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The advancements in intelligent action recognition can be instrumental in

developing autonomous robotic systems capable of analyzing complex human

activities in real-time, contributing to the growing field of robotics that operates

in dynamic environments. The precise recognition of basketball players’ actions

using artificial intelligence technology can provide valuable assistance and

guidance to athletes, coaches, and analysts, and can help referees make fairer

decisions during games. However, unlike action recognition in simpler scenarios,

the background in basketball is similar and complex, the di�erences between

various actions are subtle, and lighting conditions are inconsistent, making

action recognition in basketball a challenging task. To address this problem,

an Adaptive Context-Aware Network (ACA-Net) for basketball player action

recognition is proposed in this paper. It contains a Long Short-term Adaptive

(LSTA) module and a Triplet Spatial-Channel Interaction (TSCI) module to extract

e�ective features at the temporal, spatial, and channel levels. The LSTA module

adaptively learns global and local temporal features of the video. The TSCI

module enhances the feature representation by learning the interaction features

between space and channels. We conducted extensive experiments on the

popular basketball action recognition datasets SpaceJam and Basketball-51.

The results show that ACA-Net outperforms the current mainstream methods,

achieving 89.26% and 92.05% in terms of classification accuracy on the two

datasets, respectively. ACA-Net’s adaptable architecture also holds potential for

real-world applications in autonomous robotics, where accurate recognition

of complex human actions in unstructured environments is crucial for tasks

such as automated game analysis, player performance evaluation, and enhanced

interactive broadcasting experiences.

KEYWORDS

basketball, action recognition, adaptive context-awareness, long short-term

information, space-channel information interaction

1 Introduction

In recent years, the integration of neural network models in autonomous systems has

revolutionized various fields, including robotics, and computer vision, enabling machines

to perform complex tasks in dynamic environments (Gan et al., 2024; Saleem et al.,

2023; Babaee Khobdeh et al., 2021). One of the most promising applications of these

advancements is in sports analytics, where intelligent systems can autonomously monitor,

analyze, and interpret athlete movements. These systems not only provide precise technical

guidance to athletes, coaches, and analysts, but also assist referees in making fairer

decisions during matches, enhancing the fairness and accuracy of the game. The growing
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field of autonomous sports analysis leverages machine learning and

neural network models to optimize training, improve competition

outcomes, and enhance the overall fan experience. Among these

sports, basketball stands out as one of themost popular and globally

influential. Accurate recognition of basketball players’ movements

during training and games is critical for coaches, enabling them to

design targeted training plans and strategies based on objective data

rather than subjective observations. Traditionally, coaches have

relied on their experience and time-intensive manual analysis to

evaluate player performance, leading to inefficiencies and potential

inaccuracies (Wei et al., 2016). Leveraging computer vision

technology for autonomous recognition of player movements

addresses these challenges, offering a foundation for advanced

applications such as automatic detection of key game events,

intelligent analysis of basketball tactics, and automatic generation

of game highlights. These innovations, powered by neural network

models, can significantly enhance both the technical level of

athletes and the overall spectacle of the game (Li and Zhang,

2019). Additionally, these advancements in action recognition hold

great potential for broader applications in autonomous robotic

systems, where accurate, real-time recognition of human actions

is essential for intelligent decision-making and interaction in

complex, unstructured environments (Jain et al., 2023; Wang et al.,

2022).

Basketball action recognition techniques can be divided into

two main routes: the first is recognition using inertial sensors and

the second is recognition using the feature extraction from video

or image. Li and Gu (2021) used inertial sensors to measure the

acceleration and angular velocity of the arm to help recognize

basketball actions. Gun (2021) proposed the integration of a Field

Programmable Gate Array (FPGA) into a network of two data

streams to find the optimal region for recognizing basketball

actions. These methods require athletes to be equipped with

specific sensors that collect data and send it to a processing device

for action analysis, but is not suitable for general use due to

its equipment dependency. Liu and Wang (2023) used wearable

sensors to capture user motion data, then optimize the model

to analyse and recognize user behavior through SVM algorithm.

Liu and Liu (2023) leveraged the wearable device to collect three-

axis acceleration data and three-axis angular velocity data of the

basketball player for action recognition. Jiang and Zhang (2023)

proposed a scientific structure for classifying motion postures is

proposed, which leads to the establishment of a data information

acquisition module based on inertial sensors. The convolutional

neural network is then improved using principal component

analysis, and finally the improved algorithm is applied to identify

basketball poses.

