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How to improve the success rate of autonomous underwater vehicle (AUV) path

planning and reduce travel time as much as possible is a very challenging and

crucial problem in the practical applications of AUV in the complex ocean current

environment. Traditional reinforcement learning algorithms lack exploration of

the environment, and the strategies learned by the agent may not generalize well

to other di�erent environments. To address these challenges, we propose a novel

AUV path planning algorithm named the Noisy Dueling Double Deep Q-Network

(ND3QN) algorithm by modifying the reward function and introducing a noisy

network, which generalizes the traditional D3QN algorithm. Compared with

the classical algorithm [e.g., Rapidly-exploring Random Trees Star (RRT*), DQN,

and D3QN], with simulation experiments conducted in realistic terrain and

ocean currents, the proposed ND3QN algorithm demonstrates the outstanding

characteristics of a higher success rate of AUV path planning, shorter travel time,

and smoother paths.
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1 Introduction

With the rapid advancement of artificial intelligence, the autonomous underwater

vehicle (AUV) is utilized across a multitude of fields, such as environmental monitoring

(Bayat et al., 2016), deep-ocean exploration (Zhang et al., 2022), seabed mapping

(Ambastha et al., 2014), etc. To guarantee that an AUV can execute its missions efficiently

in complex marine environments, successful path planning is the primary process. The

optimization objectives of path planning encompass enhancing the success rate of AUV

path planning and reducing travel time while considering energy consumption (Sun et al.,

2022). However, in real ocean environments, ocean currents tend to be complex and

variable, and comprehensive information about all obstacles is often unavailable. AUV can

only rely on locally detectable information for path planning. Therefore, how to improve

the success rate of AUV path planning and reduce the travel time as much as possible is a

very challenging and crucial problem.

Over the past few decades, researchers have developed numerous path-planning

algorithms, which can generally be categorized into traditional and intelligent methods

(Kot, 2022). Traditional algorithms, such as Dijkstra’s (Wenzheng et al., 2019)
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and A* (Qian et al., 2024), are well-known for their ability

to find reasonably short paths in fully known environments.

However, their effectiveness diminishes in unknown or dynamic

environments where complete environmental information is

unavailable. To address this, local path planners like the Artificial

Potential Field (APF) method (Liu et al., 2020) have been employed

to avoid unknown obstacles by simulating natural forces. Despite

its effectiveness in certain scenarios, APF is prone to getting stuck

in local minima. Alternatively, the Rapidly-exploring Random Tree

(RRT) algorithm (Zeng et al., 2023) can generate collision-free

paths in unknown environments through random sampling, but

this randomness often leads to non-smooth paths, increasing the

control difficulty and energy consumption of AUVs. Karaman

and Frazzoli (2011) propose the rapid-exploring random tree star

(RRT*) algorithm, which modifies the node expansion strategy.

It effectively solves the suboptimal trajectory problem of RRT,

planning smoother paths and increasing the success rate of path

planning. Fu et al. (2019) apply the RRT* algorithm to AUV path

planning and approach an optimal path with less travel time more

quickly in varying terrain and scattered floating obstacles. The BI-

RRT* algorithm proposed by Fan et al. (2024) exhibits superior

path planning capabilities to the RRT* algorithms by extending

the obstacle region, employing a bidirectional search strategy.

Nevertheless, when obstacles and other factors in the environment

change, the RRT* algorithm needs to re-plan the path and is not

sufficiently adaptable to different environments (Khattab et al.,

2023).

Reinforcement learning (RL) is an emerging intelligent method

that offers a more flexible and adaptive solution for AUV path

planning. It mimics the human learning process by letting agents

continuously engage with the environment, gain experience, and

discover the optimal strategy. The learning process is guided by

reward functions, making this approach particularly suitable for

executing specific tasks [e.g., selecting actions that follow ocean

currents (Li et al., 2023)]. After trained, RL can apply their

learned knowledge to different unknown environments. Deep Q-

Network (DQN) (Mnih et al., 2015) is a classical reinforcement

learning algorithm that combines Q-learning (Soni et al., 2022)

and deep neural networks (Krizhevsky et al., 2012) to address

problems with continuous state spaces. Yang et al. (2023b)

successfully employed DQN to achieve efficient path planning

with varying numbers of obstacles, improving the success rate

of AUV path planning across different environments. Zhang

and Shi (2023) combine DQN with Quantum Particle Swarm

Optimization to create the DQN-QPSO algorithm. By considering

both path length and ocean currents in the fitness function, this

algorithm effectively identifies energy-efficient paths in underwater

environments. Despite significant advancements, DQN tends to

overestimate Q-values during training. Hasselt et al. (2016) propose

the Double DQN (Double Deep Q-Network) to address the issue in

DQN and enhance the algorithm’s performance. Chu et al. (2023)

improve the DDQN algorithm and used the NURBS algorithm to

smooth the path. Yang et al. (2023b) propose an N-step Priority

Double DQN (NPDDQN) path planning algorithm, to make better

use of high-value experience to speed up the convergence of the

training process. Wang et al. (2016) propose the Dueling Double

Deep Q-Network (D3QN), which combines Double DQN and

Dueling DQN. Xi et al. (2022) optimize the reward function within

the D3QN algorithm to account for ocean currents. Although

this adaptation enables the planning of paths with shorter travel

times, the resulting paths are not always smooth. While these

RL algorithms have made progress in AUV path planning, they

still have limitations in exploration. The uncertain environment

requires the agent to not only utilize existing knowledge but also

to continuously explore unknown areas to avoid getting stuck in

a suboptimal path. DQN and D3QN algorithms typically use an

ε-greedy strategy for action selection, where actions are chosen

randomly with a probability of ε, and 1-ε to choose optimal action

by the current model. The approach might lead to inadequate

exploration in the initial phases of learning and an excessive degree

of exploration as learning progresses (Sharma et al., 2017).

To address the exploration deficiencies caused by the ε-greedy

strategy, some researchers have proposed the ε-decay strategy

(Astudillo et al., 2020). This method initializes with a high ε at

the outset of the reinforcement learning training, prompting the

agent to engage in random actions and thoroughly investigate

the environment. As training progresses, the ε value gradually

decreases, allowing the agent to rely more on learned experiences

for decision-making. Although this approach is successful, it

necessitates manual adjustment of parameters and might not

guarantee enough exploration in the final stages of training.

In 2015, Fortunato et al. (2017) introduce the Noisy DQN

algorithm. They introduced learnable noise into the DQN neural

network parameters, creating what is known as a noisy network.

It allows the agent to maintain a certain level of exploration

throughout the training process, which enhances the algorithm’s

adaptability to environmental changes and helps in obtaining

better policies. The Noisy DQNmethod has succeeded significantly

in various reinforcement learning applications (Gao Q. et al.,

2021; Cao et al., 2020; Harrold et al., 2022). Inspired by the

above discussion, we introduce the noisy network into the D3QN

algorithm and combine it with an ε-decay strategy. Additionally,

we modify the reward function to comprehensively account for

various requirements, proposing a novel AUV path planning

algorithm named the Noisy Dueling Double Deep Q-Network

(ND3QN) algorithm. The main contributions of this study are

as follows:

(1) By incorporating noisy networks, the ND3QN algorithm

can dynamically adjust the level of exploration, preventing

premature convergence to local optima and improving

the algorithm’s robustness and its ability to generalize.

