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The user perception of mobile game is crucial for improving user experience 
and thus enhancing game profitability. The sparse data captured in the game can 
lead to sporadic performance of the model. This paper proposes a new method, 
the balanced graph factorization machine (BGFM), based on existing algorithms, 
considering the data imbalance and important high-dimensional features. The 
data categories are first balanced by Borderline-SMOTE oversampling, and then 
features are represented naturally in a graph-structured way. The highlight is that 
the BGFM contains interaction mechanisms for aggregating beneficial features. The 
results are represented as edges in the graph. Next, BGFM combines factorization 
machine (FM) and graph neural network strategies to concatenate any sequential 
feature interactions of features in the graph with an attention mechanism that 
assigns inter-feature weights. Experiments were conducted on the collected 
game perception dataset. The performance of proposed BGFM was compared 
with eight state-of-the-art models, significantly surpassing all of them by AUC, 
precision, recall, and F-measure indices.
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1 Introduction

Mobile games gained a large share of global business, especially during the COVID-
induced dead season for other entertainment businesses and activities. Game-related services, 
from run to finish, interact with each other in multiple directions. The complex functionality 
of the game user during play requires multiple services to reach together, which involve 
different functions. The application runs by invoking the most appropriate ones from many 
alternative services to be combined. In a real Internet environment, multiple service providers 
usually offer services with the required functionality. These services are distributed differently 
and hosted on servers in different user regions. These many services are combined through 
network selection and application invocation to realize the complex functionality the user 
requires. Therefore, how the customer can judge the most suitable quality service is the key to 
improving the gaming user’s perceived experience.

When investigating how service quality affects user experience, it is necessary to consider 
the influence of user and environmental factors such as the user’s level of play, game mechanics, 
game team, and individual performance. The main idea of existing studies on game user 
perception is to clarify multiple dimensions of interrelated game perceptions, then establish 
an objective and easy-to-measure correlation mapping between service quality indices and 
experience quality, fully consider the influence of other dimensions on the correlation, and 
finally assess or predict game perceptions using the objective features, to achieve the purpose 
of optimizing game perceptions. However, these studies need to pay more attention to the 
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importance of features other than service quality features on the 
outcome of game perception.

This study aims to mitigate some deficiencies of existing 
algorithms by an alternative approach. To this end, a new method 
called Balanced Graph Factorization Machine (BGFM), which 
considers the data imbalance and the importance of high-dimensional 
features, is elaborated and tested. The data categories are first balanced 
by Borderline-SMOTE oversampling, and then features are 
represented naturally in a graph-structured way. The highlight is that 
the BGFM contains interaction mechanisms for aggregating beneficial 
features. The results are represented as edges in the graph. Next, 
BGFM combines factorization machine (FM) and graph neural 
network strategies to concatenate any sequential feature interactions 
of features in the graph with an attention mechanism that assigns 
inter-feature weights. The main highlights in this paper are listed 
as follows:

The strengths and weaknesses of FM and GNN in modeling 
feature interactions are analyzed. To solve their problems and take 
advantage of their strengths, a new model for feature interaction 
modeling, BGFM, is proposed, which bridges the gap between GNN 
and FM. The features in the graph are the nodes, and the two-by-two 
interactions between features are the edges connecting the nodes, 
making it possible to solve the FM problem by taking advantage of the 
strengths of GNN.

The similarity between the computed feature interactions of the 
attention mechanism is introduced to ensure the robustness of 
LTFM. This enhances the positive effects of effective features while 
reducing the negative effects due to biased features.

We conducted several experiments on the QoE dataset. The 
results show that the proposed BGFM performs well and outperforms 
the existing methods.