The methods based on feature extraction use video or image

captured by a camera, from which hidden features are extracted

and then recognized using a neural network classifier. This

type of method is currently the most widely used in action

recognition. Researchers are beginning to extend 2D convolution

to 3D convolution to capture features in the time dimension, e.g.,

C3D (Tran et al., 2015), TSN (Wang et al., 2016), I3D (Carreira

and Zisserman, 2017), P3D (Qiu et al., 2017), Non-local (Wang

et al., 2018), R(2+1)D (Tran et al., 2018), R3D (Hara et al., 2018),

and SlowFast (Feichtenhofer et al., 2019). DeepVideo (Karpathy

et al., 2014) is one of the first attempts to use convolutional

neural networks for video. C3D (Convolutional 3D) is currently

the most popular neural network for extracting video features, as

it is capable of extracting features in the temporal dimension in

addition to the spatial dimension compared to 2D convolution (Fan

et al., 2016; Li et al., 2017; Xu et al., 2017; de Melo et al.,

2019; Yang et al., 2021). Donahue et al. (2015) explored the

most suitable C3D convolution kernel size for action recognition

through experimental studies. In order to further improve

the representation and generalization ability, researchers have

successively proposed 3D residual convolutional network (Tran

et al., 2017) and pseudo-3D residual network (Qiu et al., 2017).

Wu et al. (2020) proposed a dual-stream 3D convolutional network

that uses optical flow information to obtain global and local

action features. Gu et al. (2020) introduced the Navigator-Teacher-

Scrutiniser Network into the dual-stream network with the aim of

focusing on the most informative regions for fine-grained action

recognition. In recent years, the most significant attention-based

Transformer model has been proposed by Vaswani et al. (2017).

Using Transformer’s multi-head self-attention layer, it is possible

to compute a representation of a sequence by aligning words

in the sequence with other words in the sequence. It performs

better in terms of representation and uses less computational

resources than convolutional and recurrent operations.The success

of the Transformermodel inspired the computer vision community

to test it on video tasks, such as ViVIT (Arnab et al., 2021),

Video-Swin (Liu et al., 2022), and TimesFormer (Bertasius et al.,

2021). Moreover, Peng et al. (2020) proposed a novel spatial-

temporal GCN (ST-GCN) architecture for 3D skeleton-based

action recognition, which is able to better model the latent

anatomy of the structure data. Huang et al. (2023) utilized

ensemble models based on hypergraph-convolution Transformer

for the MiG classification from human skeleton data. The method

effectively extracts subtle dynamic features from different gestures

by enhancing the attention mechanism and multi-model fusion

techniques.

Although deep learning-based algorithms are capable of

recognizing basketball actions, they face some specific challenges

such as dealing with highly similar complex backgrounds,

subtle action differences within frames, and inconsistent lighting

conditions. These factors significantly impact the accuracy and

robustness of action recognition in basketball videos. To address

these issues, we propose an Adaptive Context-Aware Network

(ACA-Net) deep neural network for basketball action recognition

to solve the problem that the current popular methods unable to

extract sufficient features and fails to capture long term temporal

information, resulting in low accuracy in recognizing basketball

player’s actions. The main contributions of this paper are as

follows:

1. We propose an adaptive context-aware network (ACA-Net) for

basketball action recognition. By aggregating long short-term

temporal features with spatial-channel features, the network

can effectively recognize basketball actions guided by video

contextual information.

2. We propose a long short-term adaptive learning mechanism.

To address the problem of difficulty in determining similar

basketball actions from short-term temporal information, it

first filters features through a convolutional gating mechanism,

then generates a dynamic convolutional kernel for video

adaptation to aggregate temporal information and capture
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long-term dependencies in videos, and finally generates

importance weights from short-term temporal information to

enhance temporal feature representation. Thus, it can adaptively

integrate contextual information from different time scales to

enhance the model’s ability to capture long-term temporal

information.

3. We propose a triplet spatial-channel integration strategy, which

performs cross-dimensional interactions between spatial and

channel dimensions, and spatial intrinsic dimensions on each

of the three branches, which complementarily improves the

representation of the features in the network. Thus it can

efficiently extract more discriminative feature representations

from basketball videos with a large number of similar

backgrounds.

The rest of the paper is organized as follows. Section 2

introduces the adaptive context-aware network, the long short-

term adaptive learning mechanism, and the triplet spatial-channel

interaction strategy. Section 3 introduces the datasets, evaluation

metrics, and the experiments to verify the effectiveness of the

methods in this paper. Sections 4, 5 introduce the discussion and

conclusions of this study.

2 Methodology

2.1 The overview of adaptive context-
aware network

As we discussed in Section 1, basketball videos pose difficulties

in modeling the long-term dependency of the videos as well as

discriminative feature representations due to the complexity of the

background and the similarity of the actions. Therefore, we aim

to address the above problems by introducing a long short-term

adaptive (LSTA) module and a triplet spatial-channel interaction

module. The two proposed modules can be easily integrated into

existing 2D CNNs, such as ResNet (He et al., 2016), to form a

network architecture that can efficiently process basketball videos.

We will give an overview of ACA-Net and then describe the

technical details of the proposed modules.

As shown in the Figure 1, we adopt ResNet50 as the backbone

and insert the Adaptive Context-Aware Module (ACA-Module)

after the first 1 × 1 convolution of each bottleneck of the layers

in ResNet50. We call the improved bottleneck the ACA-Block.

Each ACA-module in ACA-Block contains an LSTA module and

a TSCI module to extract features from different aspects of the

video. The LSTA module strengthens the model’s performance in

extracting the long-term dependency information of the video,

and the TSCI module enhances the model’s ability to extract

discriminative features through the cross-dimensional interactions

between the space and the channels. Next we will introduce the

technical details of the LSTA module and the TSCI module.

