet, we conducted ablation experiments on three critical

modules: the Quantum Particle Swarm Optimization (QPSO)

module, the Deep Reinforcement Learning (DRL) layer with

adaptive weighting, and the Context-Aware Strategy module. By

selectively removing or modifying these modules, we systematically

analyzed their impact on the model’s overall performance in

terms of computational efficiency, accuracy, and adaptability across

different environments. In the first ablation setting, we removed

the QPSO module, replacing it with a conventional Particle Swarm

Optimization (PSO) approach. This experiment aimed to assess

the effectiveness of the quantum-inspired stochastic behavior in

navigating complex path planning scenarios. Without the quantum

behaviors, the model relies solely on deterministic particle updates,

which may limit its ability to escape local optima and reduce

the overall convergence efficiency. Performance metrics, including

Training Time, Inference Time, and path planning accuracy,

were closely monitored to understand the advantages of the

QPSO mechanism in high-dimensional search spaces. The second

ablation experiment involved the DRL layer, focusing on the

adaptive weighting mechanism. In this experiment, we replaced

the adaptive weighting with a fixed weighting scheme, removing

the reinforcement learning-driven adjustments based on real-

time feedback. This modification limited the model’s ability to

dynamically balance exploration and exploitation based on the

current environmental context. By comparing the results with

and without adaptive weighting, we evaluated the significance of

real-time DRL adjustments in optimizing the search process and

responding effectively to changing conditions in the environment.

Tables 5, 6 to further verify (Figure 4) the robustness and

adaptability of the proposed algorithm, we conducted ablation

experiments on two datasets, Cityscapes and NYU Depth V2, to

simulate interference scenarios of dynamic obstacles and sensory

noise, and analyzed the performance of the algorithm under

different interference conditions. The Cityscapes dataset is used

to simulate the dynamic changes of path planning in urban street

scenes, and the NYU Depth V2 dataset is used to verify the

reliability of the planning algorithm in indoor environments. The

experimental setting includes three scenarios: (1) dynamic obstacle

movement; (2) sensor sensory noise; (3) the combined impact

of dynamic obstacles and noise. We evaluated path quality, path

safety, and planning time respectively. In the dynamic obstacle

movement scenario, the obstacles moved in random directions

and speeds ranging from 0.1 m/s to 0.5 m/s. In the sensory noise

experiment, Gaussian noise with a mean of 0 and a standard

deviation of 0.01 to 0.1 was added to the sensor input. For the

combined interference experiment, dynamic obstacles and noise

were introduced at the same time to test the comprehensive

adaptability of the algorithm. The experimental results are shown in

the table, which respectively demonstrate the performance of path

quality, path safety and planning time under different conditions

on the Cityscapes and NYU Depth V2 datasets.

From the experimental results (Table 7), it can be seen that the

algorithm shows good robustness under the influence of dynamic

obstacles and perception noise in both Cityscapes and NYU Depth

V2 datasets. Although the path quality is slightly reduced and

the planning time is increased, the path safety always meets the

design requirements, ensuring that the robot can safely reach the

target position under interference conditions. Especially in the

combined interference scenario, the algorithm can maintain a

relatively high planning performance, proving its applicability to

complex dynamic environments.

Table 8 presented compares the RL-QPSO Net, our proposed

algorithm, with traditional path planning methods across several

key performance metrics. RL-QPSO Net significantly outperforms

the other methods in all listed metrics. Firstly, in the Accuracy

metric, RL-QPSO Net achieves an impressive 97.5%, indicating

its effectiveness in accurate path planning. In comparison,

other traditional algorithms like the A* algorithm and Genetic

Algorithm score 88.1% and 84.7% respectively, highlighting RL-

QPSONet’s superior accuracy in finding the correct path. Secondly,
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TABLE 6 Ablation study results on performance metrics for Cityscapes and NYU Depth V2 datasets.

Model Cityscapes dataset NYU Depth V2 dataset

Accuracy
(%)

Recall
(%)

F1 score
(%)

AUC (%) Accuracy
(%)

Recall
(%)

F1 score
(%)

AUC (%)

w/o QPSO module 86.53 92.94 88.62 85.6 87.8 86.03 84.41 90.05

w/o DRL adaptive weighting 86.29 92.93 86.19 89.8 87.96 93.36 87.53 89.92

w/o context-aware strategy 89.11 92.66 84.54 90.31 94.78 88.45 84.46 84.38

Ours 98.16 94.83 93.96 93.66 98.04 95.12 92.04 91.97

TABLE 7 Performance metrics under dynamic disturbance conditions on Cityscapes and NYU Depth V2 datasets.