2 Related work

Previous studies of game user perception have focused only on the 
correspondence between QoS parameters and game QoE (Wattimena 
et al., 2006; Koo et al., 2007; Denieffe et al., 2007). This was initially 
done using linear models (e.g., logistic regression and generalized 
regression) to generate user game perception scores 
(Pornpongtechavanich et  al., 2022). User-perceived assessment 
models based on machine learning techniques, such as QoE modeling 
using SVM to construct prediction models (Suznjevic et al., 2019), 
have become a research hotspot as they effectively predict user 
perception. These models ignore useful but unseen feature interactions 
in the data, as evidenced by the effectiveness of hidden variable 
models (Sun et al., 2013). Factor decomposition machines (Rendle, 
2010) provide a general-purpose predictor to efficiently model higher-
order interactions between interpreted features within linear 
time complexity.

Yang et  al. (2021) transformed location information into 
neighborhood information and added it into a factor 
decomposition machine to propose the LBFM model. More 
recently, Wang et  al. (2022) proposed an LDFM model using 
information entropy and location projection of users and services. 
While the above algorithms extend the dataset somewhat, different 
cross-cutting features are not distinguished, making the model 
performance fluctuate. He and Chua (2017) proposed neural 

factorization machines (NFM) for sparse predictive analytics. Xiao 
and Ye (2017) thus introduced the neural network strategy on top 
of the previous ones and proposed the AFM model, which 
distinguishes between different second-order feature combinations 
through the attention mechanism. Hong et al. (2019) proposed 
interaction-aware factorization machines for recommender 
systems, considering that perceived data sparsity can lead to 
fluctuations in model performance. To the best of the authors’ 
knowledge, the only data-driven study of game user perception 
that considered the effects of multiple factors has been reported in 
our previous paper (Xie and Jia, 2022), which introduced the 
location-time-aware factorization machine based on fuzzy set 
theory for game perception (LTFM).

Despite some progress in the relevant research, two major aspects 
of the problem need further clarification. On the one hand, poor game 
user perceptions are a minority occurrence, similar to positive samples 
required for trade fraud risk prediction in banks. This inevitably runs 
into the problem of data imbalance. The collected game user 
perception data are categorized into three evaluation categories: 
excellent, good, and poor, with an approximate ratio of 5:1:1. In 
LTFM, the data are divided by tiers to reduce the impact of data 
imbalance on the overall performance of the algorithmic model. 
Although the model outperformed others, there is much room for its 
improvement in several aspects.

On the other hand, a factorial decomposition machine is a model 
for modeling interaction features. The core of FM is to learn the 
uniquely hot-coded features corresponding to the hidden vectors, and 
then the interaction between features is modeled by the inner product 
of vectors (Rendle, 2010). FM has been used in Cheng et al. (2016) 
and Guo et al. (2017), exhibiting at least two weak points: (i) it failed 
to capture higher-order feature interactions, and (ii) it assigned the 
same weights to all feature interactions, overfitting the model by 
useless interactions (Zhang et al., 2016; Su et al., 2021). Attempts have 
been made to transform FM to learn higher-order feature interactions 
by introducing deep neural networks (DNNs). Neural Factorization 
Machine (NFM) combines DNNs and dual interaction layers to 
obtain information about higher-order feature interactions (He and 
Chua, 2017). Wide & Deep learning model, and DeepFM model 
combine shallow and deep structures to achieve multi-order feature 
interactions (Cheng et al., 2016; Guo et al., 2017). However, implicit 
learning models introduced into DNNs are usually weakly 
interpretable, while Graph Neural Networks (GNNs) provide a 
lucrative alternative for grasping higher-order interactions between 
features (Zhang C. et  al., 2021; Hamilton et  al., 2017). The core 
technical point of GNN is to achieve a higher learning rate by 
accumulating layer by layer and aggregating multidimensional 
relevant features. As a result, higher-order interactions between 
features can be explicitly encoded into the embedding, which inspired 
this study.

All in all, there is a great need to evaluate the perceived experience 
of game users. There are two main advantages of the proposed BGFM 
over previous studies:

Treating features as nodes and two-by-two interactions between 
features as edges mitigates the problem of comprehensively combining 
GNN and FM, making it possible to solve FM problems via GNN.

