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Introduction: Simultaneous Localization and Mapping (SLAM) is a technology 
used in intelligent systems such as robots and autonomous vehicles. Visual SLAM 
has become a more popular type of SLAM due to its acceptable cost and good 
scalability when applied in robot positioning, navigation and other functions. 
However, most of the visual SLAM algorithms assume a static environment, 
so when they are implemented in highly dynamic scenes, problems such as 
tracking failure and overlapped mapping are prone to occur.

Methods: To deal with this issue, we propose ISFM-SLAM, a dynamic visual 
SLAM built upon the classic ORB-SLAM2, incorporating an improved instance 
segmentation network and enhanced feature matching. Based on YOLACT, 
the improved instance segmentation network applies the multi-scale residual 
network Res2Net as its backbone, and utilizes CIoU_Loss in the bounding 
box loss function, to enhance the detection accuracy of the segmentation 
network. To improve the matching rate and calculation efficiency of the internal 
feature points, we fuse ORB key points with an efficient image descriptor to 
replace traditional ORB feature matching of ORB-SLAM2. Moreover, the motion 
consistency detection algorithm based on external variance values is proposed 
and integrated into ISFM-SLAM, to assist the proposed SLAM systems in culling 
dynamic feature points more effectively.

Results and discussion: Simulation results on the TUM dataset show that the 
overall pose estimation accuracy of the ISFM-SLAM is 97% better than the ORB-
SLAM2, and is superior to other mainstream and state-of-the-art dynamic SLAM 
systems. Further real-world experiments validate the feasibility of the proposed 
SLAM system in practical applications.
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1 Introduction

Simultaneous Localization and Mapping (SLAM) is a technology that enables robots to 
determine their location and construct a map in real time by collecting data in an unknown 
environment. The mainstream categories of the SLAM technologies include laser SLAM and 
visual SLAM. Due to its higher precision than the laser SLAM and acceptable construction 
cost, visual SLAM has become a research focus in the field of SLAM (Taketomi et al., 2017).

Feature point method and direct method are two common methods used in visual SLAM 
to extract information from the scene and estimate camera motion (Taketomi et al., 2017). The 
feature-based method represents features in the scene by extracting key points and descriptors 
from pixels. Davison et al. (2007) proposed a monocular visual SLAM algorithm, namely 
MonoSLAM, to achieves online localization and mapping by extracting and tracking feature 
points. ORB-SLAM2 (Mur-Artal and Tardós, 2017) utilizes feature points and descriptors with 
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selection and scale invariance to generate camera poses, and employs 
closed-loop detection to optimize map consistency, thereby 
eliminating cumulative camera errors. On the contrary, the direct 
method does not rely on feature extraction or descriptor matching, 
but utilizes original pixel values for information extraction and 
motion estimation. An example is the LSD-SLAM (Engel et al., 2014), 
which uses image continuity information and dense optical flow fields 
to estimate the motion of the camera. However, the SLAM algorithms 
based on the aforementioned two kind of methods usually treats the 
external environment as static, ignoring the impact of dynamic objects 
on map accuracy. In a dynamic environment, the movement of objects 
may cause changes in the map, making it difficult for traditional visual 
SLAMs to accurately estimate the camera motion and scene structure. 
Hence, new visual SLAM algorithms need to be developed to handle 
the issues in dynamic environments.

In recent years, scholars have focused on the combination of deep 
neural networks (DNNs) and visual SLAM to achieve good SLAM effects 
in dynamic environments. DNNs can provide semantic information for 
SLAM systems, enhancing the systems’ perception capabilities and 
effectively improves the accuracy of both tracking and mapping. For 
instance, Yu et al. (2018) proposed the DS-SLAM, which integrates the 
semantic segmentation network SegNet (Badrinarayanan et al., 2015) and 
motion consistency detection into the ORB-SLAM2. By eliminating 
feature points associated with dynamic objects, this approach mitigates 
the adverse effects of dynamic environments and improves the stability of 
map construction. The DynaSLAM (Bescos et al., 2018) employs mask 
Region-based Convolutional Neural Network (R-CNN) and multi-view 
geometry to filter dynamic feature points by integrating sparse and dense 
map information. However, both DS-SLAM and DynaSLAM are prone 
to issues such as insufficient or incorrectly removed feature points, often 
due to erroneous prior knowledge or challenging lighting conditions, 
which can ultimately compromise SLAM accuracy. Detect-SLAM (Zhong 
et  al., 2018) incorporated a DNN-based object detector into the 
ORB-SLAM2 system and added three new modules: moving object 
rejection, object mapping, and SLAM-enhanced detector. This algorithm 
enhances the accuracy of localization and mapping in a highly dynamic 
environment, but its performance is not as robust as that of 
ORB-SLAM2  in a static environment. As demonstrated, the 
aforementioned visual SLAM systems mitigate interference from dynamic 
objects by discarding feature points associated with them. However, in 
certain scenarios, such approaches may mistakenly remove feature points 
from static objects or inadvertently retain feature points from dynamic 
objects. This often results in a reduction in the number of feature points 
matches, consequently causing the SLAM systems to lose track. Thus, 
addressing the issue of incorrect feature point matching in dynamic 
environments remains a pressing challenge for visual SLAM systems.