2.2 LSTA module

The LSTA module is designed to adaptively learn the long

and short term information of basketball videos. As shown in the

Figure 2, the LSTA module consists of three main parts, which

are gated convolutional layer, short-term branch and long-term

branch.

Formally, let X ∈ R
C×T×H×W denotes the input feature

map, where C indicates the number of channels, T represents

the temporal dimension, and H,W are the spatial dimensions.

For convenience, the dimension of batch size N is ignored here

and in the following descriptions of shapes. First, we leverage

gated convolutional layer to enhance the feature representation.

The feature map X ∈ R
C×T×H×W are fed into two convolution

sublayers, which contains a convolution, a instance norm (Ulyanov

et al., 2016), and a ReLU layer (Glorot et al., 2011). The convolution

kernel size is 3 × 3 × 3 and 1 × 1 × 1, respectively. These

two features are then multiplied pixel by pixel to control the

information transfer, similar to the gate mechanism (Liu et al.,

2021). This process can be formalized as

G = X ⊕ Conv3D3×3×3(Conv3D3×3×3(X) ⊙ Conv3D1×1×1(X))

(1)

where X denotes the input feature map and C denotes the

convolution block. Then, the output GC×T×H×W is fed into short-

term and long-term branch. For efficiency, these two branches only

focuses on temporal modeling. Therefore,We first use global spatial

average pooling to compress the feature map as follows:

P =
1

H ×W

∑
i,j

Gc,t,j,i, (2)

where c, t, i, j denotes the index of channel, time, height and

width dimensions. PC×T aggregates the spatial information of

GC×T×H×W . The aim of short-term branch is to extract the short-

term information and generate the location-related importance

weights. To control the model complexity, the first Conv1D

operation reduce the number of channels form C to C
r . The second

Conv1D operation recover the number of channels to C, and yields

an importance weights VC×T through the sigmoid function. Above

process can be formulated as follows:

V = Frescale(σ (Conv1D(δ(Conv1D(P,
C

r
)),C))), (3)

where P is the feature map form global spatial average pooling,

δ and σ denote the ReLU and Sigmoid activation function,

respectively. Frescale rescales V̂C×T to VC×T×H×W by replicating

in spatial dimension. Finally, the feature map P is multiplied

element-wise with the importance weights V .

Z = P⊙ V (4)

The Long-term Branch is mainly responsible for long-range

temporal modeling and capturing long-range dependencies in

videos. We generate dynamic temporal aggregation convolution

kernels for the diversity of video temporal information and

aggregate them in a convolutional manner. In order to simplify

the generation of adaptive convolutional kernels and maintain a

high inference efficiency, we adopt a channel-by-channel temporal

sequence convolutional kernel generation method. Based on this

idea, we expect that the generated adaptive convolution kernel

only considersmodeling temporal relationships, and the generation

process of the convolution kernel is summarized as follows:

2c = softmax(F(W2, δ(F(W1, P)))) (5)
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FIGURE 1

The overall architecture of ACA-Net. The vanilla Bottlenecks in ResNet50 are replaced with ACA-Net Blocks to instantiate ACA-Net. The whole

workflow of ACA-Module in the lower right shows how it works. We have noted the shape of tensor after each step.
⊕

denotes element-wise

addition.

where 2c ∈ R
K is the adaptive convolution kernel for the

cth channel, K is the kernel size, δ denotes the ReLU activation

function, F is the fully connected feed forward layer, and W1

andW2 are the learnable parameters. Next, the generated adaptive

kernel 2 = {21,22, . . . ,2C} learns the temporal structure

information between video frames in the convolution manner for

temporal adaptive aggregation:

Y = 2 ⊗ Z =

K∑
k

2c,k · Zc,t+k,j,i (6)

where ⊗ denotes channel-by-channel temporal convolution, Z is

the feature map output from short-term branch.

In summary, LSTA module is capable of generating adaptive

convolution kernels to aggregate short-term and long-term

temporal features of the basketball video while maintaining

computational efficiency.

2.3 TSCI module

Triplet attention (Misra et al., 2021) is a light-weight

but effective attention mechanisms for computer vision tasks,

such as image classification, which computes attention weights

by capturing cross-dimension interaction using a three-branch

structure. Inspired by this idea, we extend triplet attention to

video and propose the TSCI module. The TSCI module builds

inter-dimensional dependencies by the rotation operation followed

by residual transformations and encodes inter-channel and

spatial information with negligible computational overhead. The

architecture of TSCI module is shown as Figure 3. The objective

of the TSCI module is to enhance the model’s ability to extract

discriminative features through cross-dimensional interactions

between three different dimensions, i.e., (C,H), (C,W), and

(H,W), respectively.

