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Introduction: Slip detection is crucial for achieving stable grasping and

subsequent operational tasks. A grasp action is a continuous process that

requires information from multiple sources. The success of a specific grasping

maneuver is contingent upon the confluence of two factors: the spatial accuracy

of the contact and the stability of the continuous process.

Methods: In this paper, for the task of perceiving grasping results using

visual-haptic information, we propose a new method for slip detection, which

synergizes visual and haptic information from spatial-temporal dual dimensions.

Specifically, the method takes as input a sequence of visual images from a

first-person perspective and a sequence of haptic images from a gripper. Then,

it extracts time-dependent features of the whole process and spatial features

matching the importance of di�erent parts with di�erent attention mechanisms.

Inspired by neurological studies, during the information fusion process, we

adjusted temporal and spatial information from vision and haptic through a

combination of two-step fusion and gate units.

Results and discussion: To validate the e�ectiveness of method, we compared

it with traditional CNN net and models with attention. It is anticipated that our

method achieves a classification accuracy of 93.59%, which is higher than that of

previousworks. Attention visualization is further presented to support the validity.

KEYWORDS

multimodal perception, multimodal deep learning, attention mechanism, haptic, robot

perception

1 Introduction

With the growing need for industrial and service robots, which need to perform a range

of grasping and complex manipulation tasks, the field of robot manipulation has attracted

global attention from researchers (Liu et al., 2023a; Fang et al., 2023). The enhancement of

a robot’s overall operational capability relies on the attainment of stable and dependable

grasping capabilities. Consequently, the assessment of grasping outcomes represents a

pivotal domain for investigation.

The extensive study of existing computer vision achievements has facilitated the

thorough examination of vision-based environmental perception technology. Researchers

have achieved a significant number of exemplary works in the areas of slip detection

(Mahler et al., 2019; Sundermeyer et al., 2021), material recognition (Liu et al., 2023a;

Holm et al., 2020), and so on (Piacenza et al., 2022). In scenes driven by visual perception,

computer vision can only acquire a limited amount of information from a single

viewpoint. This information mainly includes a complete scene description, which is often

affected by exposure and focus problems caused by changes in light and materials. With

these limitations, vision-only methods still perform insufficiently in unstructured scenes.

In situations where lighting conditions are far from ideal (Yi et al., 2022), unexpected

obstructions happen (Phelan et al., 2017), or complex interactions with the target are

needed (Wang et al., 2021), indirect measurements like vision are likely to be inadequate,

which often lead to task failures.
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In contrast, haptic sensing is receiving increasing research

attention due to its direct access to interacting information.

Vision could provide a comprehensive overview, which acquires

generalized sensing, while haptic offers detailed records of contact,

haptic acquires detailed and localized information through direct

contact, combining the benefits of vision and haptic for detection

is a more competitive option. The integration of visual and haptic

modalities has been demonstrated to enhance the perception of

robots, with related methods exhibiting superior performance in

material classification (Xiong et al., 2023b; Yang et al., 2022; Xiong

et al., 2023a), object recognition (Xiong et al., 2023c; Tatiya and

Sinapov, 2019) and environment exploration (Liao et al., 2024; Luo

et al., 2017).

One advantage of utilizing multiple modalities is that the

remaining modalities can compensate for and provide information

from disparate perspectives, even when some of the other

modalities appear to be occluded or noisy. In modal pairing and

perceptual tasks, when disparate inputs are encountered, humans

employ “causal inference” to ascertain whether the two sensory

signals originate from a single source (Ernst and Banks, 2002;

Landy et al., 2011). This enables them to select the optimal means

of integrating the acquired information. This crucial mechanism

in humans has not yet been extensively explored with regard to its

potential applications in the domain of visual and haptic fusion.

Concurrently, the data within the unimodal state is frequently

heterogeneous. The most common approach is to extract features

according to temporal and spatial dimensions, respectively. With

regard to space, objects exhibit diverse shapes and materials, which

can give rise to notable variations in friction when grasping them in

different positions. In the context of time, despite a grasping action

being relatively brief, it is a continuous process. The continuity

and stability of this process also exert a significant influence on the

outcome of the grasping action.