Several research have been conducted in response to the above 
problem. For example, Cai and Wu (2022) proposed a SLAM 
algorithm based on the YOLACT (Bolya et  al., 2019) instance 
segmentation network. This SLAM performed static point recovery 
based on external constraints after removing dynamic objects, which 
to some extent alleviated the problem of insufficient feature points. 
However, YOLACT’s bounding box loss primarily emphasizes the 
coordinates of the four corners rather than the position of the center 
point, which can lead to a shift in the segmented bounding box. 
Moreover, the bounding box loss does not fully take into account the 
shape and size of the target object, potentially resulting in suboptimal 
segmentation accuracy. Integrated with the SegNet, Cui and Ma 
(2019) proposed the SOF-SLAM to tightly couple visual semantic 

information and optical flow information, thereby effectively and 
reasonably removing dynamic feature points. Based on the 
ORB-SLAM2, Su et al. (2022) developed a parallel semantic module 
based on the lightweight object detection network YOLOv5s. This 
module utilizes semantic information to optimize the homography 
matrix, and uses optical flow masks to remove dynamic feature points 
from the image. He et  al. (2023) proposed OVD-SLAM, which 
integrates semantic, depth, and optical flow information to 
differentiate between foreground and background, thereby identifying 
dynamic objects. It can be  observed that combining semantic 
segmentation with optical flow for detecting dynamic feature points 
has become a prominent research focus. However, optical flow 
estimation algorithms are prone to errors when handling fast motion 
and occlusions. Fast-moving objects can cause instability in optical 
flow estimation, while occluded objects may lead to distorted optical 
flow, both of which can negatively impact segmentation accuracy.

To overcome the challenges of suboptimal instance segmentation 
accuracy and incorrect feature point classification in dynamic visual 
SLAM systems, this paper proposes ISFM-SLAM, a dynamic visual 
SLAM system based on ORB-SLAM2, which incorporates an 
improved instance segmentation network, a novel motion consistency 
detection approach, and an introduced efficient learned binary image 
descriptor. The main contributions of this work are as follows:

 (1) Accurately obtaining prior knowledge of objects in an image 
is crucial for designing an effective visual SLAM system. To 
this end, we  propose an improved instance segmentation 
network based on YOLACT and integrate it into the ISFM-
SLAM system. Specifically, we replace YOLACT’s backbone 
with Res2Net-50 (Gao et al., 2019), which offers a superior 
receptive field, a more compact scale, and greater ease of 
deployment. Furthermore, we introduce CIoU_Loss (Zheng 
et al., 2020) to rectify YOLACT’s occasional inaccuracies in 
bounding box estimation. In this way, the accuracy of the 
instance segmentation network is significantly enhanced, 
which greatly benefits subsequent processes such as feature 
point matching.

 (2) To address the issue of incorrectly removing or retaining feature 
points in certain scenarios, this paper introduces a novel motion 
consistency detection approach based on the Perspective-n-Point 
(PnP) algorithm (Lepetit et al., 2009). By calculating the difference 
in external parameters between frames, the PnP-based motion 
consistency detection method can more reliably determine 
whether feature points belong to the same static object. This 
enables more accurate removal of dynamic and incorrectly 
matched feature points, while ensuring the proper retention of 
static feature points, ultimately leading to a more reliable motion 
consistency detection outcome.

 (3) Moreover, a learned binary image descriptor, BEBLID (Suárez 
et al., 2020), is combined with ORB key point detection to 
further enhance the accuracy and efficiency of feature 
matching. The BEBLID descriptor, trained using a boosted 
method, significantly improves feature point matching 
accuracy, and its parallel computing capability ensures high 
computational efficiency. This allows feature matching based 
on the BEBLID descriptor to maintain high accuracy even in 
scenes with numerous dynamic objects, while also better 
satisfying the real-time performance requirements of SLAM 
systems in practical applications.
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 (4) Simulation results demonstrate that the proposed ISFM-SLAM 
system achieves outstanding overall pose estimation accuracy 
in both low-dynamic and high-dynamic environments, with a 
97% improvement compared to the baseline ORB-SLAM2, and 
outperforms many other mainstream and state-of-the-art 
dynamic SLAM algorithms. Furthermore, real-world 
experimental results validate the high accuracy of ISFM-SLAM 
in both dynamic feature point removal and feature 
point matching.

The remainder of this paper is organized as follows. Section 2 
reviews the related work pertinent to the studies presented in this 
paper. Section 3 presents the proposed ISFM-SLAM system, including 
the details of the improved instance segmentation network, PnP-based 
motion consistency detection, and BEBLID feature matching. 
Simulation and real-world experimental results, along with 
corresponding discussions, are presented in Sections 4 and 5, 
respectively. Some conclusions and directions for future work are 
provided in Section 6.

2 Related work

2.1 ORB-SLAM2

As a classic visual SLAM system, ORB-SLAM2 is composed of 
three main parallel threads: tracking, local mapping, and loop closure 
(Mur-Artal and Tardós, 2017). To locate the camera pose and generate 
keyframes, the tracking thread extracts feature points from each frame 
of images and matches them with the local map. The local mapping 
thread receives the keyframes from the tracking thread, uses the 
bundle adjustment (BA) algorithm to optimize the camera pose, and 
eliminates redundant information from the map. The loop closure 
thread detects the map loop, corrects the accumulated drift, and 
eliminates accumulated errors. After optimizing the pose graph, the 
ORB-SLAM2 launches the fourth thread to perform full BA, to 
calculate the optimal structure and the motion solution. For a detailed 
explanation of the ORB-SLAM2 system framework and its 
components, refer to Mur-Artal and Tardós (2017).

2.2 YOLACT instance segmentation 
network

Instance segmentation is a task in the field of computer vision that 
aims to identify the pixel-level segmentation of each object in an 
image and assign a unique identifier to each object. Instance 
segmentation generates a mask on the image target, but preserve the 
shape and features of the target. The YOLACT network is a one-stage 
instance segmentation model proposed by Bolya et  al. (2019). 
Compared with the two-stage models represented by Mask R-CNN 
(He et al., 2017), the YOLACT has the advantages of fewer parameters 
and faster operation, making it more suitable for application in SLAM 
systems with high real-time requirements.

In the YOLACT instance segmentation network, a backbone 
network based on ResNet-101 is used to extract multi-scale feature 
maps from the input image. These feature maps are then passed 
through a feature pyramid network for further processing, leading to 

the prediction of bounding boxes. To evaluate the regression 
performance of the model for the location of the bounding box, 
YOLACT uses Smooth L1 as the bounding box regression loss 
function. After regression, the detected boxes are filtered by 
non-maximum suppression (Qiu et al., 2018) to obtain the instances 
corresponding to each object, and the mask segmentation results 
corresponding to each anchor are generated by linear combination. 
The specific steps of YOLACT instance segmentation are detailed in 
Bolya et al. (2019).