Meanwhile, the ND3QN algorithm considers factors such

as distance, obstacles, ocean currents, path smoothness, and

step count, facilitating the AUV to find smoother and less

time-consuming paths.

(2) We establish a range sonar model to obtain

information about local obstacles and utilize real

ocean current and terrain data from the southern

Brazilian, providing a more realistic simulation of the

marine environment.

(3) The ND3QN algorithm significantly enhances the path-

planning performance of AUV in complex environments, achieving

about 93% success rate in path planning, which is a 4%–11%

improvement over the RRT*, DQN, and D3QN algorithms, with
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FIGURE 1

Schematic representation of the variables of the AUV motion model

and the sonar model.

a 7%–11% reduction in travel time and 55%–88% improvement in

path smoothness.

The remainder of this paper is outlined as follows: Section

2 briefly introduces the AUV motion model, sonar model,

basics of reinforcement learning, and the D3QN algorithm.

Section 3 explains the ND3QN algorithm in detail. Section 4

validates the effectiveness and generality of the ND3QN algorithm

through simulation experiments, comparing it with traditional

RRT*, DQN, and D3QN algorithms. Section 5 concludes this

work.

2 Preliminaries

In this part, we initially develop the motion

and sonar models of the AUV, followed by an

introduction to reinforcement learning, and conclude

with the presentation of the basic framework of the

D3QN algorithm.

2.1 AUV motion model

The position vector 2 = [x, y, z] and orientation vector

9 = [φ, θ ,ψ] of the Autonomous Underwater Vehicle (AUV)

can be ascertained within the Earth’s fixed coordinate system.

Here, x, y, and z denote the spatial coordinates of the AUV,

while φ, θ , and ψ denote the roll, pitch, and yaw angles,

respectively. In the body-based coordinate system, the velocity

vector of the AUV’s motion in each dimension is expressed as

v = [u, v,w, p, q, r], where u, v, and w represent the surge,

sway, and heave velocities, and p, q, and r denote the rates

of roll, pitch, and yaw, respectively (Okereke et al., 2023). The

specifics of these variables are delineated in Figure 1. Assuming that

the gravitational force and buoyancy are equal, the conventional

kinematic equations for an AUV can be streamlined as follows (Li

J. et al., 2021):



































































ẋ = u cosψ cos θ + v(cosψ cos θ sinϕ − sinψ cosϕ)

+ w(cosψ cos θ cosϕ + sinψ sinϕ)

ẏ = u sinψ cos θ + v(sinψ sin θ sinϕ + cosψ cosϕ)

+ w(sinψ sin θ cosϕ − cosψ sinϕ)

ż = −u sin θ + v cos θ sinϕ + w cos θ cosϕ

ϕ̇ = p+ q sinϕ tan θ + r cosϕ tan θ

θ̇ = q cosϕ − r sinϕ

ψ̇ = q sinϕ/ cos θ + r cosϕ/ cos θ .

(1)

In a 2D environment, the effects of the AUV’s roll and pitch

can be neglected (Song et al., 2016), so φ, θ and w are zero,

the simplified two-dimensional kinematic model is represented

as follows:















ẋ = u cosψ − v sinψ

ẏ = u sinψ + v cosψ

ψ̇ = r.

(2)

This simplified model effectively describes the AUV’s planar

motion, facilitating trajectory planning and control design.

2.2 Sonar model

During underwater missions, AUV frequently encounters

complex environments such as reefs, schools of fish, and unknown

obstacles. To navigate safely, AUV relies on sensors to detect their

surroundings and provide data to the planning algorithm. Ranging

sonar (Wang and Yang, 2013), known for its simplicity and low

cost, is the most widely used underwater detection device. It emits a

conical beam and calculates the distance to obstacles by measuring

the time difference between transmitted and received beams.When

multiple ranging sonars are combined into a multi-beam sonar,

they cover a sector-shaped area in front of the AUV.

We assume that the bow of the AUV is equipped with 12

ranging sonars, each with an aperture angle of 10◦, providing a

horizontal coverage span from −60◦ to 60◦. Figure 1 shows the

detection area, where D is the maximum detection range. di is the

distance to an obstacle in the beam direction. If no obstacles are

detected by one of the ranging sonars, then di = D. The detected

distances are recorded in a 1x12 matrixM = [d1, d2, . . . , d12].

2.3 Reinforcement learning

Reinforcement learning relies on the framework of Markov

Decision Processes (MDPs) to model the interaction between an

agent and its environment (Alvarez et al., 2004). MDPs are defined

by five key components: the state space S, the action space A, the

state transition probabilities P, the reward function R, and the

policy π(a|s), which represents the probability of taking action

a in state s (Alvarez et al., 2004). In each iteration, the agent

selects an action at based on its current policy πt , which influences

the state transition of the environment. This leads to a new state
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FIGURE 2

Reinforcement learning control process.

st+1 and an associated reward rt from the environment, resulting

in an interaction experience (st , at , rt , st+1) (Hossain et al., 2023).

By gathering these experiences, the agent gradually enhances and

refines its policy. The decision-making process is illustrated in

Figure 2.

The cumulative discounted reward (Knox and Stone, 2012)

represents the total reward that can be obtained over all future time

steps after taking action in a given state. In the case of finite time

steps, it can be expressed as:

Ut = rt + γ rt+1 + γ
2rt+2 + · · · + γ

T−trT =

T−t
∑

k=0

γ krt+k, (3)

where γ denotes the discount factor used for calculating the

present value of future rewards, which takes a value between 0 and

1.Ut accumulates all future rewards from time step t to the terminal

time step T.

In reinforcement learning, the action-value function and state-

value function are two central concepts. The action-value function

Qπ (st , at) evaluates the value of taking an action a in state s and later

acting according to strategy π . The state-value function Vπ (st), on

the other hand, does not depend on a specific action but rather

evaluates the expected payoff that can be obtained when starting

from state s and always following strategy π (Li W. et al., 2021).

They are formulated as follows:

Qπ (st , at) = Eat∼π(at |st)[Ut | st , at], (4)

Vπ (st) = Eat∼π(·|st)[Ut | st]. (5)

To estimate the value function in a continuous state space,

the Deep Q-Network (DQN) incorporates neural networks, which

use Qπ (st , at; δ) to approximate the estimate of Qπ (st , at), where δ

denoting the parameters of the neural network (Gao Y. et al., 2021).

DQN further includes a target network Q′π (st+1, at+1; δ
′), whose

parameters are periodically updated from those of the current

network, to estimate the maximum value of the subsequent state-

action pair. Following is the computation of the DQN loss function:

Loss = E[(r + γ max
at+1

Q′π
(

st+1, at+1; δ
′
)

− Qπ (s, a; δ))
2]. (6)

The introduction of the target network in DQN enhances its

efficiency and convergence, reducing variance during training and

stabilizing the learning process.