In this paper, we focus on how to learn effective Visual-

Haptic features in the task of slip detection. In our approach,

we utilize data enhancement and preprocessing techniques to

process sequential data comprising visual and haptic images. Next,

we extracted temporal and spatial features using self-attention

(Vaswani et al., 2017) and Squeeze-and-Excitation attention (Hu

et al., 2018), respectively. In the fusion stage, two-step fusion is

employed to achieve the integration of visual and haptic features,

as well as the fusion of temporal and spatial features, respectively.

In each step, gate units are employed to regulate the input

signal. After that, fusion feature is sent to a MLP to get the

prediction. We validate the performance of the model and compare

it with several state-of-the-art (SOTA) methods on slip datasets

(Li et al., 2018). The experiment results demonstrate that our

method exhibits superior performance compared to state-of-the-

art (SOTA) methods. The visualization of the attention mechanism

illustrates that our method is capable of effectively extracting both

temporal and spatial feature from visual and tactile information.

The main contributions of the work in this paper can be

described as follows:

1. We propose a feature extraction method that combines two

attention mechanisms to extract features in spatial and temporal

dimensions, improving the model’s ability to perceive spatial-

temporal feature;

2. Balance and causal inference mechanisms in neurological

research are considered in our method, improving the model’s

ability to adapt to multimodal inputs;

3. A two-step fusion model was employed to enhance the

information fusion capability of the method;

4. The experiment results show that our method is superior to

other three SOTA methods in terms of the accuracy with 5%;

5. Analysis of the visualization suggest that the Vahagn model can

capture position-related features and time-related features that

are useful for task.

2 Realated work

2.1 Haptic sensors

A number of haptic sensors have been developed in recent

years. Some sensors are designed to capture forces and moments

on contact, or data from other sensors such as temperature and

vibration directly. BioTac (Wettels et al., 2014) is an excellent

example. The sensor has a rigid core and several types of sensors

inside, surrounded by a deformable housing. The high-resolution

haptic sensors represented by GelSight (Dong et al., 2017) are

quite different, as the surface of the sensor is an elastic gel that

changes according to the shape of the object in contact. A normal

tiny camera is placed under the elastomer, and in order to make

the shape changes observed more visible, three LEDs are placed

in different directions around the gel. Thanks to the unique

design, GelSight could detects three different types of information:

movement of the object texture, change of the contact area, and

stretching of the sensor surface. An important advantage of using

cameras to capture signals is that the data is standardized as images,

which allows researchers to use well-established computer vision

algorithms to extract the features.

2.2 Slip detection

Slip detection is very important for robotic manipulation. In

recent years, various methods have been employed. Liao et al.

(2024) attempted to use graph networks to evaluate grasping

stability on pressure data obtained from a novel PT-TIP sensor.

Liu et al. (2023a) used a triple network to judge the grasping

result with haptic images, and they found that haptic can still

achieve similar results under different grasping postures. The

results demonstrate the importance of combining visual and

haptic information for perceiving joint tasks. Li et al. (2018)

proposed a DNN based on CNN and LSTM. The model uses

pre-trained CNN to extract features from images of vision and

haptic. Multiple sets of spliced features are then sent into LSTM

(Hochreiter and Schmidhuber, 1997) for fusion, and the grasping

stability results are outputted. The experiments result proved the

effectiveness of the joint perception of visual and haptic (Wang

et al., 2022; Zhou et al., 2023; Girbes-Juan et al., 2020). Inspired

by the success of attention mechanisms on dependencies between

images (Zhao et al., 2020; Zhu et al., 2023), words (Yang et al.,

2021; Munkhdalai et al., 2024), and audios (Ryan et al., 2023),

(Cui et al., 2020) introduced the attention mechanism to the
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feature fusion process. They proposed the VTFSA model, which