3 Methodology

3.1 ISFM-SLAM framework based on 
ORB-SLAM2

The key to enhancing ORB-SLAM2 in dynamic environments is 
to accurately perform instance segmentation on the image, enabling 
the reasonable removal of feature points associated with dynamic 
objects. To this end, we  modified the tracking thread in the 
ORB-SLAM2 system in this paper to construct the ISFM-SLAM 
framework. Specifically, an improved instance segmentation network 
is introduced in the tracking thread to divide the image frame into 
static background and potential dynamic instances. Then, a motion 
consistency detection method based on PnP is employed to effectively 
remove dynamic instances while retaining static feature points. 
Finally, a feature matching algorithm based on the boosted efficient 
BEBLID descriptor is utilized to perform feature matching and 
accurately calculate the camera pose. Following the completion of the 
tracking thread, ISFM-SLAM proceeds with local mapping, loop 
closure, and global BA, ultimately producing the corresponding poses 
and a global point cloud map. The overall pipeline of the ISFM-SLAM 
system is illustrated in Figure 1.

3.2 Improved instance segmentation 
network based on Res2Net and CIoU_Loss

In order to improve the accuracy of the YOLACT segmentation 
network, this paper utilizes the Res2Net-50 to replace the backbone of 
the original YOLACT, so that the multi-scale receptive field of the 
network can be improved. Res2Net, proposed by Gao et al. (2019), is 
a multi-scale backbone network for computer vision tasks such as 
object detection and semantic segmentation. By constructing layered 
residual connections in the convolutional blocks, Res2Net-50 is 
capable of representing multi-scale features within a single residual 
block. This allows the network to better capture image features at 
different scales, thus improving the accuracy of instance segmentation. 
Moreover, Res2Net-50 can enhance the network’s ability to 
comprehensively learn image information by expanding the receptive 
field of each layer, resulting in more precise localization and 
segmentation of target objects. Another advantage of Res2Net-50 is its 
ease of integration into existing state-of-the-art CNN models, offering 
flexibility that allows it to excel across various tasks and improve the 
overall performance of the YOLACT model. Given the high real-time 
requirements of the SLAM algorithm in dynamic environments, this 
paper implements Res2Net-50 with a scale of 4 as the backbone 
network of the improved instance segmentation network, which can 
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not only ensure sufficient semantic features but also reduce the cost of 
instance segmentation. The detailed architecture of the adopted 
Res2Net-50 backbone can be found in Gao et al. (2019).

In addition, the CIoU_Loss function (Zheng et al., 2020) is used to 
replace the original loss function Smooth L1 in the original YOLACT 
to obtain higher accuracy of bounding box regression. The reason is that 
the Smooth L1 function cannot accurately measure the position of the 
predicted box due to the lack of calculation of the intersection over 
union (IoU) and the minimum bounding rectangle. In contrast, CIoU_
Loss considers not only the overlap area between the predicted box and 
the ground truth box, but also the distance between their center points 
and the aspect ratio, which are geometric factors critical for accurately 
localizing and segmenting the target object. By introducing these 
geometric elements, CIoU_Loss can more effectively handle challenging 
localization scenarios, resulting in better regression performance for the 
predicted box compared to Smooth L1. Another reason we use CIoU_
Loss is that this loss function is its faster convergence during training, 
which improves the model’s training efficiency. The calculation method 
for CIoU_Loss is shown in Equation (1):
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where ρ  represents the distance between the geometric centers of 
the prediction box b and the target box gtb . gt

gt
w
h

 and w
h

 represent the 

aspect ratios of the target box and prediction box, respectively. c 
represents the diagonal length of the smallest circumscribed rectangle 
of the prediction box and target box. With the implementation of the 
CIoU_Loss, the convergence speed and the multi-scale object 
detection robustness of the improved instance segmentation network 
can be significantly enhanced.

3.3 PnP-based motion consistency 
detection

The instance segmentation network is capable of acquiring prior 
information for the motion of objects within a video frame. However, 
relying solely on this prior information to determine whether a feature 
point should be removed may lead to two issues. One is the feature 
points of objects in a stationary state with non-dynamic prior 
information, such as those of a stationary person, will be removed. 
Another one is the feature points of moving objects with non-dynamic 
prior information will be preserved, such as those of the books that 
interact with people. Thus, it is necessary to compare the motion state 
of the same object across consecutive frames to accurately decide 
whether the associated feature points should be removed. That is, a 
motion consistency detection method should be employed to assist in 
the classification of feature points.

To improve the performance of consistency detection of motion 
objects, this paper proposes a novel motion consistency detection 
method based on the PnP algorithm. On the premise that the camera 
has observed the 3-dimensions (3D) positions of multiple points, the 
PnP algorithm accurately determines the position and orientation of 
feature points in 3D space by solving the geometric relationships 
between the camera and the feature points in the scene. The detailed 
procedure of the PnP algorithm can be found in Lepetit et al. (2009). 
Our method analyzes this geometric relationship to compare changes 
in feature points across frames, thereby determining whether the 

FIGURE 1

Overall pipeline of the ISFM-SLAM system.
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feature points belong to the same static object. If the motion 
trajectories of the feature points are inconsistent, they may be either 
incorrectly matched or dynamic feature points, and will thus 
be appropriately removed. In this way, the PnP algorithm is employed 
to detect the motion consistency of feature points across consecutive 
frames, enabling a more accurate distinction between true dynamic 
and static feature points, even in the presence of inaccurate prior 
information. The specific steps of the PnP-based motion consistency 
detection method are as follows.