2.4 Dueling Double Deep Q-Network

Merging the advantages of Double DQN with those of Dueling

DQN results in the formation of the Dueling Double Deep

Q-Network (D3QN) algorithm. This integration addresses the

overestimation bias typically found in the conventional DQN,

thereby enhancing the learning process’s overall performance and

stability. Double DQN separates the action selection from the target

Q-value computation by identifying the action with the highest

Q-value in the current Q network and then using this action to

calculate the target Q-value in the target Q network, effectively

reducing the risk of overestimation (Hasselt et al., 2016). Here is

the definition of the loss function:

Loss =

E[(r + γQ′π (st+1, argmax
at+1

Qπ (st+1, at+1; δ) ; δ
′)− Qπ (s, a; δ))

2],

(7)

where argmax
at+1

Qπ (st+1, at+1; δ) denotes the selection of an

action at+1 from the current Q network that maximizes the Q value

in state st+1.

The Dueling DQN algorithm decomposes the Q-value function

into two separate components: one representing the state value and

the other encapsulating the advantage. The state value function

estimates the expected return for a particular state, while the

advantage function quantifies the benefit of taking a specific

action compared to the average performance in that state. This

separation enhances the accuracy of state value assessments and the

evaluation of action benefits, leading to improved model efficiency

and performance. The Q-value in Dueling DQN is computed as

follows:

Qπ (s, a; δs, δa) = (A(s, a; δa)−
1

|A|

∑

ai∈A

A(s, ai; δa))+ Vπ (s; δs),

(8)

where Vπ (s; δs) denotes the state value function, A(s, a; δa)

represents the advantage function, and |A| denotes the total

number of possible actions. By integrating the enhancements from

these two algorithms, we can formulate the corresponding loss

function for D3QN as follows:

Loss = E
[

(r + γQ′π (st+1, argmax
at+1

Qπ (st+1, at+1; δs, δa); δ
′
s, δ
′
a

)

− Qπ (s, a; δs, δa))
2
]

.

(9)

D3QN has demonstrated superior performance in various

applications compared to traditional DQN, establishing it as a

leading algorithm in reinforcement learning (Gök, 2024).

3 Methods

This section provides a detailed introduction to the ND3QN

algorithm. Initially, we describe the environmental state variables,
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including AUV position and orientation information, obstacle

information, and ocean current data. Subsequently, we expand

on the action space and describe the state transition method.

Following this, we elaborate on the composite reward function,

which accounts for factors such as ocean currents, obstacles, and

turning constraints. Lastly, we introduce a noise network based on

the D3QN algorithm.

3.1 Environmental states

In the realm of reinforcement learning research and

applications, environmental state variables form the foundation

of an agent’s perception of the surrounding environment. These

variables constitute a set of observational data, thereby providing

a comprehensive representation of the agent’s context, which is

crucial for the agent to make effective decisions (Sutton and Barto,

2018). In the underwater operational environment of an AUV,

the environmental state variables should encompass the AUV’s

position and orientation information, as well as external elements

like ocean currents and obstacles. In this study, the AUV’s local

environmental information is represented by the state variables

S = [Eξxy,ψ , E∇cur,M], where Eξxy denotes position information, ψ

represents heading angle information, E∇cur indicates ocean current

information, andM denotes the detection range matrix.

3.1.1 Position orientation information
To enhance the model’s ability to generalize, we convert

absolute position coordinates into relative position vectors.

Assuming the current position coordinates are P(x, y) and the goal

position is Pgoal(xgoal, ygoal), the vector representation of the current

position and goal coordinates is given as:

Eξxy = (xgoal − x, ygoal − y). (10)

The AUV’s decision-making will be influenced by its attitude

differences, even when it is in the same circumstance. Therefore,

we incorporate the AUV’s heading angle ψ as attitude information

into the environmental state variable.

3.1.2 Information on external environment
In complex ocean environments, the movement of an AUV is

influenced by ocean currents. In real data formats, ocean current

information is typically provided as gridded data. Therefore,

interpolation is needed to estimate the discrete ocean current data.

The ocean current value E∇cur at P(x, y) can be interpolated from

the current values at its four neighboring grid points Poj (xoj, yoj),

where oj = 1, 2, ..., 4, as follows:

E∇cur =

∑

E∇curoj · Leuc(P, Poj)
∑

Leuc(P, Poj)
, (11)

Leuc(P, Poj) =
√

(x− xoj)2 + (y− yoj)2, (12)

where Leuc(P, Poj) defines the Euclidean distance between two

points P(x, y) and Poj (xoj, yoj).

FIGURE 3

Action space.

The detection range matrix M = [d1, d1, . . . , d12] can be

obtained through a sonar ranging model, allowing the AUV to

perceive detailed information about surrounding obstacles.

3.2 Action space and state transition
function

Some of the existing AUVs can only rotate at fixed angle

increments instead of arbitrary angles during navigation, as their

steering rudders are limited by factors such asmechanical structure,

motor characteristics, and control system. Therefore, in this paper,

the navigation direction of AUV is designed as a discrete action. To

broaden the range of directional options available for an AUV, we

have discretized its horizontal movements into 16 distinct actions,

a = [a1, a2, a3, ..., a16], each separated by an angle of 22.5, as

illustrated in Figure 3. Compared to the existing options of 6 (Xi

et al., 2022) or 8 (Yang et al., 2023a) actions, the availability of

16 actions offers a finer degree of directional precision, enabling

the AUV to navigate complex underwater environments better.

For instance, when encountering complex underwater obstacles

or ocean currents, the AUV can select actions more congruent

with its desired heading, facilitating smoother and more efficient

path planning.

Based on the selected action a at the current position, the

subsequent position P′(x′, y′) is determined as follows:

[

x′

y′

]

=

[

x

y

]

+

(

VAUV

[

cos(a)

sin(a)

]

+

[

u

v

])

1t, (13)

where VAUV denotes the velocity of AUV, the east-west

component of the ocean current E∇cur is shown by u, while the

north-south component is indicated by v, and 1t represents the

control time interval.

Path planning involves generating a trajectory from a starting

point to a destination, which can be represented as a sequence

of waypoints. An AUV initiates its journey from the starting

point and selects its current action based on discrete action
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decision-making. Subsequently, by executing the chosen action in

conjunction with the position of the current waypoint, the AUV

determines the location of the subsequent waypoint. This iterative

process continues until the AUV reaches the final destination,

thereby compiling a series of waypoints that collectively constitute

a complete path.

3.3 Reward function

Evaluating an agent’s actions is paramount, with the reward

function being one of the key determinants in the success and

efficiency of reinforcement learning algorithms. Especially in

environments with highly complex states and actions, reliance on

a single reward often hinders the agent from effectively learning

the optimal policy (Tang et al., 2024). Consequently, after a

comprehensive consideration of the motion control characteristics,

environmental obstacles, and ocean current influences during AUV

navigation, we have designed a composite reward function. This

function encompasses distance reward, obstacle avoidance reward,

ocean current reward, path smoothness reward, and step reward.