uses the self-attention mechanism on the spliced features after

extracting the input visual and haptic separately. The comparison

results proved its effectiveness. However, this processing does not

effectively distinguish the importance of the information from

the two sources and underutilizes the information from the time

series. Han et al. (2023) introduced a Transformer-based robotic

grasping framework for rigid gripper robots, leveraging haptic and

visual information to ensure secure object grasping. Evaluation

demonstrated that Transformer models exhibit higher grasping

accuracy and computational efficiency compared to traditional

CNN-LSTM models. Although the methods proposed by these

works can reach a decent performance on slip detection, none of

them have taken into account the problem of adaptation between

visual-haptic information and the spatial-temporal feature of the

grasping process in a unified way. Therefore, we proposed a

new method involves performing temporal and spatial feature

extraction on input visual and haptic sequences in parallel, and get

the feature of multi-source and spatial-temporal information with

a two-step fusion.

2.3 Attention mechanisms

In recent years, the attention has been widely used in

various tasks, including natural language processing (Yang et al.,

2021; Munkhdalai et al., 2024), image feature recognition (Zhao

et al., 2020; Zhu et al., 2023), and so on (Yak et al., 2023;

McKinzie et al., 2024). The self-attention (SA) (Vaswani et al.,

2017) has been formalized to better capture the interrelationships

between input words, resulting in a significant improvement

in machine translation performance. To better account for the

varying importance of individual channels in image features,

Hu et al. (2018) proposed the Squeeze-and-Excitation attention

(SEA) mechanism. This mechanism allows the network to focus

on specific feature channels by assigning different weights of

importance to them or by suppressing channel features that are

not useful enough. Here, we adopt ideas from SA mechanism and

SEA mechanism into the spatial and temporal feature extraction

modules, respectively, so that key spatial locations can be extracted

and interrelationships between time series can be recognized.

3 Methods

In Section 3.1, we introduce the dataset used here in detail. In

Section 3.2, we provide a complete description of Vahagn.

3.1 Slip dataset

Li et al. (2018) created a multimodal dataset that comprises

visual and haptic data. They collected 1102 sets of interaction

data from 84 different common objects. The collection experiment

employed a UR5 robotic arm equipped with a WSG-50 parallel

gripper. To obtain haptic data, a GelSight sensor was added to

one side of the gripper. In experiment, a camera was added to the

middle of the gripper jaws to capture visual observation. During

each execution, the position and strength of the grasp varied,

and the data from the camera and haptic sensors were recorded

simultaneously. Unlike the Calandra dataset (Calandra et al.,

2017), which only collected data at several key moments, Li et al.

(2018) collected sequences data of visual and haptic throughout

the execution. The results of each grasping were recorded as

labels. In the Slip dataset, each set of data comprises two image

sequences captured by the camera and the haptic sensor, both with

a resolution of 640×480. The visual and haptic images are captured

simultaneously and are both 21 frames in length. A label is provided

for each set, denoting the result of the grip. The value “0” signifies a

sliding movement, whereas “1” denotes a stabilizing action.

3.2 The overall framework

The model proposed in this paper takes visual and haptic image

sequences as inputs and extracts temporal and spatial features using

self-attention (SA) and Squeeze-and-Excitation attention (SEA),

respectively. In the fusion process, the weights of different features

are adjusted with the help of modality gate unit and temporal-

spatial gate unit. The attention-based feature extraction module

for visual-haptic inputs and the gate-based feature fusion module

together constitute the VisuAl Haptic Attention Gate Net (Vahagn),

and the overall framework of the model is shown in Figure 1.

The proposed network has four main components: data

processing, feature extraction, two-step fusion, and classification

modules.

3.2.1 Data processing
The stability of the entire grasp is contingent upon the stability

of all its constituent segments. Therefore, we propose that the

label assigned to a given grasp set can also be applied to the its

sub-segments. In accordance with this supposition, we employ

N frames of successive visual and haptic images as inputs for a

single prediction, here we set N to 8. The Figure 2 illustrates the

processing and enhancement performed prior to the input being

passed to the network. .