After applying the improved instance segmentation network 
proposed in Section 3.2 to divide video frames into static background 
and potential dynamic instances, we use PnP algorithm to calculate 
the static baseline extrinsic parameter staticT  based on the continuous 
two frame 1nF −  and nF  under constant speed motion model  as shown 
in Equation (2):

 ( ), , 1,static static n static nT PnP P P −=
 (2)

where ,static nP  and , 1static nP −  denotes the sets of the static 
background feature points in nF  and 1nF − , respectively.

Using staticT  as the baseline, it is capable to determine the true 
dynamic instances among the potential dynamic instances in the 
current frame. Specifically, for each potential dynamic instance, its 
corresponding pose transformation matrix iT  can be calculated using 
Equation (3):

 ( ), , 1,i i n i nT PnP P P −=  (3)

where ,i nP  and , 1i nP −  are the sets of the feature points of instance i 
in nF  and 1nF − , respectively. Then, the 2-norm of the difference matrix 

iA  between staticT  and iT  can be calculated by Equation (4):

 2i static iA T T= −   (4)

If iA  is greater than the perset threshold dT , then the potential 
instance i is determined to be a true dynamic instance.

Based on the above procedure, the ORB feature points belonging 
to the dynamic instance can be discarded more accurately. After that, 
the remaining static ORB feature points can be utilized to calculate the 
camera pose, and then the stable and accurate extrinsic parameters 
can be obtained.

3.4 BEBLID feature matching

Since feature matching plays a pivotal role in visual SLAM, the 
accuracy and efficiency of feature matching algorithm directly 
influences the quality of subsequent localization and mapping. 
ORB-SLAM2 employs binary robust independent elementary features 
(BRIEF) to obtain descriptors of feature points. However, the 
expressiveness of BRIEF descriptors is constrained by their derivation 
from straightforward pixel comparison, diminishing the matching 
accuracy of the ORB algorithm. In addition, although the improved 
instance segmentation network and PnP-based motion consistency 
detection can largely prevent the incorrect removal of feature points, 
in cases where a frame contains a significant number of dynamic 

instances, the available points for feature matching may become 
insufficient due to the elimination of dynamic feature points, thereby 
affecting the overall performance of the SLAM system. To address this, 
the ISFM-SLAM framework implements a feature matching algorithm 
based on the BEBLID descriptor (Suárez et  al., 2020). BEBLID 
employs a learning-based approach, specifically adaptive boosting 
(AdaBoost) (Pardoe and Stone, 2010), for training. AdaBoost 
combines multiple weak classifiers, iteratively adjusting the weights of 
samples to focus more on previously misclassified instances, thereby 
significantly improving classification accuracy. The use of the 
AdaBoost algorithm to minimize the BEBLID loss function is 
described in Equation (5):
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where γ  is the learning rate. { },i ix y  is a training set composed of 
pairs of image patches. il  is the label of the training sample. 1il =  
denotes that both patches correspond to the same image structure, 
while 1il = −  denotes that they correspond to different image 
structures. ( ) ( );, ;,k kh z h z f T≡  denotes the k th weak learner with 
weight kα , which depends on a feature extraction function ( )·f  and a 
threshold T  as shown in Equation (6):
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In particular, the key to improving the efficiency calculation of the 
BEBLID descriptor is the choice of ( )f x . Here, ( )f x  is defined as the 
average gray difference between pixels in two different image boxes as 
shown in Equation (7).
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where ( )I t  is the gray value at pixel t  and ( ),R p s  is the square box 
with a side length of s centered at pixel p. The descriptor of the 
response map is shown in Equation 8.

 ( ) ( ) ( ) ( )
1
2 1 1

T
k kD x A h x gh x L gh xα α = =    

(8)

where ( )1 2, , , kA diag α α α=  .
It can be  seen that the BEBLID descriptor improves the loss 

function by using all the weak learner and the integral image, enabling 
the feature matching algorithm to obtain high-quality binary 
descriptors. As a result, feature matching based on BEBLID is more 
accurate than that based on BRIEF, allowing the algorithm to perform 
precise matching even when the number of available feature points is 
limited. Furthermore, BEBLID ensures relatively high feature 
matching accuracy under challenging lighting conditions, such as 
strong or weak light, thereby further enhancing the proposed SLAM 
system’s ability to handle complex scenes. In addition, BEBLID 
computes each descriptor in parallel, which can significantly improve 
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the efficiency of feature matching. The extraction workflow of the 
BEBLID descriptor is demonstrated in Figure 2.

4 Simulation experiments and 
discussions

4.1 Simulation environment

To verify the effectiveness of ISFM-SLAM and the proposed 
components, a series of simulation experiments were conducted. To 
accelerate the training of the deep learning model, the proposed 
improved instance segmentation network was trained on a server with 
an Intel Xeon Silver 4214R CPU, 90 Giga-Bytes (GB) memory, and an 
RTX 3080 TI GPU (12 GB graphics memory). All the other 
experiments were conducted on a personal computer (PC) with the 
following configurations: an AMD Ryzen 75800H 3.2 GHz CPU, 
16 GB memory, an RTX 3060 laptop GPU with 6 GB graphics memory. 
The operating system is Ubuntu 18.04 with CUDA 11.3 and Pytorch 
1.11.0. The code for the improved instance segmentation network of 
the ISFM-SLAM is written in Python 3.6, while the codes for the other 
parts of the ISFM-SLAM are written in C++.

4.2 Performance of improved instance 
segmentation network

The effectiveness of visual SLAMs depends heavily on the 
performance of instance segmentation networks. Therefore, in this 
section, we analyzed the segmentation performance on some samples 
of the original YOLACT and the improved instance segmentation 
network proposed in this paper, and also compared the statistical 
results on public datasets by these two networks as well as some 
canonical and state-of-the-art instance segmentation methods. The 
improved instance segmentation network was trained on the COCO 
Minitrain dataset (Samet et al., 2020). This dataset is a subset of the 
Microsoft Common Objects in COntext (MS COCO) dataset (Lin 
et al., 2014), which contains approximately 25,000 images and all the 
80 categories of the MS COCO. The Res2Net pre-trained weights were 
used for training the improved YOLACT network. The batch size was 
set to 24. The number of iterations was 100,000. Stochastic gradient 
descent (SGD) was utilized as the optimizer, with an initial momentum 
of 0.9, a learning rate of 0.001, and a weight decay coefficient of 0.0001.