3.3.1 Distance reward
The distance reward guides the AUV to approach the goal

point. A fixed reward Rgoal is awarded when the AUV reaches the

goal point, andTdone=1. In contrast, we assess the action in terms of

the difference between the distance from the goal point at this time

and the distance from the goal point at the previous instant if the

AUV does not reach the goal point, and (Tdone=0). The following

is the formula used to calculate the distance reward:

Rdis = Leuc(Pt , Pgoal)− Leuc(Pt+1, Pgoal), (14)

where the distance at time t between the current position

and the goal is represented by Leuc(Pt , Pgoal). If Rdis is positive, it

indicates that the AUV is progressing toward the goal direction.

3.3.2 Obstacle avoidance reward
In the detection distance matrix derived from the sonar

model, obstacles detected across various directions exert varying

degrees of influence on AUV. Those obstacles directly ahead,

within the bow direction, exert the most significant impact on

the AUV’s navigation, with this impact diminishing progressively

as the angle measured from the bow direction increases. The

influence of detected obstacles in different directions is quantified

by the parameter ω(i), which is determined through the following

computation:

ω(i) = e−|i−(n−1)/2|, i = 1, 2, 3, . . . , n, (15)

where i denotes the identifier of the sonar sensor, with the

current heading index being (n − 1)/2, and n indicates the count

of detection sonars. The AUV’s detection weight is maximum in

the current heading direction and decreases gradually toward both

sides. Combining the obstacle information and the degree of impact

in the detection matrix M = [d1, d1, . . . , d12], the obstacle penalty

information is defined as:

Robs =

n
∑

i=1

(1−
di

D
) · ω(i), (16)

where di represents the separation between the AUV detected

by the i-th sonar sensor and the obstacle, di ∈ M, with D denoting

the detection range.

When no obstacles are detected within the scanning range, no

penalty is incurred. Conversely, when an obstacle is detected within

the range, a penalty Robs is applied. A smaller value of Robs indicates

that the chosen direction of movement is more likely to result in

a collision with an obstacle. Furthermore, in the event of a direct

collision with an obstacle, a fixed penalty Rcol is imposed.

3.3.3 Ocean current reward
In the course of AUV navigation, ocean currents are an

indispensable external factor that directly impacts the AUV’s speed

and energy consumption. To effectively utilize ocean currents for

reducing both travel time and energy consumption, we introduce a

reward function related to ocean currents:

Rcur = cos(θc)
Vcur

VAUV
, (17)

where θc indicates the orientation difference between the ocean

current’s flow and the AUV’s direction of movement. A larger value

of Rcur indicates a closer alignment between the AUV’s motion

direction and the ocean current direction, as well as a higher degree

of utilization of the ocean current’s strength.

3.3.4 Path smoothness reward
Due to the complexity of AUV control underwater, frequent

turning can lead to deviations from the planned trajectory. To

maintain trajectory stability, we aim to minimize the change

between consecutive actions. We achieve this by introducing a

reward function Rsta, defined as:

Rsta = cos(|at−1 − at|), (18)

where at−1 signifies the action taken in the preceding time step,

a higher value of Rsta suggests a smaller change in action, thereby

conferring a greater positive reward. This reward incentivizes

the AUV to execute smoother actions, thereby mitigating the

occurrence of abrupt turns and sharp maneuvers.

3.3.5 Step reward
To avoid unnecessary back-and-forth movements of the AUV

underwater and to encourage the selection of relatively shorter

paths, we introduce a fixed negative penalty Rstep at each step.

3.3.6 Comprehensive reward
The comprehensive reward function is formulated as the

aggregated, weighted combination of all the aforementioned
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FIGURE 4

Decision-making process of the ND3QN algorithm.

reward functions:

Rtotal = k1Rdis + k2Robs + k3Rcur + k4Rsta + k5Rstep + TdoneRgoal,

(19)

where ki are the weighting factors, and Tdone=0 or 1, indicates

the status of reaching the goal point.

The total reward function, compared to a single reward

function, can better accommodate complex task requirements. In

particular, due to the obstacle avoidance reward component, the

closer the obstacle is to the forward direction of the AUV, the

greater the negative penalty imposed. This design helps the AUV

detect and avoid obstacles in advance, accelerating the learning

process. Additionally, the path smoothness reward encourages

the AUV to select actions with smaller turning angles, thereby

preventing frequent turns and sharp maneuvers. This approach

enhances the AUV’s navigational stability and smoother trajectory.

To sum up, the composite reward function designed in this study

comprehensively accounts for the operational efficiency and safety

of the AUV, leveraging information on ocean currents and obstacles

to guide the agent toward more time-efficient and smooth paths.

3.4 Path planning algorithm

In conventional deep reinforcement learning, the ε-greedy

strategy (Dann et al., 2022) is commonly employed to explore

the environment. This strategy involves taking actions at random

with a constant probability ε to facilitate exploration and selecting

the action currently deemed optimal with a probability of 1 −

ε for exploitation purposes. Nonetheless, an over-reliance on

experience may result in convergence to local optima, precluding

the identification of a global optimum. Conversely, excessive

exploration can prolong training duration and diminish efficacy.

To tackle this challenge, we propose a novel strategy that

balances exploration and exploitation by decaying the probability

of selecting random actions and incorporating noisy networks.

We incorporate noisy networks into the D3QN algorithm

framework to augment the algorithm’s exploration capabilities.

Noisy networks introduce parameterized noise into the neural

network, which facilitates a more comprehensive exploration of

the state space. By introducing noisy parameters, the network

can experiment with different combinations of weights and

biases during each update, thus enhancing its exploration of the

environment and uncovering new, previously unknown state-

action pairs. Typically, a fully connected layer receives p inputs and

produces q outputs, which can be represented as Y = WX + B.

Here,W denotes the matrix of weights, X is the input vector to the

layer, and B is the bias vector. We substitute the parameters w and b

in the neural network with µ+ σ ◦ ξ , where the notation ◦ denotes

element-wise multiplication (Yang et al., 2021). The equivalent

noisy linear layer is formulated as follows:

Y = (µW + σW ◦ ξW)X + µB + σB ◦ ξB, (20)

where µB + σB ◦ ξB and µW + σW ◦ ξW supplant B and W,

respectively. The elements µB, µW , and σW , σB denote the learned

mean and standard deviation values through empirical data. The

variables within ξW and ξB are independently sampled from a

standard normal distribution, N(0, 1). And then the action value

function is denoted as Q(s, a, ξ ;µ, σ ).

Noisy networks are a pivotal element within the ND3QN

algorithm, contributing to the following dimensions: (1) Increased

exploration: By incorporating trainable noise into the neural

network parameters, noisy networks ensure that AUV retains a
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consistent level of exploratory capacity during the training phase.

This facilitates the AUV’s exploration of diverse strategies and the

discovery of novel state-action pairs, preventing convergence to

suboptimal solutions. (2) Accelerating learning pace: The noisy

networks enhance the exploratory randomness during the early

stages of training, allowing AUV to rapidly identify strategies

associated with higher rewards, thereby expediting the learning

process. (3) Enhancing algorithm robustness and generalizability:

The noisy networks allow the AUV to keep exploring in a variety

of environments, which makes the algorithm more reliable and

usable in more situations. This versatility enables the ND3QN

algorithm to more effectively adapt to differing marine scenarios

and to identify superior navigation paths. Eventually, a flowchart

of the AUV’s decision-making for each step of the action can be

obtained, as shown in Figure 4.