To emphasize the difference between the current frame image

and the previous ones, we first subtract the images across frames.

The N − 2 images starting from t are differenced from the

corresponding images starting from t − 2. This helps to eliminate

task-irrelevant background in the images that is not necessary for

completing the task. We apply the same operation to both the

visual images and haptic images. Afterwards, in order to increase

the diversity of the data, the image was resized to 224 × 224,

and a decision was made as to whether to flip it horizontally or

vertically, with a probability of 0.5. The operations performed are

consistent across the visual difference image sequence and the

haptic difference image sequence, respectively.

3.2.2 Feature extraction
When performing grasping, the selection of grasping position

and the continuity of the action during execution have a great

influence on the success of grasping. In this paper, with visual

image sequence Xv ∈ R(N−2)×Hv×Wv and haptic image sequence

Frontiers inNeurorobotics 03 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1484751
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wang et al. 10.3389/fnbot.2024.1484751

FIGURE 1

Diagram of our VisuAl Haptic Attention Gate Net (Vahagn) model. The RGB images and the haptic sensors images are fed into a deep neural network

to predict whether the grasp is successful. Consecutive N frames of visual and haptic images are inputted into the temporal encoder and spatial

encoder, respectively, after which four sets of features from vision and haptic are fused twice to obtain the resulting features, which are

concatenated as the input into a fully connected network for prediction.

FIGURE 2

Data preprocessing. First, we subtract the corresponding two frames ago from each of the input images to highlight the regions that have changed

due to contact with the target object. After that, we flip the images of the same group using the same probability after resizing to complete the

enhancement of the training data.

Xh ∈ R(N−2)×Hh×Wh as inputs, we constructe a spatial encoder and

a temporal encoder, for extracting spatial feature about grasping

position and temporal feature about stability information. Here, N,

H, and W denote the sequence length, image height, and image

width. Following data processing, both H and W yielded a value

of 224.
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3.2.2.1 Spatial encoder

The purpose of the spatial encoder is to identify and extract

features associated with the spatial position of the grasping. From

the perspective of visual analysis, our focus is on the relative

position of the gripper and the object, as well as the posture of

target. In contrast, from the tactile perspective, we place emphasis

on the specific details of the contact between the gripper and the

target. The structure devised for the spatial encoder is illustrated in

Figure 3. The encoder takes a single image as input and outputs the

single modal spatial features.

In the visual difference image sequence, the final frame is

selected to the spatial encoder as input and extracted the patches

XS
pV ∈ Rp

S
vn×pS

vh
×pSvw , where pS

vh
× pSvw is the resolutions of each

patch and pSvn =
Hv×Wv

pS
vh
×pSvw

is the number of patches, which we set

to 64. Subsequently, the patches go through a convolutional layer

to extract relevant feature. Then, we flatten it and added position

embedding to get the patches feature F ∈ Rp
S
vn×DS

, DS denotes the

feature length of each patch and takes the value 768. In feature

F, each row represents the feature of one patch, which contains

information regarding the position within the original image. We

then apply the Squeeze-and-Excitation attention (SEA) mechanism

on F to extract the relative importance of individual patch. The

execution process can be represented as:

F′ = F ⊙ Sig(MLP(Pool(F))), (1)

Feature extraction is conducted through the maximum pooling

layer and FCN, and then sigmoid activation is applied to obtain

importance weights. After that, these importance weights are then

multiplied with the original input F to generate the weighted

representation of patches feature.

For the haptic sequence, we also use the last frame of the

difference image as input and perform the same process. The spatial

encoder for haptic utilizes the identical hyperparameters as that for

vision, with their parameters updated independently. The spatial

encoder provides us with visual spatial features FSV and haptic

spatial features FSH .