To facilitate a more intuitive comparison of the instance 
segmentation effect of the original YOLACT and the improved one, 
we visualize the segmentation result obtained by the two compared 
network on five samples with complex indoor environments of COCO 
dataset. The results are presented in Figure 3, where the left column 
contains the input images, the middle column contains the 
segmentation results obtained by the original YOLACT, and the right 
column contains the segmentation result obtained by the improved 
instance segmentation network. According to the results in the middle 
column, the original YOLACT may yield unsatisfactory outcomes in 
highly complex scenes. For example, an instance may be divided into 
two parts, as seen with the chair in Figure 3A. Additionally, some 
instances may not be  detected or segmented, such as the vase in 
Figure  3B, the chair in Figure  3C, and the person in 
Figure 3D. Misidentification of instances can also occur, as observed 

with the debris on the ground and bowls on the cabinet in Figure 3D, 
and the sofa in Figure  3E. Furthermore, some masks may fail to 
accurately cover the corresponding instances, such as the person in 
Figure 3E. The main reasons for these issues are the poor feature 
extraction ability of the instance segmentation network, which leads 
to a lack of multi-scale perception of the scene and low localization 
accuracy of the detection boxes. For our proposed network, the multi-
scale receptive field has been increased due to the replacement of the 
backbone, and the precision of the detection box has been improved 
because of the optimization of the boundary regression box. 
Consequently, the improved network can better utilize environmental 
semantic information and achieve more accurate segmentation, as 
shown by the results on the right column in Figure 3.

To demonstrate the performance of the improved network in 
various instance segmentation tasks, we  compared our proposed 
network with YOLACT and some other mainstream segmentation 
networks, including Mask R-CNN (He et al., 2017), PolarMask (Xie 
et  al., 2020), and FourierNet (Riaz et  al., 2021), on the COCO 
validation set. The results are recorded in Table 1. The evaluation 
metrics based on the Average Precision (AP) was utilized for 
evaluation, including mean AP (mAP), AP50, AP75, APS, APM, and 
APL, where AP represents the area under the precision-recall curve 
for a given class. The equations for calculating AP and mAP are shown 
in Equations (9) and (10):
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where P is the average precision value for the current class, and N  
is the number of sample categories in the dataset. AP50 and AP75 are 
special cases of calculating AP where the IoU thresholds are set to 0.5 
and 0.75, respectively. A prediction is considered correct when the 
IoU is greater than or equal to a certain threshold (e.g., 0.5 or 0.75). 
The last three metrics measure the performance of detecting objects 
of different scales: small, medium, and large. In addition, the frames 
per second (FPS) is also measured to show the efficiency of the 
compared segmentation methods.

Compared with the original YOLACT, our enhanced model results 
in a 2.8 frames reduction in FPS, but a 3.8% improvement in mAP. This 
verifies that our improved model significantly enhances segmentation 

FIGURE 2

BEBLID descriptor extraction workflow (Suárez et al., 2020).
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FIGURE 3

Comparison of segmentation results between our improved algorithm and YOLACT. The raw images were obtained from the COCO Minitrain Dataset, 
and this dataset is licensed under a Creative Commons Attribution 4.0 License (https://cocodataset.org/#termsofuse).
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TABLE 2 Comparison of the mean, STD and RMSE of ATE obtained by the ORB-SLAM2, OVD-SLAM, and the ISFM-SLAM.

Scene ORB-SLAM2 ISFM-SLAM Improving rate (%)

RMSE STD Means RMSE STD Means RMSE STD Means

fr3/walking_static 0.3775 0.1657 0.3392 0.0081 0.0034 0.0072 97.9 97.9 97.9

fr3/walkig_xyz 0.6783 0.3761 0.5645 0.0164 0.0089 0.0137 97.6 97.6 97.6

fr3/walking_rpy 0.7565 0.3360 0.6778 0.0301 0.0161 0.0254 96.0 95.2 96.3

fr3/walking_half 0.4699 0.2458 0.4004 0.0246 0.0131 0.0208 94.8 94.7 94.8

fr3/sitting_static 0.0094 0.0045 0.0082 0.0064 0.0035 0.0061 25.5 22.2 25.6

fr3/sitting _xyz 0.0089 0.0042 0.0078 0.0103 0.0047 0.0091 −15.7 −11.9 −16.7

fr3/sitting _rpy 0.0197 0.0109 0.0163 0.0162 0.0090 0.0556 17.8 17.4 16.6

fr3/sitting _half 0.0385 0.0194 0.0338 0.0175 0.0089 0.0151 54.5 54.1 55.3

precision with only a slight reduction in computational speed compared 
to the original YOLACT. When our proposed method is compared with 
the other approach in Table 1, it can be seen that the efficiency of our 
method is much better than other competitors, and all the AP-related 
results are the second-best ones, only slightly worse than those by the 
Mask R-CNN. It should be noted that since the real-time processing 
capability is crucial for SLAM problems, the Mask R-CNN network may 
be not suitable for these applications. Therefore, it can be concluded that 
the proposed improved instance segmentation network can better meet 
the accuracy and real-time requirements of a visual SLAM system in a 
dynamic environment when compared to most of the other instance 
segmentation methods.