Simultaneously, we also integrated the ε-decay strategy into the

training process. Decaying the exploration probability of random

actions means starting with a high exploration rate and gradually

decreasing it until it converges to a lower value. This process is

achieved by setting an initial exploration rate, a final exploration

rate, and a decay function. The specific formula is as follows:

εt = εfinal + (εinitial − εfinal)× e−
Cstep
Ŵ , (21)

where εinitial represents the initial degree of exploration, εfinal
denotes the final level of exploration, Cstep is the global step count,

and Ŵ represents a constant parameter that governs the pace at

which the exploration rate evolves throughout training iterations.

The action selection is then as follows:

a =







randomly chosen a ∈ A, with probability εt ,

argmax
a

Qπ (st , a, ξ ;µ, σ ), with probability 1− εt .
(22)

The loss of the ND3QN formed by combining the D3QN and

the noisy network is calculated as follows:

Loss

= E[(r + γ ∗ Q′π (st+1, argmax
at+1

Qπ (st+1, at+1, ξ ;µ, σ ), ξ
′;µ′, σ ′)

−Qπ (st , a, ξ ;µ, σ ))
2] (23)

ND3QN introduces the noisy network approach to D3QN

while using the ε-decay mechanism for action selection. This

allows the network to automatically adjust the degree of

exploration during training, while the ε-decay strategy provides

additional randomness to avoid local optima. This combination

enhances the algorithm’s exploratory prowess, facilitating a

more effective equilibrium between exploration and exploitation

throughout training, thereby enhancing the algorithm’s efficacy and

robustness. The step-by-step procedure of ND3QN is delineated in

Algorithm 1.

4 Experiments

In this section, we conduct a suite of simulated experiments

for AUV path planning, utilizing the proposed ND3QN algorithm

with partial real-world ocean current data and topographical

information. The outcomes of the experiments validate the efficacy

of the proposed algorithm.

1: Initialization: Replay buffer capacity N, batch

size m, learning rate η, discount factor

γ, training episodes J, εinitial, εfinal, initial

network parameters µ, σ, initial target network

parameters µ′, σ ′, noisy network parameters ξ

2: Global counter Cstep = 0

3: procedure Training

4: for episode = 1 to J do

5: t = 0, Tdone = False, initial state s0

6: while True do

7: Sample a noisy network ξ

8: Select an action a =










randomly chosen a ∈ A, with probability εt ,

argmax
a

Qπ (st , a, ξ ;µ, σ ), with probability 1− εt .

9: Store the experience (st , at , rt , st+1) into

Replay buffer N

10: Update εt according to the formula

11: t← t + 1, Cstep ← Cstep + 1

12: Update current network

13: if |N| > m× 100 then

14: Sample m group experience

15: for j = 1 to m do

16: Optimal action via current network

17: at+1 = argmax
at+1

Qπ (st+1, at+1, ξ ;µ, σ )

18: end for

19: Calculate update target

20: yt = r + γ ∗ Q′π (st+1, at+1, ξ
′;µ′, σ ′)

21: Calculate loss function: Loss = E[(yt −

Qπ (st , a, ξ ;µ, σ ))
2]

22: Update parameters µ ← µ − η × Loss ,

σ ← σ − η × Loss

23: end if

24: Update target network

25: if |N| > m× 100 and Cstep mod ft == 0 then

26: µ′ ← µ, σ ′ ← σ

27: end if

28: if done then

29: break

30: end if

31: end while

32: end for

33: end procedure

34: procedure Testing

35: Load trained Q network model

36: Initialize environment with start state Pstart

and goal state Pgoal

37: Initialize observation sequence O← Pstart

38: τ = 1

39: repeat

40: Select action aτ ← argmaxQπ (sτ , aτ , ξ ;µ, σ )

41: Get next state in the environment with

action aτ to get next state sτ+1

42: Update observation sequence O← O ∪ sτ+1

43: sτ = sτ+1

44: τ = τ + 1

45: until Reach destination

46: Output the final observation sequence O

47: end procedure

Algorithm 1. ND3QN algorithm with training and testing procedures.
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FIGURE 5

The simulated environment features a starting point (green) and an endpoint (red), with arrows indicating ocean current magnitude and direction,

and longer arrows denoting stronger currents.

4.1 Environmental settings and evaluation
indicators

The training environment was established within a rectangular

area of 100 nautical miles by 70 nautical miles, encompassing 11 red

circular obstacles, each with a radius of 3 nautical miles, as depicted

in Figure 5. Historical ocean current data from the southern region

of Brazil (29.50◦S to 31.83◦S, 33.41◦Wto 37.37◦W, 750m below the

sea surface) recorded on August 12, 2021 (IRI/LDEO, 2022), were

chosen to simulate the ocean currents within the environment. The

AUV’s speed in still water was set to 1 kn, with a control interval of

0.1 h. The starting and goal points were designated as (90, 5) and

(20, 60), respectively. Further training parameters are delineated in

Table 1.

To assess the efficacy of diverse algorithms, we utilize a set

of three performance indicators for the evaluation of the path

planning outcomes.

(1) Path length: Based on the mission, the AUV generates a

series of coordinates (P0, P1, P2, . . . , Pl) according to the algorithm,

where P0 and Pl represent the start and goal points, respectively,

while the points Pj (j 6= 0, l) are intermediate points. Each point is

represented by coordinates Pj = (xj, yj). The total path length L is

calculated as follows:

L =

l
∑

j=1

Leuc(Pj, Pj−1). (24)

(2) Travel time: The travel time T represents the cumulative

duration for the AUV to traverse from its origin to its destination,

factoring in both the AUV’s velocity and the speed of the ocean

currents. The calculation is expressed as:

T =

l
∑

j=1

Leuc(Pj, Pj−1)

vj
, (25)

TABLE 1 Training parameters.

Parameter Value

Weighting factor k1 , k2 , k3 , k4 , k5 5, –8, 3, 2, –2

Finish indicator Tdone 0 or 1

Goal reward Rgoal 50

Obstacle reward Rcol –200

Sonar number n 12

Detection range D 3

Initial exploration εinitial 0.8

Final exploration εfinal 0.01

Exploration decay constant c 10,000

Learning rate η 0.01

Batch sizem 1,500

Training episodeJ 3,000

Replay buffer capacityN 10,000,000

Discount factor γ 0.9

Target network update frequency ft 5

Noisy Nets σ 0.017

Current length of replay buffer |N| -

Current network parameters µ, σ -

Target network parameters µ′ , σ ′ -

where vj is the velocity of the AUV in the j

section, combining the AUV’s speed and the ocean

current speed.
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FIGURE 6

Comparison of the learning curves of di�erent algorithms during training. Moving averages computed every 200 data points smoothed the curves.

(3) Path smoothness rate: When the AUV travels along a

smooth path, it does not need to frequently adjust its heading,

reducing instability caused by heading adjustments, decreasing

control complexity, and allowing the AUV to navigate more stably

and efficiently. Path smoothness rate(Psm) is calculated as follows

(Chu et al., 2023):

Psm =

∑l−1
j=2

∣

∣χj+1 − χj
∣

∣

l− 2
, (26)

χj = arctan

(

yj − yj−1

xj − xj−1

)

, (27)

where χj represents the direction of AUV travel between two

path points. A smaller Psm value indicates a smoother path.