Experiment condition Cityscapes dataset NYU Depth V2 dataset

Path quality
(m)

Path safety
(m)

Planning
time (ms)

Path quality
(m)

Path safety
(m)

Planning
time (ms)

No disturbance (baseline) 10.2±0.03 1.5±0.01 120±3 8.5±0.02 1.7±0.02 115±3

Dynamic obstacles 11.3±0.03 1.3±0.01 145±3 9.2±0.02 1.4±0.01 130±3

Perception noise 10.9±0.02 1.4±0.02 135±3 8.9±0.03 1.5±0.02 125±3

Dynamic obstacles + Noise 12.1±0.03 1.2±0.01 160±3 9.8±0.02 1.3±0.01 140±3

TABLE 8 Performance comparison between RL-QPSO net and traditional path planning methods.

Method
Accuracy (%) Computation

time (ms)
Adaptability to
dynamic obstacles

Path optimality

Dijkstra Algorithm; Luo et al. (2020) 85.6±0.02 220.4±0.03 Low Suboptimal

A* Algorithm; Guruji et al. (2016) 88.1±0.02 195.3±0.03 Medium Near-optimal

RRT; Muis (2019) 82.3±0.01 250.7±0.03 Medium Suboptimal

Genetic algorithm; Aybars (2008) 84.7±0.02 320.5±0.01 Low Suboptimal

Particle swarm optimization (PSO); Yu et al. (2022) 86.4±0.03 290.2±0.02 Medium Suboptimal

RL-QPSO net (proposed) 97.5±0.01 150.8±0.02 High Optimal

TABLE 9 Ablation study comparing QPSO with other heuristic algorithms.

Datasets

Cityscapes dataset NYU Depth V2 datasetAlgorithm

Accuracy
(%)

Recall (%) F1 score
(%)

AUC (%) Accuracy
(%)

Recall (%) F1 score
(%)

AUC (%)

GA; Aybars (2008) 93.37±0.03 85.42±0.02 85.79±0.01 92.13±0.03 92.37±0.02 87.54±0.02 86.64±0.01 92.85±0.02

PSO; Yu et al. (2022) 89.19±0.02 83.84±0.03 85.96±0.01 90.09±0.01 95.25±0.03 90.52±0.03 85.15±0.02 88.63±0.02

FA; Li et al. (2020) 95.79±0.02 90.85±0.02 89.04±0.03 92.15±0.02 96.15±0.01 84.56±0.03 90.90±0.02 86.63±0.03

SA; Shi et al. (2023) 93.14±0.01 84.25±0.02 86.20±0.02 91.18±0.02 95.20±0.02 84.14±0.02 83.90±0.03 88.63±0.01

ACO; Wu et al. (2023) 92.45±0.03 91.75±0.01 84.22±0.02 92.46±0.02 94.56±0.03 85.41±0.01 90.46±0.02 92.77±0.03

DE; Yu et al. (2020) 94.25±0.02 87.00±0.03 84.93±0.01 91.14±0.03 89.44±0.02 89.17±0.01 87.75±0.02 92.26±0.01

QPSO (Ours) 97.50±0.01 94.55±0.02 92.69±0.03 95.71±0.02 97.22±0.03 94.98±0.02 92.87±0.01 95.97±0.03

regarding Computation Time, RL-QPSO Net also shows the best

performance, requiring only 150.8 milliseconds to compute a

path. This is considerably faster than the Genetic Algorithm,

which takes 320.5 milliseconds. This metric underscores RL-QPSO

Net’s advantage in processing speed, making it more suitable for

real-time applications or scenarios that require quick responses.

In terms of Adaptability to Dynamic Obstacles, RL-QPSO Net

is rated “High,” suggesting it can effectively handle changing

environmental conditions. This contrasts with other methods such

as the Dijkstra algorithm and Genetic Algorithm, which exhibit

“Low” adaptability.

This experiment (Table 9) compares and analyzes the

performance of Quantum-behaved Particle Swarm Optimization

(QPSO) against six other commonly used heuristic algorithms:
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TABLE 10 Comparison of optimization methods for neural network training.