4.3 Performance analysis of the ISFM-SLAM

In this section, the absolute trajectory error (ATE) is utilized to 
evaluate the performance of the proposed SLAM system and the 
compared ones for each run. The ATE is calculated by subtracting the 
ground-truth from the estimated value of the camera pose, as shown 
in Equation 11, so that this metric can provide an intuitive 
representation of the accuracy of the trajectory.
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where N  is the total number of frames, ˆw
iT  denotes the estimated 

pose trajectory, w
iT  is the gound-truth trajectory, and ATEe  is the 

absolute trajectory error. After multiple SLAM experiments, the mean, 

standard deviation (STD), and Root Mean Squared Error (RMSE) of 
the ATEe  is adopted to evaluate the performance of SLAM systems 
from a statistical perspective, where the RMSE is more sensitive to 
occasional errors than the other metrics and thus can better reflect the 
robustness of the system.

Firstly, the proposed ISFM-SLAM is quantitatively compared with 
its baseline, ORB-SLAM2 (Mur-Artal and Tardós, 2017), using four 
high-dynamic sequences (labeled “walking”) and four sets of 
low-dynamic sequences (labeled “sitting”) from the TUM dataset 
(Sturm et al., 2012). Each experiment was performed three times, and 
the mean, STD and RMSE results obtained by the two compared 
SLAM systems are recorded in Table 2.

As illustrated in Table  2, the accuracy and robustness of the 
proposed SLAM system is significantly better than the ORB-SLAM2 in 
high-dynamic scenes, with an average improvement of 96.7% in mean 
ATE, 96.9% in STD, and 97.2% in RMSE. However, the proposed 
algorithm cannot obtain significantly better performance than the 
ORB-SLAM2 in low-dynamic scenes. Specifically, in the fr3/sitting_
xyz scene, inaccurate matching or segmentation occurred in our 
system, which results in a decrease in accuracy. For fr3/sitting_static 
and fr3/sitting_rpy, since ORB-SLAM2 has already applied RANSAC 
to successfully remove some outliers, the advantage of the ISFM-
SLAM is not very obvious. Nevertheless, the performance of the 
ISFM-SLAM is still outstanding in some low-dynamic scenes. For 
example, in the fr3/sitting_half scene including some moving 
instances, our proposed algorithm improves by more than 50% 
compared to ORB-SLAM2.

To further demonstrate the advantage of the ISFM-SLAM over 
ORB-SLAM2, the camera estimation trajectories obtained by the two 
competitors were compared with the real trajectories in four scenes 
including fr3/walking_half, fr3/walking_rpy, fr3/sitting_static, and 
fr3/sitting_xyz. The results are presented in Figure 4. From this figure, 
it is evident that in the high-dynamic environments, the pose 
trajectory estimated by the ISFM-SLAM is much more closely aligned 
with the real trajectory than that by the ORB-SLAM2, while in the 
low-dynamic environments, the two estimated trajectories are both 
close to the real one.

Finally, the proposed ISFM-SLAM is compared with some other 
dynamic SLAM systems, including Dyna-SLAM (Bescos et al., 2018), 
DS-SLAM (Yu et al., 2018), MR-SLAM (Sun et al., 2017), DRSO-
SLAM (Yu et al., 2021), and OVD-SLAM (He et al., 2023) to verify its 
effectiveness. Among them, Dyna-SLAM, DS-SLAM, and 

TABLE 1 Performance comparison of different instance segmentation 
methods on COCO validation set.

Model FPS mAP AP50 AP75 APS APM APL

Mask 

R-CNN
8.6 37.52 58.86 40.26 16.71 39.82 54.34

PolarMask 17.2 30.63 50.81 31.89 12.74 33.73 45.29

FourierNet 26.6 32.97 55.47 33.82 15.52 35.15 46.38

YOLACT 45 29.82 48.53 31.23 9.98 31.35 47.76

Ours 42.2 33.61 56.24 36.26 16.47 36.21 49.82
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FIGURE 4

Comparison of the estimated trajectories by ORB-SLAM2 and ISFM-SLAM with the real trajectory on different sequences.
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OVD-SLAM is designed based on semantic segmentation approaches, 
MR-SLAM is implemented based on optical flow method, and DRSO-
SLAM is based on both the semantic segmentation and optical flow 
schemes. The RMSE results of the ATE obtained by these compared 
SLAM systems are illustrated in Table 3, with the best results on each 
scene highlighted in bold. Note that except for the experimental 
results of the ISFM-SLAM, the results of the other compared 
algorithms are all from the corresponding references, and the “None” 
in Table 3 indicates that the corresponding sample was not tested. As 
shown in Table 3, the proposed is comparable to Dyna-SLAM (Bescos 
et al., 2018) in terms of pose estimation accuracy in high-dynamic 
scenes, but is superior to the other competitors. In low-dynamic 
scenes, the ISFM-SLAM still has a significant advantage over the other 
four algorithms, for it can achieve the best result in almost each scene 
only except fr3/sitting _half. Therefore, it can be summarized that our 
proposed method can effectively address the issue of static assumption 
failure in visual SLAM in dynamic scenes, thereby significantly 
improving its positioning accuracy and robustness.

4.4 Ablation studies

4.4.1 Effectiveness of the modified components 
in the improved instance segmentation network

In the improved instance segmentation network proposed in this 
paper, we made two primary modifications to YOLACT: replacing the 

backbone with Res2Net-50 and using CIoU_Loss as the loss function. 
To thoroughly verify the effectiveness of these improvements, the 
ablation experiments in this subsection not only compare Res2Net-50 
and CIoU_Loss with the original backbone and loss function used in 
YOLACT, but also with several other backbones and loss functions. 
The datasets used are still the COCO Minitrain dataset, and the 
experimental settings are also consistent with those described in 
Section 4.2. The results of the ablation experiments for the backbone 
and loss function are presented in Tables 4, 5, respectively.