Formally, let X ∈ R
C×T×H×W denotes the input feature

map, we first permute the spatial and channel dimensions. XC ∈

R
T×C×H×W is obtained in the left branch after dimensional

permuting. The global average pooling and global max pooling

are performed along the direction C to obtain the feature map

X′
C ∈ R

T×2×H×W , which can establish the information interaction

between H and W. Similarly, XH ∈ R
T×H×C×W is obtained in

the middle branch after dimensional permuting, and global average

pooling and global max pooling are performed along the direction

H to obtain the feature map X′
H ∈ R

T×2×C×W , which can establish

the information interaction between C and W. XW ∈ R
T×W×C×H
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FIGURE 2

LSTA module architecture. LSTA module contains three parts: Gated Convolutioal Layer, Short-term branch, and Long-term Branch. We have noted

the shape of tensor after each step.
⊕

denotes element-wise addition.
⊗

represents convolution operation.
⊙

is element-wise multiplication.

is obtained in the right branch after dimensional permuting, and

global average pooling and global max pooling are performed along

the directionW to obtain the feature map X′
W ∈ R

T×2×C×H , which

can establish the information interaction between C and H. Above

pooling process can be formulated as follows:

Dimensional Pooling(X) = Concat[Avgpool3d(X),Maxpool3d(X)]

(7)

Secondly, we leverage the features output from the above

process to generate the attention map. Three two-dimensional

convolution layers are performed for features X′
C , X

′
H , and X′

W ,

respectively. The attention map wC , wH , and wW are obtained

through the batch normalization layer (Ioffe and Szegedy, 2015)

and sigmoid activation function. Then, they are multiplied

element-wise by the XC , XH , and XW of the corresponding branch

to pay more attention to the region of interest.

Finally, the output feature maps of the three branches are

averaged to achieve the aggregation of features. The whole process

can be represented as follows:

Y = Avg(XC ⊙ σ (Conv2D(X′
C
))+ XH ⊙ σ (Conv2D(X′

H
))

+ XW ⊙ σ (Conv2D(X′
W
)))

=
1

3
(XC ⊙ wC + XH ⊙ wH + XW ⊙ wW )

(8)

wherewC ∈ R
T×1×H×W ,wH ∈ R

T×1×C×W , andwW ∈ R
T×1×C×H

denote the attention map generated by the left, middle, and right

branches. σ denotes the sigmoid activation function. ⊙ is the

element-wise multiplication. XC ⊙ wC , XH ⊙ wH , and XW ⊙ wW

denote the execution of dimensional permuting operation on XC ⊙

wC , XH ⊙ wH , and XW ⊙ wW to retain the original input shape of

X ∈ R
C×T×H×W . Y ∈ R

C×T×H×W denotes the final output of the

TSCI module.

3 Experiment

3.1 Datasets

In order to comprehensively evaluate the performance of

various methods on basketball player action recognition, we

adopted two popular basketball action recognition datasets to

evaluate extensively. We will describe these two datasets in detail

next.

• SpaceJam (Francia et al., 2018). SpaceJam dataset is currently

the most popular and accessible dataset available for the

recognition of basketball players’ movements. The dataset

is divided into two parts: the first part consists of video

clips in MP4 format, and the second part consists of the

joint coordinates data of the athletes corresponding to each

video. In this paper, we only utilize the video data from

the first part. These videos originate from 15 segments

of NBA championship and Italian championship basketball

matches, with each video lasting 1.5 h. The dataset contains

approximately 37,085 video clips in total, each comprising 16
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FIGURE 3

TSCI module architecture. TSCI module contains three branches to focus di�erent aspects of information. We have noted the shape of tensor after

each step.
⊕

denotes element-wise addition, and
⊙

is element-wise multiplication.

frames, with each frame including three channels (RGB) and

a resolution of 176 × 128 pixels. This dataset encompasses

categories of 10 types of movements, namely: walk, no action,

run, defense, dribble, ball in hand, pass, block, pick, and

shoot. The distribution of data across different categories is

illustrated in Figure 4.

• Basketball-51 (Shakya et al., 2021). The videos in the

Basketball-51 dataset originate from third-person perspective

shots taken during media broadcasts of 51 NBA basketball

games. The dataset comprises a total of 10,311 video clips,

each standardized to 25 FPS, and each frame includes three

channels (RGB) with a resolution of 320 × 240. The dataset

contains 8 categories, which are: two-point miss (2p0), two-

point make (2p1), three-point miss (3p0), three-point make

(3p1), free throw miss (ft0), free throw make (ft1), mid-

range shot miss (mp0), and mid-range shot make (mp1).

The distribution of data across these categories is shown in

Figure 5.

3.2 Evaluation metrics

To facilitate quantitative benchmarking of our and other

methods, we select five standard metrics to assess the performance

of various methods: accuracy, precision, recall, F1-Score, and

AUC (area under the ROC curve). The formulas and variable

explanations for each metric are as follows.

1. The formula of accuracy is shown in Equation 9:

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

where TP indicates the number of true positives, TN represents

the number of true negatives, FP is the number of false positives,

and FN represents the number of false negatives.

2. The formula of precision is shown in Equation 10:

Precision =
TP

TP + FP
(10)

where TP indicates the number of true positives, and FP is the

number of false positives.