4.2 Simulation and training process

To assess the efficacy of the ND3QN algorithm, we compared

DQN (Yang et al., 2023b) and D3QN (Xi et al., 2022) in the

same simulated environment. Additionally, we implemented RRT*

(Chu et al., 2023) as a reference benchmark, which is an improved

heuristic algorithm capable of providing immediate performance

indicators for comparison with reinforcement learning algorithms

without the need for training. Our proposed improved version,

ND3QN, introduces a noisy network and ε-decay strategy to

enhance exploration capabilities, thereby further optimizing the

effectiveness of path planning. We conducted 3000 training

sessions for each of these three reinforcement learning algorithms,

and Figure 6 illustrates their total reward value variations during

the training process, reflecting their learning progress, and

performance in path planning tasks.

As shown in Figure 6, the total rewards of all algorithms steadily

increase with the number of training episodes and eventually

TABLE 2 Average reward, standard deviation, and statistical significance

of ND3QN compared to other algorithms.

Algorithm Average
reward

Standard
deviation

p-value (vs.
ND3QN)

DQN 422.8933 209.3916 <0.001

DDQN 502.3295 191.1955 <0.001

ND3QN 557.5526 162.2245 -

stabilize. From episodes 500 to 3,000, the performance of the

algorithms remains relatively stable. Table 2 reveals that ND3QN

achieves the highest average total reward (557.5526) with the

lowest standard deviation (162.2245). Additionally, the difference

in average total reward between ND3QN and both DQN and

D3QN is statistically significant (p<0.001). These findings indicate

that ND3QN not only achieves higher total rewards but also

outperforms the other algorithms in terms of stability. This can

be attributed to the integration of a noisy network in the ND3QN

algorithm, allowing the agent to dynamically adjust the noise

level based on the training progress. In the early training phase,

higher noise enhances exploration by increasing randomness,

enabling the agent to cover a broader state space and discover

high-reward strategies faster. As training progresses, the noise

level gradually decreases, balancing exploration and exploitation.

This helps prevent premature convergence to suboptimal solutions

while maintaining stability in performance, ultimately leading to a

higher and more stable total reward.

Figure 7 shows the results of DQN, D3QN, and ND3QN

algorithms planning paths during training and compares the

paths generated by RRT* in the same environment. As shown in

Figure 7A, at the early stages of training, while DQN, D3QN, and

ND3QN all successfully reach the target, the planned paths tend

to be more convoluted. As training progresses, these reinforcement
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FIGURE 7

Results of di�erent training episodes. (A) Results of 500 training

episodes. (B) Results of 1,000 training episodes. (C) Results of 2,000

training episodes. (D) Results of 3,000 training episodes.

TABLE 3 Performance comparison of di�erent algorithms over training

episodes.

Training
episodes

Algorithm Path
length
(n mile)

Travel
time (h)

Smoothness
rate (rad)

500 DQN 110.7443 100.6811 0.4737

D3QN 109.4090 100.0773 0.3878

ND3QN 106.6636 93.2385 0.3499

1,000 DQN 103.8093 89.4617 0.3375

D3QN 103.7286 90.2009 0.6861

ND3QN 102.9158 96.0647 0.3373

2,000 DQN 96.3144 84.9202 0.3678

D3QN 97.6397 83.5286 0.3662

ND3QN 96.0469 81.5757 0.3501

3,000 DQN 95.1229 82.5455 0.2755

D3QN 94.1267 82.1552 0.2198

ND3QN 93.5870 79.4785 0.1001

RRT* (Chu et al., 2023) 103.3822 87.3821 0.7641

learning algorithms gradually learn to plan shorter and smoother

paths. By the later stages of training, as depicted in Figure 7D,

ND3QN not only generates paths that are shorter and smoother

than those produced by the other algorithms, but it also better

adapts to the direction of ocean currents, effectively leveraging

them to reduce travel time.

Table 3 presents the variations in path length, travel time, and

path smoothness for three algorithms during the training process.

In terms of path length, ND3QN reduced the path length to 93.5870

nautical miles, which is shorter compared to DQN’s 95.1229

nautical miles and D3QN’s 94.1267 nautical miles. Regarding travel

time, ND3QN decreased from an initial 93.2385 h to 79.4785

h, representing a reduction of approximately 9.04% compared to

the RRT* algorithm (87.3821 h), which does not consider ocean

currents. Compared to DQN (82.5455 h) and D3QN (82.1552 h),

ND3QN reduced travel time by 3.72% and 3.26%, respectively.

This improvement is mainly due to the incorporation of ocean

current information into the reward function, which guides the

AUV to select paths more aligned with the direction of the currents.

Consequently, the AUV is able to harness the current’s driving

force more effectively, thereby reducing the required travel time.

Furthermore, ND3QN’s path smoothness improved significantly,

dropping from 0.3499 to 0.1001, indicating that the paths became

progressively smoother. Compared to RRT*, DQN, and D3QN, the

path smoothness of ND3QN improved by 86.90%, 63.66%, and

54.45%, respectively. This improvement is due to the fact that the

reward function of the ND3QN algorithm also takes into account

the degree of direction change between consecutive actions, and

penalizes actions with toomuch direction change, thereby reducing

the appearance of zigzagging paths and significantly enhancing

path smoothness.
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In summary, we trained the ND3QN algorithm in a fixed

obstacle environment and compared it with the RRT*, DQN, and

D3QN algorithms. Through training, the agent evolved from an

initial state of ignorance to ultimately mastering a more effective

path-planning strategy. Compared to other algorithms, ND3QN

leveraged noise networks and incorporated an ε-decay strategy

to achieve adaptive exploration, thereby avoiding premature

convergence to suboptimal solutions and more effectively planning

superior paths.

4.3 Simulation in di�erent environments

In AUV path planning, the location of obstacles is one of the

key factors affecting the success rate of path planning. The AUV

must detect and avoid obstacles to reach the target successfully.

In the experiment presented in Section 4.2, the model gradually

learned effective path-planning capabilities within the training

environment. However, the model’s performance in unknown

environments, where obstacle positions differ from those in the

training phase, remains uncertain. To assess the path-planning

success rate and travel time of the ND3QN algorithm in unfamiliar

and complex environments, we generated 200 test environments

with varying obstacle positions. Each environment contained 30

randomly distributed circular obstacles with a radius of 3 nautical

miles. To mitigate the inherent randomness caused by different

random seeds, we conducted the experiments using five different

random seeds. Additionally, we compared the ND3QN algorithm

with the previouslymentioned RRT*, DQN, andD3QN algorithms.

The 200 test environments generated by these algorithms under

the same random seed are identical to compare the performance

of different algorithms in the same obstacle environment.