First, we  replaced the backbone of the improved instance 
segmentation network with other ResNet-based architectures, 
including ResNet-101 (Bolya et al., 2019), ResNeXt-50 (Xie et al., 
2017), and ResNeSt-50 (Zhang Y. H. et al., 2022; Zhang H. et al., 2022). 
Among these, ResNet-101 is the original backbone used by 
YOLACT. As shown in Table 4, the mAP of both ResNeXt-50 and 
ResNeSt-50 did not surpass that of Res2Net-50, or even ResNet-101. 
This is primarily because, although ResNeXt introduces greater 
parallel cardinality and ResNeSt employs split convolution strategies 
to enhance feature learning, they may not be as effective in multi-scale 
feature representation as Res2Net. This ultimately led to their poorer 
performance in instance segmentation tasks. For ResNet-101, its 
deeper architecture not only results in a slightly lower FPS compared 
to ResNet-50, but also leads to a reduction in mAP relative to 
Res2Net-50 primarily due to a certain degree of overfitting. 
Consequently, the experimental results presented in Table  4 
demonstrate that employing Res2Net-50 as the backbone enables the 

TABLE 3 Comparison of pose estimation accuracy obtained by different SLAM systems in 8 different scenes.

Scene Dyna-SLAM DS-SLAM MR-SLAM DRSO-SLAM OVD-SLAM ISFM-SLAM

fr3/walking_static 0.0060 0.0081 0.0656 0.01112 0.0087 0.0081

fr3/walkig_xyz 0.0150 0.0247 0.0932 0.01576 0.1091 0.0164

fr3/walking_rpy 0.0350 0.4442 0.1333 0.07515 0.0317 0.0301

fr3/walking_half 0.0250 0.0303 0.1252 0.02684 0.3512 0.0246

fr3/sitting_static None 0.0064 None 0.0064 0.0125 0.0064

fr3/sitting _xyz 0.0150 None 0.0482 None 0.0200 0.0103

fr3/sitting _rpy None None None None 0.0929 0.0162

fr3/sitting _half 0.0170 None 0.0470 None 0.0147 0.0175

In each scene, the best RMSE results of the ATE obtained by all compared SLAM systems are bolded.

TABLE 4 Ablation study of different backbones of instance segmentation network.

Backbone FPS mAP AP50 AP75 APS APM APL

ResNeXt-50 34.2 28.20 49.61 30.15 11.32 33.94 42.89

ResNeSt-50 35.3 24.22 44.34 31.18 12.66 27.05 46.39

ResNet-101 42.0 29.91 48.62 31.32 10.06 31.44 47.85

Res2Net-50 (Ours) 42.2 33.61 56.24 36.26 16.47 36.21 49.82

TABLE 5 Ablation study of different loss functions of instance segmentation network.

Loss function FPS mAP AP50 AP75 APS APM APL

Dice loss 33.10 28.90 48.01 31.52 9.46 30.87 47.14

EIOU loss 39.15 29.83 48.70 31.06 10.01 31.29 47.84

Smooth L1 loss 45.50 28.65 48.10 31.62 10.49 30.77 47.14

CIoU_Loss (Ours) 42.20 33.61 56.24 36.26 16.47 36.21 49.82
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improved instance segmentation network to achieve superior 
performance in terms of both segmentation accuracy and 
computational efficiency.

Second, we replaced the loss function of the improved instance 
segmentation network with Dice Loss (Li et al., 2019), EIOU Loss 
(Zhang Y. H. et al., 2022; Zhang H. et al., 2022), and Smooth L1 Loss 
(Bolya et al., 2019), where the last one is the loss function originally 
used in YOLACT. According to Table 5, the models employing Dice 
Loss and EIOU Loss show negligible improvements in segmentation 
accuracy compared to the model using Smooth L1 Loss. In contrast, 
the improved instance segmentation network using CIoU_Loss 
demonstrates a significant enhancement in AP-related metrics, albeit 
with a slight reduction in computational efficiency. The primary 
reason for the improvement is that CIoU_Loss considers not only the 
IoU overlap area but also the distance between center points and the 
aspect ratio. This enables CIoU_Loss to better handle challenging 
localization scenarios, resulting in substantially improved regression 
performance for the predicted bounding boxes compared to 
Smooth L1.

4.4.2 Effectiveness of the PnP-based motion 
consistency detection method

To verify the effectiveness of the proposed PnP-based motion 
consistency detection method, in this section, we  employed this 
method combined with the proposed instance segmentation network 
on one static sample and two samples containing people in motion. 
The corresponding results of the feature point extraction of these 

samples are illustrated in Figures 5B–D, respectively, while Figure 5A 
is the feature point extraction result for a static sample when only the 
instance segmentation network is employed.

According to Figure 5A, it is evident that the feature points on the 
person in a static state are all removed and do not participate in the pose 
calculation. When the motion consistency detection algorithm and 
instance segmentation network are integrated and implemented, 
Figure 5B demonstrates that feature points on a stationary person can 
be successfully recovered. When the person in the sample is in a state of 
motion, as shown in Figures 5C,D, the feature points on the person can 
be  removed (the blues points in Figures  5C,D). Therefore, it can 
be summarized that the motion consistency detection algorithm based 
on PnP can effectively remove the dynamic ORB feature points, and 
thus improve the accuracy of the camera pose.

4.4.3 Effectiveness of the BEBLID feature 
matching

To verify the effect of the BEBLID descriptor on improving the 
feature matching accuracy of the proposed system, we compared the 
feature matching rate and computation time of the adopted BEBLID 
descriptor and the BRIEF descriptor in this section. These experiments 
were conducted on the adjacent image frames in two sets of 
low-dynamic sequences including fr3_stingting_static and fr3_
stingting_rpy, as well as in two sets of high-dynamic sequences 
including fr3-walking_malf and fr3-walking_xyz, of the TUM dataset. 
A total of 500 feature points was extracted for each image frame, and 
then single response matrixes are employed to determine the number 

FIGURE 5

The feature point extraction result of the PnP-based motion consistency detection method combined with the improved instance segmentation 
network. (A) Result only by the improved YOLACT for a static sample. (B) Result by the motion consistency detection combined with improved 
YOLACT for a static sample. (C,D) Results by the motion consistency detection combined with improved YOLACT for samples containing people in 
motion. The raw images were obtained from the TUM Dataset, and this dataset is licensed under a Creative Commons 4.0 Attribution License (https://
cvg.cit.tum.de/data/datasets/rgbd-dataset).
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of matching points based on the Hamming distance. The RANSAC 
threshold was set to 3. The feature matching rate is defined as the 
percentage of the number of matching points.