The attention mechanism assigns different weights to different 
features interactively to enhance the utilization of effective features 
and reduce the probability of deviant features.
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3 Proposed method

To address the above algorithmic pain points in game perception 
research, we  propose the Balanced Graph Factorization Machine 
(BGFM) model. To this end, the overall framework of BGFM is 
decomposed, and the overall working principle of BGFM is 
summarized. The BGFM firstly chooses Borderline-SMOTE to solve 
the problem of unbalanced distribution of training data, which leads 
to fluctuation of model performance. Then, we focus on how to model 
higher-order beneficial feature interactions. For this purpose, 
we design a special mechanism in BGFM, which can be split into two 
main parts: the selection of beneficial interaction features and 
interaction aggregation. The implementation principles of these two 
parts are described in detail. Finally, the model-based predictions and 
the model optimization are discussed.

3.1 BGFM

Figure 1 shows the network structure of BGFM. The graph flexibly 
represents higher-order associations between features. Edges in 
BGFM are useful feature interactions obtained by model aggregation. 
After resolving the data imbalance, beneficial feature interactions are 
selected. After learning by the attention mechanism, different feature 
interactions are given different weights and jointly output for 
final prediction.

The BGFM will update the network step by step. The input values 
are processed through feature embedding as the initial data for BGFM, 

as ( )1
iie e= , where k

ie  is the latest feature embedding for the k -th layer. 

The model initially has no pre-input edge information, so edges are 
first obtained by the interaction selection component. The resulting 
edge information is then aggregated to update the feature embeddings 
in the remaining regions.

Existing methods for unbalanced data learning can be divided 
into three categories. BGFM uses a data-level solution, while others 
need more flexibility and robustness. BGFM greatly simplifies the 
workload of model training, improves efficiency, and gets various 
classifiers. Borderline-SMOTE is an algorithm extended for SMOTE. It 
considers the effect of noisy samples, and the algorithm uses only a 
few classes of samples with the attribute Danger on the border to 
obtain new samples, yielding a balanced distribution of the training 
sample set. After solving the problem of perceived data imbalance, two 
main components exist in each layer of BGFM. Both of them are 
described in detail next.

3.2 Interaction feature selection

We devised a mechanism to obtain favorable pairwise feature 
interactions in the paper. The mechanism is the inference of 
connections between perceptual features through the graph structure, 
which models higher-order connections between features. However, 
the edges connecting two nodes ( ),i jv v E∈  exist deterministically, 
greatly simplifying the selection process compared to the direct 
introduction of gradient descent-based optimization techniques.

This limitation is resolved by replacing the set of edges E by 
heightened neighbors P, which ijP  is explained as the likelihoods of 
( ),i jv v E∈ . It shows that the interaction between the features is very 
important. A different graph structure ( )kP  needs to be learnt at each 

FIGURE 1

Network structure of BGFM.
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k -th layer and comparing it with the previously derived graph. These 
treatments provide higher performance. Specifically, each layer of the 
model’s graph structure is fixed, culminating in fixed-form outputs. 
However, our model is characterized by adaptive learning and can 
model associations of beneficial features.

This section aims to design a metric function to obtain beneficial 
feature interactions. The ( ),ij i jP v v  metric function calculate ( ),s i jf e e
s the weights of the edges. NMF-based functions are used to evaluate 
the edge weights (He and Chua, 2017). The product of elements of 
these feature vectors is converted into a scalar using Multilayer 
Perception (MLP) with one hidden layer, which can be calculated as 
Equation 1.

 
( ) ( )( )( )2 1 1 2, s s s s

s i j i jf e e W W e e b bσ δ= + +
 

(1)

where 1
sW , 2

sW , 1
sb  and 2

sb  are the inputs to the multilayer player. 
ReLU and Sigmoid activation functions are represented by ( )δ ⋅  and 
( )σ ⋅ , respectively. It is worth noting the order of the inputs to sf  is 

invariant, as ( ) ( ), ,s i j s j if e e f e e= . The same pair of nodes have the 
same edge weights at this point. This successive graph structure 
modeling allows the gradient to backpropagate. Since there is no truth 
graph structure, the gradient here is defined by the deviation between 
the model’s estimated and actual values. Feature interactions are 
treated as one, and the weights are estimated using MLP. Euclidean 
distance or other distance metrics can also be  chosen (Zhang 
W. et al., 2021).