Figure 8 illustrates the total rewards obtained by DQN,

D3QN, and ND3QN algorithms across 200 randomly generated

environments under different random seeds. On the one hand,

the total reward reflects the success rate of path planning: when

the total reward in a specific environment is relatively small, it

likely indicates that the AUV failed to reach its destination. Figure 8

shows that the ND3QN algorithm has fewer episodes with relatively

small total reward values across 200 different environments,

indicating that ND3QN successfully plans more paths and achieves

a higher success rate. On the other hand, the magnitude of

the total reward also represents the effectiveness of the path

planning. In reinforcement learning, higher total rewards indicate

that the strategy employed by the algorithm in that environment

is more optimal (Sutton and Barto, 1998). Figure 9 shows the

average total rewards across 200 different environments, where

the results demonstrate that ND3QN consistently achieves higher

average rewards compared to DQN and D3QN, further confirming

ND3QN’s superiority in path planning. Figure 10 presents the path

planning results for one of the 200 test environments under one

of the random seeds. Compared to other algorithms, ND3QN not

only generates shorter and smoother paths but also aligns more

effectively with the ocean’s current direction, leveraging its thrust

to reduce travel time.

To objectively analyze the experimental results, we conducted

a quantitative assessment. Table 4 records each algorithm’s success

FIGURE 8

The reward values of DQN, D3QN, and ND3QN algorithms in 200

di�erent test environments under 5 random seeds. The horizontal

coordinate represents the environment number and the vertical

coordinate represents the total reward value. (A) Results of seed =

10. (B) Results of seed = 30. (C) Results of seed = 50. (D) Results of

seed = 70. (E) Results of seed = 90.
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FIGURE 9

Average reward values of DQN, D3QN, and ND3QN algorithms in 200 di�erent environments under 5 random seeds.

FIGURE 10

One of the path planning results from 200 di�erent environments in one of the random seeds.

rate and, for successful paths, the total mean and standard

deviation values of path length, travel time, and path smoothness.

The ND3QN algorithm achieved a goal attainment rate of

93.2%, outperforming RRT*, DQN, and D3QN by 10.6%,

7%, and 4.2%, respectively. This improvement is attributed

to the introduction of a noise network in ND3QN, which

dynamically adjusts the exploration process, enhancing the

robustness and generalization of the policy, thereby better adapting

to various environments. Additionally, the obstacle avoidance

rewards enable the AUV to account for potential obstacles in

advance, thus improving the success rate of path planning.

The analysis of variance (ANOVA) in Table 5 reveals significant

differences among the algorithms in terms of path length,

travel time, and path smoothness (p<0.001), indicating that the

path planning results differ significantly across the algorithms.

The multiple comparison results in Table 6 further confirm

the superiority of the ND3QN algorithm, showing significant

differences in all three path quality metrics compared to RRT*,

DQN, and D3QN (p<0.001 ). For example, ND3QN’s path

length is 9.2405 nautical miles shorter than that of DQN

(p<0.001 ). These statistical results demonstrate the significant

advantage of the ND3QN algorithm in path planning. Specifically,
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TABLE 4 Comparison of path length, travel time, path smoothness and success rate of di�erent algorithms.

Indicators Mean/Std.Dev RRT* DQN D3QN ND3QN

Path length (n mile) Seed = 10 104.4356 105.3479 99.6731 96.0253

Seed=30 103.1272 104.2497 99.4672 96.2248

Seed=50 103.2062 106.5713 99.5797 95.9795

Seed=70 104.5832 106.2557 99.3446 96.3868

Seed=90 103.8140 104.5592 99.5400 96.1649

Total Mean 103.8332 105.3968 99.5209 96.1563

Std.Dev 7.0096 13.0123 2.4326 2.9286

Travel time (h) Seed = 10 90.4052 91.1377 87.5333 81.1544

Seed=30 89.2611 90.2094 87.3685 81.3410

Seed=50 89.5069 91.8596 87.4592 80.9236

Seed=70 90.7199 91.2478 87.5032 81.3904

Seed=90 89.6273 90.3334 87.4417 81.1836

Total Mean 89.9041 90.9576 87.4612 81.1986

Std.Dev 6.6766 13.1517 2.3595 3.1627

Smoothness rate (rad) Seed = 10 0.8245 0.3214 0.2496 0.1036

Seed=30 0.8139 0.3191 0.2363 0.1057

Seed=50 0.8493 0.3940 0.2312 0.1045

Seed=70 0.8243 0.3157 0.2429 0.1129

Seed=90 0.8713 0.3262 0.2434 0.1155

Total Mean 0.8367 0.3353 0.2407 0.1084

Std.Dev 0.2261 0.1751 0.0959 0.0630

Success rate Seed = 10 84% 86% 90% 92%

Seed=30 84% 87% 87% 92%

Seed=50 80% 85% 89% 94%

Seed=70 82% 86% 89% 93%

Seed=90 83% 87% 90% 95%

Total Mean 82.6% 86.2% 89.0% 93.2%

Std.Dev 0.0167 0.0084 0.0122 0.0130

For example, Seed = 10 represents the average of each metric corresponding to successful paths in 200 different environments generated using this random seed.

TABLE 5 ANOVA results of path length, travel time, and path smoothness.

Indicators Source Sum of squares df Mean sum of
squares

F Significance

Path length Intergroup 47,152.39 3 15,717.46 276.13 <0.001

Intragroup 199,566.04 3,506 56.92

Overall 246,718.42 3,509

Travel time Intergroup 51,912.92 3 17,304.31 303.40 <0.001

Intragroup 199,962.55 3,506 57.03

Overall 251,875.47 3,509

Smoothness rate Intergroup 260.00 3 86.67 3,777.15 <0.001

Intragroup 80.44 3,506 0.02

Overall 340.44 3,509
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TABLE 6 Results of multiple comparisons of the significance of mean di�erences between di�erent algorithms.

Indicators Comparison Mean di�erence Standard error Significance

Path length RRT∗ vs. DQN –1.5636∗∗ 0.8782 0.021

RRT∗ vs. D3QN 4.3123∗∗∗ 0.9357 <0.001

DQN vs. D3QN 5.8759∗∗∗ 0.9028 <0.001

RRT∗ vs. ND3QN 7.6769∗∗∗ 0.8681 <0.001

DQN vs. ND3QN 9.2405∗∗∗ 0.8326 <0.001

D3QN vs. ND3QN 3.3646∗∗∗ 0.8930 <0.001

Travel time RRT∗ vs. DQN –1.0535∗∗ 0.8802 0.025

RRT∗ vs. D3QN 2.4429∗∗ 0.9377 0.038

DQN vs. D3QN 3.4964∗∗∗ 0.9048 <0.001

RRT∗ vs. ND3QN 8.7055∗∗∗ 0.8700 <0.001

DQN vs. ND3QN 9.7590∗∗∗ 0.8344 <0.001

D3QN vs. ND3QN 6.2626∗∗∗ 0.8949 <0.001

Path smoothness RRT∗ vs. DQN 0.5014∗∗∗ 0.0171 <0.001

RRT∗ vs. D3QN 0.5960∗∗∗ 0.0183 <0.001

DQN vs. D3QN 0.0946∗∗∗ 0.0176 <0.001

RRT∗ vs. ND3QN 0.7283∗∗∗ 0.0169 <0.001

DQN vs. ND3QN 0.2269∗∗∗ 0.0162 <0.001

D3QN vs. ND3QN 0.1323∗∗∗ 0.0174 <0.001

The mean difference represents the mean of the former algorithm subtracted by the mean of the latter in each pairwise comparison. *, **, and *** denote significance at the 10%, 5%, and 1%

levels, respectively.

the ND3QN algorithm reduced path length by 7.39%, 8.77%,

and 3.38% compared to RRT*, DQN, and D3QN, respectively.