3. The formula of recall is shown in Equation 11:

Recall =
TP

TP + FN
(11)

where TP indicates the number of true positives, and FN

represents the number of false negatives.
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FIGURE 4

Number of samples per class on SpaceJam dataset.

FIGURE 5

Number of samples per class on Basketball-51 dataset.

4. The formula of F1-Score is shown in Equation 12:

F1-Score = 2×
Precision× Recall

Precision+ Recall
(12)

where Precision and Recall are defined as Equations 10, 11.

5. The formula of Area Under Curve (AUC) is shown in

Equation 13:

AUC =

∫ 1

0
ROC(x)dx (13)

where ROC(x) represents the relationship between the true

positive rate and the false positive rate when x is the threshold.

3.3 Experimental setup

For the SpaceJam dataset, we directly use the original number of

frames and frame size of each video clip in the dataset, so the shape

of the input is N × 3× T × 176× 128, where N is the batch size, T

denotes the number of frames of each video clip, H andW denotes

the height and width of each frame. In this work, N is set to 16, and
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TABLE 1 The details of the state-of-the-art models.

Model Backbone Pre-training

C3D (Tran et al., 2015) VGG-16 Sports-1M

R3D (Hara et al., 2018) ResNet50 ImageNet

I3D (Carreira and Zisserman, 2017) ResNet50 ImageNet

R(2+1)D (Tran et al., 2018) ResNet50 Kinetics-400

SlowFast (Feichtenhofer et al., 2019) ResNet50 Kinetics-400

TSN (Wang et al., 2016) BN-Inception ImageNet

TSM (Lin et al., 2019) ResNet50 ImageNet

ViViT (Arnab et al., 2021) ViT ImageNet

Video-Swin (Liu et al., 2022) Swin Transformer ImageNet

ACA-Net (Ours) ResNet50 ImageNet

T is 8. For the Basketball-51 dataset, the cropped frames are resized

to 120 × 160 for training the networks. The number of frames of

each video clip T is set to 50. For all datasets, 80% of the dataset

is divided into a training set, 10% into a validating set and 10%

into a testing set. For fairness, we used the unified dataset splitting

strategy for all methods. We train all the models on the training

set, while observing the loss function curves on the validation set to

avoid model overfitting, and finally test the models on the test set

for various types of metrics, as reported in the results in Section 3.4.

As show in Table 1, we show the details of the state-of-the-

art models to be compared with in this work. Each model was

implemented using the author’s open-source code and initialized

using its pre-trained weights. Then we trained each model on

the SpaceJam and Basketball-51 datasets. Specifically, ACA-Net

is initialized with pre-trained weights on ImageNet to speed up

the convergence of the network. For all experiments, we initially

set the number of epochs to 30, with early stopping based on

validation loss to prevent overfitting. The batch size is set to

16, and the learning rate is set at 0.0001. The total number of

parameters in the model is approximately 26.8 million. We use the

Adam optimizer (Kingma and Ba, 2014) for training on 8 NVIDIA

GeForce RTX 3090 GPUs.

3.4 Experimental results and analysis

3.4.1 Classification results
In this section, we compared ACA-Net with the current

mainstream action recognition methods on SpaceJam and

Basketball-51 datasets to validate the effectiveness of the proposed

method. As illustrated in Table 2, we present the experiment results

conducted on SpaceJam dataset, comparing various state-of-the-

art methods across key performance metrics. In this analysis,

we evaluated accuracy, precision, recall, F1-Score, and AUC to

comprehensively assess the efficiency and effectiveness of each

method.

As it is clear, our proposed ACA-Net achievesmore outstanding

performance compared to other existing models for basketball

action recognition in all evaluation criteria. ACA-Net achieves

the accuracy rate of 89.26 for SpaceJam. The results indicate

that the combination of LSTA module and TSCI module

increased the recognition accuracy remarkably. 3D convolution-

based approaches have limited receptive fields and they have simple

structures relatively, which limit their capabilities for capturing the

connections between distant frames and extracting discriminative

features. Similarly, models like R(2+1)D and SlowFast, although

effective to some extent, still fall short in leveraging temporal and

spatial dynamics comprehensively, as evidenced by their lower F1-

Scores and Recall values. The LSTA module in ACA-Net is capable

of generating video-related adaptive convolutional kernels based

on global temporal information, which can effectively capture

temporal contextual features in basketball videos. Moreover,

the TSCI module in ACA-Net can conduct cross-dimensional

information interaction in the spatial and channel dimensions to

extract discriminative features more effectively.

Furthermore, we explored the model’s accuracy for each action.

The SpaceJam dataset encompasses categories of 10 types of actions,

namely: walk, no action, run, defense, dribble, ball in hand,

pass, block, pick, and shoot. The confusion matrix and accuracy

of individual category for SpaceJam are shown in Figures 6,

7. Analyzing the experimental results, we observe several key

performance metrics of ACA-Net. For the majority of actions, such

as “block,” “pass,” and “run,” ACA-Net indicates a high recognition

accuracy, evidenced by the diagonal dominance in these categories.