3.2.2.2 Temporal encoder

The temporal encoder takes a series of difference images as

input to obtain continuity and stability during execution. The

input visual difference image sequence is denoted as XT
pV ∈

R(N−2)×pT
vh
×pTvw , where pT

vh
× pTvw is the resolution of input images.

We use a convolutional layer to extract the 2D features, flatten and

add them with the time encoding to obtain the temporal feature

VT ∈ R(N−2)×DT
, where DT is the feature length of single-frame

and is set to 512.

To extract the relationships between frames in the time

dimension, a self-attention unit is introduced, inspired by works

about natural language processing. The self-attention mechanism

can be represented as the process of matching a query (Q) and a set

of key (K)-value (V) pairs to an output. In execution, the Q, K, and

V matrices are generated by multiplying the input vector with three

separate learnable matricesWQ,WK , andWV , respectively:

Q = XWQ,K = XWK ,V = XWV , (2)

where the vector lengths for Q, K, and V are all set to 128.

The attention scores for different positions are obtained by

computing the dot product ofQ andK. These scores are then scaled

andmultiplied with thematrixV to extract a single attention, which

is denoted asAttention(Q,K,V). The attention scores could capture

the significant relationship between the frames in a continuous

sequence. Then the weighted features obtained by multiplying the

attention scores with the original inputs are used as the temporal

feature, and we denote the temporal features from vision and haptic

as FTV and FTH . By focusing on the correlation between the difference

images at different locations in the input sequence, one can gain

insight into the variability between these images. In turn, such

insight facilitates the assessment of the overall process continuity

and stability.

3.2.3 Two-step fusion
Spatial feature has the information of the location of contact

and the posture of the target, while temporal feature focuses on

the continuity and stability of the whole process. The input data

are derived from both visual and haptic sources, and after feature

extraction by the temporal and spatial encoders, we can get a total

of four different sets of features. To fully exploit the cross-modal

information from both time and space, we employ a two-step

feature fusion, which includes Cross-Modality fusion and Spatial-

Temporal fusion, as illustrateed in Figure 4, and get a joint feature

of the inputs images.

3.2.3.1 Cross-modality fusion

We fused spatial features from vision and haptic, as well

as the temporal features from the same sources. Given that the

data utilized in this model is derived from both visual and

haptic modalities, this fusion process is called Cross-Modality

fusion. From haptic images, we can observe the localized pressing

situation, but the perception of information such as the gesture

of the target is lacking, while the information from vision is

more comprehensive, but deficient in detail. When comes to how

much each modality could help the prediction, we look at the

neurological study for inspiration. Rideaux et al. (2021) mentioned

the balance mechanisms and causal inferences processes when they

receive information from different sources. Based on this, we put

the original features F from visual and haptic into modality gate

(MG) units for importance scores g(F), which in turn is multiplied

with the original features F for balanced features FB. The gate

unit employed in this study is a three-layer fully connected layer,

wherein the input length is identical to the output length and is

equal to the length of the feature F. The processing of the gate unit

can be represented as:

FB = F ⊙ g(F). (3)

We then concatenate the weighted features and pass them to a

FCN and get the temporal feature FTime and spatial feature FSpace
with length 1, 024. These two can be expressed as:

FSV ,B = FSV ⊙ gSV (F
S
V ), (4)
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FIGURE 3

Visualization of Spatial Encoder. The input image is patched to embedding, and we get the patch embedding after adding the space position

embedding. After passing it through the SEA, we have weighted features. The single-modal spatial features are obtained after concatenated them as

the input into a fully connected network.

FIGURE 4

Flowchart of Two-step Fusion. The temporal and spatial features derived from both vision and haptics are integrated through a two-step process:

cross-modality fusion and spatial-temporal fusion. In this process, two gates—one for modal fusion and another for spatio-temporal fusion—are

employed to regulate the relative weights of the features.