3.3 Interaction aggregation

After selecting the beneficial feature interactions, the feature 
representation is updated by performing an interaction 
aggregation operation. For the target feature node iv , the attention 
coefficient of each feature interaction is measured while 
aggregating its beneficial interactions with its neighbors. The 
learnable projection a and nonlinear activation function 
LeakyReLU  are applied to measure the attention coefficients as 
Equation 2.

 
( )( )T

ij i jc LeakyReLu a e e= 
 

(2)

This implies the significance of interactions between features iv  
and jv  In this paper, we  only compute ijc  of the node ij N∈ . iN  
represents the neighbors of the node iv , which is the sum for features 
that are useful to interact with iv . In the paper, the following function 
Softmax is used to normalize them in all choices of j , as shown in 
Equation 3.

 
( )

1

ij

k

Y
ij ij K Y

k

ea Softmax Y
e

=

= =
∑  

(3)

where iY  is the output value of the i-th node, the output values of 
the multi-classification range vary from 0 to 1; k  is the number of 
nodes that the network finally outputs, that is, the number of 
categories that can be classified. This makes it easy to compare the 

coefficients obtained between different feature nodes. After obtaining 
the normalized attention coefficients, the linear and nonlinear 
combinations of links between features are computed as subsequent 
new feature inputs as Equation 4.

 
( )1

i

i ij ij a i j
j N

e a b W e eσ
∈

 
 =
 
 
∑ 

 
(4)

where ija  measures the attentional coefficient of feature i and 
feature j  interactions, and ijb  indicates the probability that such 
feature association is helpful. ija  The attention coefficient is computed 
via the soft-attention mechanism and ijb  is computed by the hard-
attention mechanism. The information about the selected feature 
interactions is controlled by multiplying them and making the input 
values of the feature interaction selection mechanism learnable by 
gradient backpropagation.

To capture the diverse polysemy of feature interactions in different 
semantic subspaces and to stabilize the learning process, this paper 
extends our mechanism by applying multi-head attention (Li et al., 
2017; Marcheggiani and Titov, 2017; Wang et al., 2019). Specifically, 
H individual attention mechanisms perform the update of Equation 4 
and then concatenate these features to produce an output feature 
representation as Equation 5.

 
( )2

i

h h
i ij ij a i j

H j N
e a b W e eσ

∈

 
 =
 
 
∑ 

 
(5)

where ||  denotes the cascade, ija  is the normalized value obtained 
through the h-th attention machine with h

aW  is the linear transformation 
matrix of the former. Optionally, the feature representation can 
be updated using average pooling, as shown in Equation 6.

 
( )3

1

1

i

H
h

i ij ij a i j
h j N

e a b W e e
H

σ
= ∈

 
 =
 
 

∑ ∑ 

 
(6)

3.4 Forecasting and improvement

The results for k-th layer is ( ) ( ) ( ){ }1 2, , ,k k k
ne e e… , which is a collection 

of n feature representation vectors. Because the representations acquired 
in multiple layers model different orders of interactions, they play different 
roles in the ultimate result. Thus, they are connected in series to get the 
definitive expression for every feature (Beck et al., 2018) as Equation 7.

 
1 n

i i ie e e=    (7)

Finally, all the feature vectors are pooled equally to get the result 
at the graph level, and the final prediction is made using the 
projection vector p . The obtained results are computed using 
Equations 8, 9:

 1

1 n
i

i
e e

n =
= ∑

 
(8)
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 ˆ Ty p e=  (9)

4 Results and discussion

4.1 Research data

The research focuses on exploring the effects of multiple 
influencing factors (including user, system, and contextual ones) 
on the perceived QoE of game users. A general taxonomy of the 
various factors in the literature is drawn upon, and further 
references are made to the taxonomy of existing game-related 
studies in terms of game QoE. Finally, an empirical test method is 
derived (Pornpongtechavanich et  al., 2022; Jiang et  al., 2019). 
Specifically, this gaming dataset considers the effects of three 
different system factors (latency, packet loss rate, jitter, and 
additional network parameters), user skills (user-personal factors 
in terms of gaming experience), and context (in terms of action 
categories and social context). The game entity under study is 
Glory of Kings, a game in which the interaction is mainly  
based on the UDP protocol, which requires a high level of real-
time and user engagement. Due to the lack of a dataset of  
user game perception, the testing process in the study’s 
laboratory environment was determined after reviewing the 
relevant literature.