Specifically, the model achieves recognition rates of 90% for “block”

and “pass,” and 94% for “run,” indicating the model’s robustness

in identifying these actions. This performance underscores the

efficacy of the LSTAmodule in capturing temporal dynamics, which

are crucial for distinguishing between rapid, sequential actions in

basketball.

Notably, ACA-Net also indicates exceptional performance

in distinguishing between actions with subtle differences. The

model’s ability to classify “dribble” and “defense” actions, with

high accuracy rates of 88% and 84% respectively, highlights

the effectiveness of the TSCI module. This module’s capability

to enhance feature representation by learning the interactions

between spatial and channel dimensions proves crucial in

identifying nuanced variations in player movements and postures.

Moreover, the model’s precision in recognizing the “no_action”

category, with 577 correct identifications, further validates the

TSCI module’s strength. By effectively capturing the distinguishing

features of inactive moments amidst dynamic play, the TSCI

module ensures that ACA-Net can accurately segregate active and

inactive states, which is critical in a complex sports environment.

As illustrated in Table 3, we report the experiment results

conducted on Basketball-51 dataset, comparing various state-

of-the-art methods across key performance metrics, including

Accuracy, Precision, Recall, F1-Score, and AUC. ACA-Net achieves

an accuracy of 92.05%, substantially higher than the next

best-performing model, Video-Swin, which has an accuracy of

85.08%. Additionally, the precision and recall rates of ACA-

Net, at 90.44% and 89.39% respectively, indicate its remarkable

ability to minimize false positives and false negatives, ensuring

reliable action recognition. The F1-Score of 89.68% further

corroborates the balanced performance of ACA-Net across

all evaluation metrics. Moreover, the AUC metric, standing

at 99.17%, indicates ACA-Net’s good overall performance in

distinguishing between different categories. This indicates that
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TABLE 2 Comparison with state-of-the-art methods on SpaceJam dataset.

Methods

SpaceJam Dataset

Accuracy Precision Recall F1-Score AUC

C3D (Tran et al., 2015) 64.11 65.81 46.34 50.75 90.80

R3D (Hara et al., 2018) 73.55 74.71 64.97 68.35 95.50

I3D (Carreira and Zisserman, 2017) 78.16 76.88 76.41 76.20 7.04

R(2+1)D (Tran et al., 2018) 75.60 77.17 71.78 73.70 96.34

SlowFast (Feichtenhofer et al., 2019) 63.98 59.81 55.95 57.44 92.04

TSN (Wang et al., 2016) 77.19 78.49 64.88 67.75 96.96

TSM (Lin et al., 2019) 81.21 83.90 77.08 79.68 97.98

ViViT (Arnab et al., 2021) 78.59 81.87 75.17 77.43 97.19

Video-Swin (Liu et al., 2022) 79.99 81.07 76.21 78.18 96.39

ACA-Net (Ours) 89.26 90.85 88.91 89.78 98.99

The bold values represent the optimal values for the respective metrics.

FIGURE 6

The confusion matrix for classification on the SpaceJam dataset, with values represented as percentages.

the TSCI module’s ability to extract distinguishing features is

particularly effective, ensuring high separability between various

basketball actions.

As shown in Figures 8, 9, the confusion matrix indicates high

classification accuracy for most categories. For instance, “2-point

make” and “3-point miss” actions are classified with accuracies
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FIGURE 7

The accuracy for each category on the SpaceJam dataset.

TABLE 3 Comparison with state-of-the-art methods on Basketball-51 dataset.

Methods

Basketball-51 Dataset

Accuracy Precision Recall F1-Score AUC

C3D (Tran et al., 2015) 62.60 57.29 52.88 53.21 87.65

R3D (Hara et al., 2018) 77.91 73.64 67.07 68.12 96.69

I3D (Carreira and Zisserman, 2017) 75.78 75.85 63.60 64.83 96.22

R(2+1)D (Tran et al., 2018) 72.67 70.38 62.24 62.56 94.70

SlowFast (Feichtenhofer et al., 2019) 59.50 54.15 49.82 50.40 89.13

TSN (Wang et al., 2016) 66.09 53.97 51.20 47.80 92.69

TSM (Lin et al., 2019) 79.07 76.12 73.74 74.64 95.72

ViViT (Arnab et al., 2021) 84.88 67.13 65.77 66.31 97.90

Video-Swin (Liu et al., 2022) 85.08 85.23 80.51 81.22 97.64

ACA-Net (Ours) 92.05 90.44 89.39 89.68 99.17

The bold values represent the optimal values for the respective metrics.

of 97% and 99% correct predictions respectively, demonstrating

ACA-Net’s robustness in identifying these frequent basketball

actions. Furthermore, the ACA-Net indicates good performance

in recognizing successful actions, such as “3-point make” and

“free-throw make,” with only minor misclassifications. Specifically,

“3-point make” has 52 correct identifications with just a few

misclassifications. Additionally, the model maintains substantial

accuracy in less frequent and more challenging actions such as

“mid-range make” and “free-throw miss,” with accuracies of 85%.

This indicates ACA-Net’s versatility and robustness in handling

a diverse set of actions, further validated by its overall high

performance across different metrics.