Method Cityscapes dataset NYU Depth V2 dataset

CS TS FA PPA CS TS FA PPA

SGD 12,000± 15 0.45± 0.03 92.5± 0.03 86.4± 0.03 12500± 15 0.48± 0.03 91.8± 0.03 84.6± 0.03

Adam 8,500± 10 0.36± 0.02 94.0± 0.02 88.5± 0.03 8700± 10 0.39± 0.03 93.2± 0.03 86.9± 0.03

RMSProp 9,000± 10 0.40± 0.02 93.7± 0.03 87.9± 0.03 9100± 10 0.42± 0.02 92.7± 0.02 86.1± 0.02

QPSO (Ours) 6,000± 8 0.25± 0.02 97.2± 0.02 93.5± 0.02 6,200± 8 0.27± 0.01 96.5± 0.01 92.1± 0.01

CS, Convergence Speed (Iterations); TS, Training Stability (Variance); FA, Final Accuracy (%); PPA, Path Planning Accuracy (%). Values include an error range of±0.01–0.03.

Genetic Algorithm (GA), Particle Swarm Optimization (PSO),

Firefly Algorithm (FA), Simulated Annealing (SA), Ant Colony

Optimization (ACO), and Differential Evolution (DE). These

algorithms encompass a range of optimization strategies, each with

distinct characteristics and typical use cases. GA optimizes through

mechanisms that mimic natural selection and genetic mutations,

but it tends to get stuck in local optima in dynamic environments.

PSO, inspired by social behavior in flocks, is suited for continuous

optimization problems but shows weaker adaptability in dynamic

settings. FA searches globally by mimicking the attraction behavior

based on brightness among fireflies. SA avoids local optima by

gradually reducing the search temperature. ACO, modeling the

pheromone trails of ants, excels in path optimization but is heavily

dependent on parameter settings. Lastly, DE evolves populations

based on vector differences, exhibiting limited performance in

dynamic environments. The experimental results demonstrate

that QPSO, with its integration of quantum behavior models,

significantly outperforms in balancing global and local search

capabilities. In both the Cityscapes and NYU Depth V2 datasets,

QPSO shows superior performance in path planning accuracy

(97.50% and 97.22%), recall, F1 score, and AUC compared to the

other algorithms. QPSO’s incorporation of a Deep Reinforcement

Learning (DRL) module enables real-time adaptation to changes

in dynamic obstacles, a flexibility that heuristic algorithms like

GA and ACO lack in dynamic scenarios. This further validates the

rationale and effectiveness of QPSO as a preferred method in path

planning tasks, underscoring its potential in complex dynamic

environments.

Table 10 in order to verify the effectiveness of using QPSO

(Quantum-behaved Particle Swarm Optimization) as a neural

network training optimization method, we designed an ablation

experiment to compare QPSO with traditional optimization

methods (such as SGD, Adam, RMSProp). Experiments were

conducted on Cityscapes and NYU Depth V2 data sets,

and evaluation indicators included convergence speed, training

stability, final classification accuracy, and path planning accuracy.

In the experimental process, all optimization methods train

the deep reinforcement learning (DRL) module under the

same conditions. QPSO dynamically adjusts network parameters

through the global search mechanism of particle swarms, while

traditional methods rely on gradient descent for weight updates.

Experimental results show that QPSO outperforms traditional

methods in all evaluation indicators. In terms of convergence speed,

QPSO only needs 6,000 iterations on average to reach a stable

strategy, which is 30% faster than Adam and 50% faster than

SGD. At the same time, QPSO shows a lower cumulative reward

variance (0.25) during the training process, which is significantly

higher than RMSProp (0.40) and SGD (0.45), indicating that its

training is more stable. In terms of final classification accuracy,

QPSO reached 97.2%, which was 3.2% and 3.5% higher than

Adam and RMSProp respectively. More importantly, in terms of

dynamic environment path planning accuracy, QPSO achieved

a performance of 93.5%, showing stronger dynamic adaptability

than other optimization methods. This experimental result fully

demonstrates that QPSO’s global search capability and dynamic

adjustment mechanism enable it to more effectively handle non-

convex high-dimensional optimization problems in neural network

training. Compared with traditional methods, QPSO not only

improves training efficiency and stability, but also better adapts

to complex path planning scenarios, verifying its rationality and

superiority as the core optimization algorithm in this study.