In joint efforts of team members and participants, data from 789 
games were collected, with each piece of data representing three 
dimensions of user, service, and environmental data. Each dataset has 
21 features, consisting of 4 pieces of user data (player ID, age, gender, 
and skill level), 16 pieces of in-game and post-game service data, and 
a user-perceived score for the last one.

4.2 Comparison algorithms

In this paper, to demonstrate the effectiveness of the proposed 
algorithm, we compared it with algorithms from four categories: (A) 
linear methods, (B) FM-based methods, (C) DNN-based methods, 
and (D) aggregation-based methods. The specific eight comparison 
algorithms include LR (A), Standard FM (Rendle, 2010) (B), NFM (He 
and Chua, 2017) (C), AFM (Xiao and Ye, 2017) (B), AutoInt (Song 
et al., 2020) (D), Fi-GNN (Cui et al., 2019) (D), InterHat (Li et al., 
2020) (D).

LR is a linear regression, modelled using only a single feature; 
Standard FM is able to model second-order interaction links of 
features; NFM designed a dual interaction layer and DNN to handle 
nonlinear features and model higher order feature interactions; AFM 
introduces the attention mechanism to give weight to the interaction 
of different features; AutoInt is to improve the efficiency of the model 
in learning higher-order feature interactions through self-attentive 
networks; Fi-GNN uses gated graph neural networks to model higher-
order feature connections as fully connected graphs; InterHat uses the 
attention machine to select features, and raw feature multiplication 
produces higher-order feature interactions; LTFM is an extended 
FM-based model that considers the effects of temporal and spatial 
information projections and feature interactions on the final game 
perception results.

4.3 Evaluation of performance indices

The following five assessment metrics are used in the experiments 
of game user perception evaluation: AUC (Gospodinova et al., 2023; 
Li et al., 2022), Precision (Annadurai et al., 2024; Chan et al., 2024), 
Recall (Wang et al., 2024; Zheng et al., 2024; Hong et al., 2024), and 
F-measure (Li et al., 2024a; Li et al., 2021; Li et al., 2023a; Guo et al., 
2024a; Guo et al., 2024b; Ma and Tong, 2024; Sultan et al., 2024; Li 
et al., 2024b; Li et al., 2024c; Li et al., 2023b; Li et al., 2023c).

The AUC curve is taken as the area under the ROC curve. The 
larger the value, the better the model performance. Precision is used 
to calculate the proportion of correct predictions among all samples 
with positive predictions. Recall is the ratio of positive class samples 
correctly judged by the classifier to the total number of positive class 
samples. Usually, accuracy is inversely proportional to recall. A 
composite metric, F-measure, is introduced to balance the effects of 
precision and recall and to evaluate a classifier more fully. When both 
precision and recall are high, the value of F-measure is high.

4.4 Results and analysis

The performance of the BGFM model after balancing the data was 
first analyzed experimentally, as shown in Table 1. It is concluded that 
there is an improvement in the BGFM model performance compared 
to the standard FM.

It can be deduced from Table 1 that FM performs well for sparse 
feature data. However, since poor game perception is a minority class 
occurrence, FM is impairing the correctness of the final judgment by 
judging the minority class as the majority class. Due to the data 
volume limitation, we  consider preprocessing the data and 
de-rationalizing the generation of new data from the existing data to 
achieve the result that the data classes to be judged are basically the 
same. The balanced data is then imported into our model. The results 
show that using Borderline-SMOTE oversampling to balance the data 
category distribution is beneficial for the final perceptual evaluation.