In summary, ACA-Net’s advanced design, incorporating the

LSTA and TSCI modules, equips it with a robust feature extraction

capability that significantly outperforms existing state-of-the-

art methods on the SpaceJam and Basketball-51 datasets. This

underscores ACA-Net’s potential as a powerful tool for accurate and

reliable basketball action recognition in complex scenarios.

3.4.2 Feature visualization
t-SNE (Belkina et al., 2019) is a probabilistic-based nonlinear

dimensionality reduction technique that learns a mapping by

minimizing the Kullback-Leibler scatter between data points in
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FIGURE 8

The confusion matrix for classification on the Basketball-51 dataset, with values represented as percentages.

FIGURE 9

The accuracy for each category on the Basketball-51 dataset.
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A B

FIGURE 10

t-SNE visualization of ACA-Net for SpaceJam test set. (A) Before training. (B) After training.

A B

FIGURE 11

t-SNE visualization of ACA-Net for Basketball-51 test set. (A) Before training. (B) After training.

the high and low dimensional spaces. t-SNE is particularly suited

to the visualization of data as it reveals the underlying clustering

structure in a dataset. In this work, we explore the differences

in feature distribution of ACA-Net before and after training for

the SpaceJam and Basketball-51 datasets. Figure 10 illustrates the

t-SNE visualization of ACA-Net for SpaceJam test set. The t-

SNE plot before training (Figure 10A) indicates a scattered and

poorly separated feature space. Most action categories overlap

significantly, with no clear boundaries between different classes.

This overlap suggests that the model’s initial feature extraction

capability is inadequate, failing to distinguish between various

basketball actions.

In contrast, the t-SNE visualization after training (Figure 10B)

indicates a well-organized feature space with distinct clusters for

each action category. The LSTA module’s ability to capture global

and local temporal features, combined with the TSCI module’s

enhancement of spatial-channel interactions, has led to a more

discriminative feature space. The reduced overlap and increased

separation between clusters indicate that the trained ACA-Net

model can effectively differentiate between various basketball

actions. Despite the overall improvement in feature discrimination

after training, the t-SNE visualization (Figure 10B) reveals some

residual misclassification issues. Several samples from other action

categories are misclassified or overlap with the “walk” cluster.

The reason for this problem may be that the distribution of

action categories in the SpaceJam dataset is unbalanced, with

“walking” potentially being amore common action. This imbalance

could bias the model toward overfitting on more frequent actions,

leading to higher misclassification rates for less frequent or more

complex actions.

Figure 11 illustrates the t-SNE visualization of ACA-Net for

Basketball-51 test set. The t-SNE plot before training (Figure 11A)
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displays a scattered and poorly differentiated feature space. The

majority of action categories overlap considerably, with minimal

distinct clustering. This suggests that the initial features extracted

by the model lack the discriminative power necessary to effectively

differentiate between the various types of basketball actions.

The overlap indicates an inadequacy in capturing the unique

characteristics of each action category.

The t-SNE visualization after training (Figure 11B) shows a

markedly improved organization of the feature space, with more

distinct clusters for each action category. The ACA-Net’s LSTA and

TSCImodules have evidently enhanced the feature representations.

The LSTA module’s ability to learn both global and local temporal

features, coupled with the TSCI module’s enhancement of spatial-

channel interactions, has resulted in a feature space where action

categories are more clearly separated. This improved separation

indicates a successful learning of the distinguishing features for

each basketball action type. Despite the overall improvement,

certain action categories, such as “2-point miss” and “mid-range

miss,” exhibit some degree of overlap or proximity. The reason

for this may be that the imbalance in the samples of the dataset

introduces a bias in the performance of the model. Additionally,

the actions “2-point miss” and “mid-range miss” may share similar

visual and temporal characteristics, especially in the dynamics of

the shot motion and the outcome of the action. The difficulty in

differentiating these subtle differences can lead to misclassification.

3.4.3 Ablation experiment
The ablation studies are performed on SpaceJam and

Basketball-51 datasets to investigate the effects of LSTA and TSCI

modules on the model performance. The baseline model is the

ResNet50 (He et al., 2016) with original architecture and without

LSTA and TSCI modules. We explored the effect of adding only

one module and adding both modules on model performance

separately. As shown in Table 4, the ablation study results indicate

the significant impact of both the LSTA and TSCI modules on the

performance of the ACA-Net model. The addition of the LSTA

module to the baseline model results in substantial performance

improvements, increasing accuracy to 86.87% and the F1-score to

87.93% on the SpaceJam dataset, and achieving 88.17% accuracy

and 84.93% F1-score on the Basketball-51 dataset. Similarly, the

integration of the TSCI module enhances the baseline model’s

accuracy to 85.06% and F1-score to 85.31% on SpaceJam, and

to 84.30% accuracy and 80.93% F1-score on Basketball-51. The

combined use of both modules yields the highest performance,

with the model achieving 89.26% accuracy and 89.78% F1-score

on SpaceJam, and 92.05% accuracy and 89.68% F1-score on

Basketball-51. These results indicate that the LSTA and TSCI

modules complement each other, effectively leveraging temporal,

spatial, and channel-level features to improve action recognition

performance.