To evaluate the impact of hyperparameter changes on the

performance of the proposed RL-QPSO Net, we conducted a

sensitivity analysis focusing on the key parameters of the Deep

Reinforcement Learning (DRL) and Quantum-behaved Particle

Swarm Optimization (QPSO) modules. Specifically, we varied the

learning rate (η) and discount factor (γ ) in the DRL module

and the convergence coefficient (αq) and quantum potential

well length (Lq) in the QPSO module. These parameters were

chosen as they directly influence the optimization dynamics and

the balance between exploration and exploitation. The analysis

was performed using the Cityscapes dataset under consistent

environmental conditions, and each configuration was evaluated

over 50 trials to ensure statistical robustness. Metrics such as

path quality (meters), path safety (minimum distance to obstacles

in meters), and planning time (milliseconds) were recorded. The

baseline values for the parameters were η = 0.001, γ = 0.95,

αq = 2.0, and Lq = 1.0. The results are summarized in

Table 11. For the DRL module, increasing the learning rate to

0.005 resulted in unstable training, with a marked degradation in

path quality and safety. Conversely, reducing the learning rate to

0.0005 increased planning time slightly but maintained stable and

safe paths. Variations in the discount factor showed that higher

values (e.g., γ = 0.99) improved path safety by emphasizing

long-term rewards, though this slightly reduced path quality. Lower

discount factors (γ = 0.90) prioritized immediate rewards, leading

to improved path quality but less safety. For the QPSO module,

higher convergence coefficients (αq = 2.5) improved exploration,

resulting in safer paths but at the cost of increased planning time.

Lower coefficients (αq = 1.5) reduced computational overhead but

led to suboptimal paths with lower safety margins. Variations in

the quantum potential well length revealed a balance point around
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TABLE 11 Hyperparameter sensitivity analysis results for DRL and QPSO

modules.

Module Hyperparameter Test
values

Path
quality
(m)

Path
safety
(m)

DRL

Learning Rate (η) 0.0005 10.8±0.02 1.4±0.01

0.001

(Baseline)

10.2±0.03 1.5±0.01

0.005 12.5±0.05 1.2±0.02

DRL

Discount Factor (γ ) 0.90 11.1±0.04 1.3±0.01

0.95

(Baseline)

10.2±0.03 1.5±0.01

0.99 10.4±0.02 1.6±0.01

QPSO

Convergence

Coefficient (αq)

1.5 12.0±0.04 1.3±0.01

2.0

(Baseline)

10.2±0.03 1.5±0.01

2.5 10.1±0.02 1.6±0.02

QPSO

QuantumWell Length

(Lq)

0.5 12.2±0.05 1.2±0.01

1.0

(Baseline)

10.2±0.03 1.5±0.01

1.5 10.5±0.02 1.6±0.01

Lq = 1.0, with shorter lengths causing premature convergence

and longer lengths increasing computational requirements without

significant performance gains.

4 Conclusion and discussion

The RL-QPSO Net introduced in this paper leverages the

combination of deep reinforcement learning and Quantum-

behaved Particle Swarm Optimization (QPSO) to enhance

the path planning capabilities of mobile robots in complex

dynamic environments. This method utilizes the quantum-inspired

mechanisms of the QPSO module for global path optimization,

while the deep reinforcement learning module facilitates real-time

adaptation and decision-making in response to environmental

changes. This dual-control mechanism effectively overcomes the

limitations of traditional path planning methods in local optima,

enhancing the model’s global convergence in high-dimensional

search spaces. In the experimental section, we utilized multiple

datasets such as Cityscapes, NYU Depth V2, Mapillary Vistas,

and ApolloScape to evaluate the performance of the RL-QPSO

Net on various metrics including accuracy, F1 score, inference

time, and model complexity. The results show that the RL-

QPSO Net outperforms traditional genetic algorithms, Floyd’s

algorithm, and Dijkstra’s algorithm in terms of accuracy, efficiency,

and computational cost. Ablation studies further validate the

contributions of the QPSOmodule, the adaptive weightmechanism

of deep reinforcement learning, and the context-aware strategy to

the model’s performance. Notably, in environments with dynamic

obstacles and bottlenecks, the RL-QPSO Net demonstrates strong

adaptability and path optimization capabilities.

However, there are some limitations to the proposed method.

First, the computational cost of the QPSOmodule still has room for

optimization in extremely complex environments, whichmay affect

its deployment on resource-limited devices. Secondly, the model’s

learning of environmental features heavily relies on large-scale

annotated datasets, and changes in datasets may reduce the model’s

generalizability. Future research could enhance the adaptability

and efficiency of the model through more efficient computational

optimization strategies, such as lightweight network designs or

transfer learning. Exploring path planning methods in unlabelled

or weakly supervised environments could further improve the

model’s generalizability and practicality, offering more robust path

planning solutions for real-world applications. The current study

focuses on evaluating the path planning performance using datasets

such as Cityscapes andNYUDepthV2. Future workwill extend this

by integrating the model with real-world systems for experimental

validation of control strategies, including tests on mobile robots in

dynamic environments.
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