The performance comparison of these methods on the game-aware 
dataset is shown in Table 2, from which the following observations are 
obtained: the BGFM proposed in this chapter achieves the best 
performance on the game perception dataset. The enhanced efficiency 
of the BGFM compared to the four classes (A, B, C, and D) of methods 
is particularly significant. BGFM employs a mechanism for choosing and 
aggregating beneficial feature interactions, and its performance is 
superior and easy to manage. Taking all aspects together, BGFM is 
superior to existing algorithms. In the following, the four types of 
algorithms, A, B, C, and D, will be specifically analyzed.

Aggregation-based methods outperform the other three classes of 
models, demonstrating the advantages of selection strategies in getting 
higher-order relationships. However, the LTFM model performance 

TABLE 1 Quantitative performance comparison of standard FM and 
balanced model.

Model AUC Precision Recall F-measure

Standard FM 0.7549 0.7189 0.7215 0.7008

BGFM 

(balanced data)
0.7760 0.7575 0.7402 0.7334

The bold values are meant to be the best performing performance indicators in the table.
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still performs well, suggesting that the importance of projected 
information that considers both temporal and spatial information 
interacting with and capturing features for the final game perception 
results is favorable for the final perceptual evaluation. However, this 
model only expands the data dimensions and captures hidden feature 
interactions based on the properties of FM for sparse data, which fails 
to address the performance fluctuations caused by the imbalance of 
data categories and captures higher-order beneficial feature 
interactions. The BGFM solves these problems well.

Compared to the powerful aggregation-based baseline AutoInt and 
Fi-GNN, BGFM still offers a significant performance improvement and 
can be  considered important for game-aware prediction tasks. This 
enhancement is due to the combination of GNN with FM. Treating 
features as nodes, two-by-two interactions between features as edges, and 
each input as a graph, GNN’s aggregation strategy solves two of FM’s 
problems: suboptimal feature interactions that lead to model overfitting 
and the difficulty of modeling higher-order feature interactions. GNN 
introduces the concept of feature interaction and a beneficial interaction 
selection method that greatly improves the model’s performance.

The attention mechanism assigns different weights to interactions. 
AFM outperforms FM, demonstrating the necessity of considering 
feature interaction weights. Although NFM uses DNNs to model 
higher-order interactions, they do not ensure an improvement over 
the base model and the improved model with the addition of an 
attention mechanism, possibly because of their implicit feature 
interaction learning approach. AutoInt performs better than AFM 
because the multi-head attention mechanism in the model takes into 
account the richness of feature interactions in multiple spaces.

5 Conclusion

This study bridges FM and GNN approaches, yielding a new 
BGFM model. It exploits the respective strengths of FM and GNN, 
attempting to compensate for their individual deficiencies. Beneficial 
feature interactions are selected at each layer of BGFM and considered 
edges in the graph. The interactions are then encoded as feature 
representations using the neighborhood interaction aggregation 
operation. The model adds higher-order feature learning at each layer, 
and the layer depth determines the median result. This leads to the 
conclusion that our model can learn the highest-order feature 
interactions. The BGFM learns higher-order interactions between 
features and provides high interpretability of model results. The 

experimental results prove that the proposed BGFM outperforms 
eight state-of-the-art models to a large extent.
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TABLE 2 Quantitative comparison of different algorithms.

Model AUC Precision Recall F-measure

LR 0.7288 0.7960 0.7975 0.7802

Standard FM 0.7549 0.7189 0.7215 0.7008

NFM 0.7721 0.7789 0.7595 0.7778

AFM 0.7862 0.8052 0.7848 0.7972

AutoInt 0.7908 0.8158 0.7975 0.8012

Fi-GNN 0.8014 0.8207 0.7975 0.8010

InterHat 0.8017 0.8259 0.8101 0.8069

LTFM 0.8093 0.8328 0.8228 0.8178

BGFM 0.8305 0.8760 0.8360 0.8453

The bold values are meant to be the best performing performance indicators in the table.
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