The average travel time of ND3QN (81.1986 h) was reduced

by 9.68%, 10.73%, and 7.16% compared to RRT*, DQN, and

D3QN, respectively. This indicates that even in environments

with randomly generated obstacles, ND3QN can select paths

more aligned with ocean currents, thereby reducing travel

time. Furthermore, the average path smoothness of ND3QN

improved by 87.04%, 67.66%, and 54.94% compared to RRT*,

DQN, and D3QN, respectively. This improvement is attributed

to the expanded action space and the incorporation of path

smoothness rewards.

In this section, the unknown environment’s path

planning scenario was simulated by randomly placing

obstacles. The experimental results indicate that the ND3QN

algorithm significantly outperforms the RRT*, DQN, and

D3QN algorithms in the three evaluation metrics: path

length, travel time, and path smoothness. Compared to

these three algorithms, ND3QN reduced path length by

approximately 3%–9%, travel time by about 7%–11%, and

improved path smoothness by around 55%–88%, with an

increased success rate of 4%–11%. This demonstrates the

ND3QN algorithm’s significant advantage in planning shorter,

smoother, and more efficient paths, better able to adapt to

unknown environments.

4.4 Comparison with other algorithms

To further validate the performance of the ND3QN algorithm,

we compared it with several recently proposed path-planning

algorithms. The BI-RRT* algorithm, introduced by Fan et al.

(2024), improves path planning capabilities over the traditional

RRT* by expanding the obstacle regions, employing a bidirectional

search strategy, and utilizing cubic spline interpolation for

path smoothing. Yang et al. (2023b) developed the NPDDQN

algorithm, which enhances adaptability in complex environments

by integrating double DQN with prioritized experience replay and

multi-step reward strategies.

In the same complex environment with 30 obstacles, we

conducted a detailed comparison of the RRT*, BI-RRT*, NPDDQN,

and ND3QN algorithms, with the experimental results shown

in Figure 11 and Table 7. Specifically, ND3QN’s travel time is

81.8266 h, which is 3.64 h faster than the BI-RRT* and 2.2311 h

faster than the NPDDQN. Regarding path smoothness, BI-RRT*

improves path smoothness considerably through interpolation

techniques, outperforming RRT*. However, ND3QN achieves the

lowest smoothness value, indicating that it generates the smoothest

paths among all compared algorithms. These results demonstrate

ND3QN’s superior performance in terms of path length, travel

time, and path smoothness, further validating its potential for

underwater path planning tasks.
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FIGURE 11

Comparison of the results of paths planned by RRT*, BI-RRT*, NPDDQN, and ND3QN algorithms.

TABLE 7 Performance comparison of RRT*, BI-RRT*, NPDDQN, and

ND3QN algorithms.

Algorithm Path
length
(n mile)

Travel
time (h)

Smoothness
rate (rad)

RRT* 104.1384 90.6913 0.9181

BI-RRT* (Fan et al.,

2024)

99.7849 85.5106 0.2650

NPDDQN (Yang

et al., 2023b)

98.2697 84.0577 0.3983

ND3QN 98.0723 81.8266 0.1578

4.5 Results in real terrain environment

We selected a real terrain area (GEBCO Compilation Group,

2020), as shown in Figure 12. To facilitate the calculation

of the detection distance matrix through the simulated sonar

model, we compressed the real terrain into a grid map, as

illustrated in Figure 13. We configured the AUV to cruise

at 4 kn, with the starting point at (30.04◦S, 36.55◦W) and

the goal point at (31.49◦S, 34.26◦W). Despite the increased

difficulty due to the larger search space, our algorithm was

still able to plan a time-efficient path. Figure 14 shows the

planned path, with a length of 276.67 nautical miles and a

time cost of 34.03 h. In the real environment, the terrain

is more complex compared to the circular obstacles used in

the simulation. However, by inputting the detection distances

obtained from the simulated sonar into the agent as state

information, the AUV arrives at the objective site without

FIGURE 12

Real terrain area: 29.50◦S to 31.83◦S, 33.41◦W to 37.37◦W, 750 m

below the sea surface.

incident. This demonstrates that our algorithm can handle

missions in real ocean environments, showcasing its feasibility in

practical scenarios.

5 Conclusion

In this work, we present a novel path-planning method,

ND3QN, to solve the problem of existing reinforcement learning

algorithms’ inadequate exploration-exploitation balance during

Frontiers inNeurorobotics 16 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1466571
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Liao et al. 10.3389/fnbot.2024.1466571

AUV path-planning. This algorithm extends the action space

of AUV, providing up to 16 finely tuned action modes,

enabling AUV to adapt more flexibly to dynamic changes

in complex ocean currents. Then, we design a composite

reward function that comprehensively considers factors such

as distance, obstacles, ocean currents, path smoothness,

and the number of steps to guide AUV in finding paths

with shorter travel times and smoother paths. Additionally,

the ND3QN algorithm introduces noisy networks based on

traditional D3QN, combined with the ε-decay strategy, effectively

balancing the exploration and exploitation trade-off in AUV

path planning. Comparing the ND3QN to the DQN and

D3QN algorithms, experimental results show that the ND3QN

FIGURE 13

Grid maps compressed from real terrain.

approach displays faster convergence and greater convergence

values during training. In order to test the adaptability of the

algorithm in different environments, we randomly generated

200 environments with different obstacle positions to conduct

simulation experiments. At the same time, different random

seeds were changed to mitigate the inherent randomness. The

experimental results show that the success rate of ND3QN reaches

93%, which is 4%–11% higher than that of the RRT*, DQN,

and D3QN algorithms. Furthermore, the average travel time of

ND3QN is reduced by approximately 7%–11%, while the path

smoothness is improved by about 55%–88%. The path-planning

capability of the ND3QN algorithm is also validated in real

terrain. These results provide more evidence of the ND3QN

algorithm’s excellence in enhancing adaptability to different

unknown environments.

The ND3QN algorithm aids in efficiently and safely

planning paths for the AUV, enabling it to avoid obstacles

and utilize ocean currents effectively. This algorithm can

be used in environmental monitoring, deep-sea exploration,

and seafloor mapping. However, deep reinforcement

learning-based methods typically require substantial data

and computational resources during training. Therefore,

it is necessary to optimize the training methods and

model architecture further. Additionally, data collected by

underwater sensors may contain noise, making it challenging

to obtain accurate environmental information (such as

currents, terrain, and obstacles), which could impact the

algorithm’s performance.

In future research, we will further consider continuous

angular output as navigation direction and improve the ND3QN

algorithm to make it suitable for path planning in 3D marine

environments. In addition, we will study the cooperative

path planning problem for multiple autonomous underwater

vehicles (AUVs).

FIGURE 14

Planned paths from (30.04◦S, 36.55◦W) to (31.49◦S, 34.26◦W). The green symbol indicates the starting point, and the red symbol signifies the endpoint.
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