Table  6 presents a comparison of the matching rates and the 
computational time by the matching algorithms based on the BEBLID 
and BRIEF descriptors across the selected four sequences. The average 
matching rates of the algorithm based on BEBLID descriptors are 
observed to be 6.6 and 6.9% higher than those of the algorithm based 
on BRIEF descriptors, respectively. Furthermore, BEBLID employs 
parallel computing to calculate each feature point descriptor, resulting 
in an average increase in calculation efficiency of 14.1 and 15.1%, 
respectively. Moreover, the specific feature matching results 
corresponding to each comparison in Table 6 are illustrated in Figure 6 
to further demonstrate the effectiveness of the adopted descriptor. 
From Figure  6, it can be  seen that on the same image frame, the 

matching algorithm based on the BEBLID descriptor has more 
correctly matched feature points than that based on the BRIEF 
descriptor, especially on some instances in the corners of the image.

5 Real-world experiment and 
discussions

5.1 Experimental setup

To evaluate the effectiveness of ISFM-SLAM in solving real-
world tasks and its advantages over ORB-SLAM2, we deployed 
both the systems on a three-wheeled mobile robot for real-world 
experiments. As depicted in Figure  7, the mobile robot is 
equipped with an Astrapro RGB-D camera, capturing images at 

FIGURE 6

Comparison of specific matching results by the matching algorithms based on the BRIEF and BEBLID descriptors. The raw images were obtained from 
the TUM Dataset, and this dataset is licensed under a Creative Commons 4.0 Attribution License (https://cvg.cit.tum.de/data/datasets/rgbd-dataset).

TABLE 6 Comparison of matching rates and computational time by the matching algorithms based on the BRIEF and BEBILD descriptors on four 
sequences.

Dataset descriptor Matching number Point number Matching rate Time /s

Fr3/sitting_static
BRIEF 389 348 89.4% 0.0373

BEBLID 386 360 93.2% 0.0328

Fr3/sitting_rpy
BRIEF 345 254 73.6% 0.0341

BEBLID 342 284 83.1% 0.0286

Fr3/walking_half
BRIEF 348 235 67.5% 0.0346

BEBLID 337 267 79.2% 0.0291

Fr3/walking_xyz
BRIEF 338 256 75.7% 0.0332

BEBLID 338 263 77.8% 0.0284
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a frame rate of 30 FPS with a resolution of 640 × 480. ISFM-
SLAM and ORB-SLAM2 were implemented on the NVIDIA 
Jetson Orin Nano Developer Kit of the robot, and both SLAM 
systems were initiated through the Robot Operating System 
(ROS). The parameters of the SGD optimizer for the instance 
segmentation network were adjusted for the experiment, with an 
initial momentum set to 0.9, a learning rate of 0.0001, and a 
weight decay coefficient of 0.00015.

5.2 Results and discussions

To better emphasize the impact of our proposed 
improvements, we  conducted an experiment where the robot 
remained stationary to capture moving people, testing the 
sensitivity of ISFM-SLAM and ORB-SLAM2 to dynamic objects, 
rather than merely scanning a static laboratory scene. As we did 

not have the necessary equipment to record ground-truth 
trajectories, the analysis focuses on how dynamic objects 
influence our SLAM system compared to its competitor. The 
experimental results are presented in Figure 8.

Figures 8A,B show that after running its tracking thread in a 
real laboratory scene, ORB-SLAM2 detected numerous feature 
points. However, ORB-SLAM2 fails to effectively exclude the 
influence of dynamic objects, such as the moving person in the 
images. In contrast, Figures 8C,D display the final retained feature 
points of ISFM-SLAM, clearly showing the absence of feature points 
on the moving person. This demonstrates that the PnP-based 
motion consistency detection can accurately distinguish between 
the motion and stationary states of objects, effectively removing 
feature points associated with moving objects. Simultaneously, our 
improved instance segmentation network accurately segments the 
moving person, preventing ISFM-SLAM from mistakenly removing 
feature points outside the segmentation boundary. Moreover, the 
retained feature points can be efficiently matched using the BEBLID 
feature matching approach, enabling ISFM-SLAM to achieve 
superior feature matching results.

6 Conclusion

This paper proposed a visual SLAM system named ISFM-
SLAM for dynamic scenes based on the ORB-SLAM2 framework. 
To enhance the multi-sensory capabilities and prediction accuracy 
of the instance segmentation network, an improved YOLACT 
model was introduced into the ISFM-SLAM system, with the 
Res2Net model as its backbone and the CIoU_Loss as its loss 
function. Then, a PnP-based motion consistency detection 
approach is proposed to combined with the improved instance 
segmentation network, enabling the ISFM-SLAM system to 
effectively filter dynamic feature points. Moreover, the original 

FIGURE 7

The three-wheeled mobile robot for the real-world experiment.

FIGURE 8

Experimental results in real environment. (A,B) Final preserved feature points by ORB-SLAM2; (C,D) Final preserved feature points by ISFM-SLAM.
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BRIEF descriptor in the ORB-SLAM2 was replaced by the BEBLID 
descriptor to achieve efficient matching of ORB feature points. The 
simulation results demonstrate the effectiveness of the 
aforementioned improvements and the advantages of ISFM-SLAM 
over ORB-SLAM2 and other dynamic SLAM systems. Furthermore, 
real-world experiments conducted on mobile robots confirm that 
ISFM-SLAM can effectively mitigate the impact of dynamic objects 
during mapping, proving its feasibility in practical applications. In 
the future, we will lightweight the instance segmentation network 
proposed in this paper to improve its real-time performance, and 
modify the BEBLID descriptor so that the SLAM system can 
be implemented in more complex dynamic scenes.
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