4 Discussion

The results presented in this study indicate the superior

performance of the proposed ACA-Net for basketball action

recognition on the SpaceJam and Basketball-51 datasets. The

TABLE 4 Ablation experiments of LSTA and TSCI modules.

Model

Dataset

SpaceJam Basketball-51

Accuracy F1-Score Accuracy F1-Score

Baseline 80.97 82.34 83.72 77.67

Baseline

+ LSTA

86.87 87.93 88.17 84.93

Baseline

+ TSCI

85.06 85.31 84.30 80.93

Baseline

+ LSTA +

TSCI

89.26 89.78 92.05 89.68

The bold values represent the optimal values for the respective metrics.

integration of the LSTA module and the TSCI module has proven

effective in extracting comprehensive features across temporal,

spatial, and channel dimensions. The experimental results reveal

that ACA-Net achieves higher accuracy, precision, recall, F1-Score,

and AUC compared to existing state-of-the-art methods. This

marked improvement can be attributed to the combined strengths

of the LSTA and TSCI modules. The LSTA module enhances

the model’s capability to capture both global and local temporal

features, which is particularly important for recognizing rapid and

sequential actions that are common in basketball. This dual focus

on temporal scales allows ACA-Net to maintain robustness even in

the presence of actions that are subtle or occur in quick succession.

The TSCI module further contributes by learning interaction

features between spatial and channel dimensions, significantly

boosting the feature representation’s discriminative power. This

cross-dimensional interaction is critical for differentiating between

visually similar actions, a common challenge in sports video

analysis.

Despite ACA-Net indicates promising results, several

research avenues remain open for further exploration. First,

exploring the scalability of ACA-Net to larger and more

diverse datasets. This would provide valuable insights into

its generalizability and robustness across different settings

and conditions, such as varying game strategies, player

behaviors, and environmental factors. Additionally, integrating

more contextual information, such as player positions, game

scenarios, and team strategies, could further enhance the model’s

performance by providing richer, more informative features for

action recognition.

Another critical area for future work involves the real-time

implementation and optimization of ACA-Net for deployment

in live sports analytics systems. Such advancements would

allow for immediate action recognition and analysis, providing

valuable insights to coaches, players, and referees during games.

Exploring ACA-Net’s application beyond basketball to other

sports and activity recognition tasks would also validate its

versatility and adaptability across different domains. Finally,

collaborative research efforts that incorporate multi-modal

data integration, combining visual data with inputs from

sensors, audio, or even physiological signals, could open new

frontiers in the development of comprehensive and robust action

recognition systems.
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5 Conclusions

Neural network models have become a cornerstone in the

development of autonomous robotic systems, enabling machines

to perceive, analyze, and respond to complex environments

with increasing sophistication. These models, inspired by the

structure and function of the human brain, are driving innovations

in robotics by enhancing adaptability, decision-making, and

multi-modal data processing. In this paper, we proposed an

adaptive context-aware network, ACA-Net, designed specifically

for basketball action recognition, as an example of how such

neural network architectures can address real-world challenges

in dynamic environments. The network’s architecture integrates

LSTA and TSCI modules, each targeting different aspects of

video feature extraction to enhance overall performance. The

LSTA module enhances feature representation through a gated

convolutional layer, followed by the complementary learning of

temporal context features via the local branch’s importance weights

and the global branch’s adaptive convolutions. In parallel, the

TSCI module improves the extraction of discriminative features

by facilitating cross-dimensional interactions between spatial and

channel features through its three-branch structure. The fusion of

long short-term temporal information from the LSTA module with

spatial-channel interaction information from the TSCI module,

guided by global contextual information, enables ACA-Net to

effectively discriminate between different basketball actions.

The effectiveness of ACA-Net was validated through

extensive comparisons with current state-of-the-art methods,

demonstrating its superior performance on the SpaceJam and

Basketball-51 datasets, achieving accuracy rates of 89.26% and

92.05%, respectively. Additionally, dimensionality reduction and

visualization of the features extracted by ACA-Net, performed

using t-SNE, highlighted the model’s strong discriminative

capability across various action categories. Ablation experiments

further validated the effectiveness of each module within ACA-Net,

underscoring their contributions to the overall performance of the

network.

These findings indicate that ACA-Net has made notable

progress in the field of sports action recognition. By addressing

the specific challenges of basketball action recognition, such

as complex backgrounds, subtle differences in actions, and

inconsistent lighting. Looking ahead, ACA-Net holds potential

for broader applications in autonomous robotics, where precise

action recognition is crucial for decision-making in dynamic

and unstructured environments. Future research should focus

on optimizing ACA-Net for real-time deployment, exploring

its integration with multi-modal sensory data, and assessing

its applicability in various autonomous robotic tasks. By

extending ACA-Net’s capabilities, we can further contribute

to the advancement of neural network models in the robotics
domain, enhancing both robotic autonomy and human-robot

collaboration.
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