FSH,B = FSH ⊙ gSH(F
S
H), (5) FSpace = MLP(Concat(FSV ,B, F

S
H,B)); (6)
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FTV ,B = FTV ⊙ gTV (F
T
V ), (7)

FTH,B = FTH ⊙ gTH(F
T
H), (8)

FTime = MLP(Concat(FTV ,B, F
T
H,B)), (9)

where we use superscripts to distinguish the encoder, and

subscripts to indicate the source of the data, in detail, the

superscripts S for spatial encoder and T for temporal encoder, while

the subscripts V and H denote features from vision and haptic.

The g denotes the modality gate applied on the modality features.

The effectiveness of the modality gate will be fully validated in

subsequent ablation experiments.

3.2.3.2 Spatial-Temporal fusion

Spatial features derived from visual and haptic inputs are

integrated in FSpace, and temporal features derived from visual

and haptic inputs are integrated in FTime. When temporal and

spatial features are fused, a similar three-layer FCN is employed to

construct a gated unit G, which serves to adjust the relative weights

of temporal and spatial features. In detail, we pass FTime and FSpace
through separate spatial-temporal gateG for weighted feature F′Time

and F′Space. Gate unit G does not change the length of the features.

We then concatenate the two feature vectors and mapping it to the

fused feature of length 512 use a fully connected network:

F′Time = FTime ⊙ G(FTime), (10)

F′Space = FSpace ⊙ G(FSpace), (11)

Ffused = Concat(F′Time, F
′
Space)W

T
+ b, (12)

where Ffused represents the complete fused feature of the

current input set.WT is a learnable parameter that performs linear

mapping, and b represents another set of learnable parameters used

to provide offsets.

3.2.4 Classification
The objective of this task is to predict the stability of grasping,

indicated by a binary output of either 1 for stable grasping or 0

for slipping. We pass the fused feature Ffused to a three-layer FCN

to get a two-dimensional output, which represents the predicted

probability at the corresponding label.

4 Experiment

In this section, in order to verify the validity of the model

proposed, we conduct experiments on the dataset proposed in Li

et al. (2018). We take haptic and visual images sequences as input,

and predict the state of grasping with the output. We compare it

with three state-of-the-art methods, CNN-LSTM (Li et al., 2018),

VTFSA (Cui et al., 2020), and the TimeSformer (Han et al., 2023).

TABLE 1 Performance comparison of di�erent models with di�erent

inputs on slip dataset.

Modality

Method CNN-
LSTM
(VGG16)

VTFSA Time
Sformer

Vahagn

Vision-only 55.13% – 78.65% 81.02%

Haptic-only 81.84% – 81.04% 84.72%

Vision & Haptic 87.76% 88.46% 87.88% 93.59%

Vahagn outperforms the traditional CNN-LSTM method and attention-based methods

VTFSA and TimeSformer. Bold values indicate the optimal results.

In addition, we conducted a series of ablation experiments and

analyzed the results to understand the role of each component. For

the encoders, we visualized the attention and analyzed the features

obtained from the inputs.

4.1 Implementation details

We conduct the experiments on the slip dataset. In the

experiments, the dataset is divided into training, validation, and

test sets. During training, we increase the diversity of the data with

augmentation using the methods described previously. The results

were obtained on the test dataset. Three different inputs were tested

for each model: vision alone, haptic alone, and vision with haptic.

For the CNN-LSTM model, we follow Li et al. (2018) and

choose VGG16 as the backbone of the CNN with pre-trained

initialization. After extracting features from visual and tactile

images respectively using pre-trained CNN model, the features are

concatenated and passed into the LSTM, and then the out features

are sent to a FCN to get the prediction. For VTFSA, we follow

the description provided by Cui et al. (2020). The input images

and haptic signals are processed in discrete encoders to obtain

the visual feature, and the haptic feature. These features are then

conveyed to the self-attention module after concatenation. Finally,

the fused features are subsequently transmitted to the downstream

FCN classifier, where the prediction is generated. In regard to

TimeSformer, we follow Han et al. (2023). The temporal and spatial

features of the visual and haptic sequences are extracted in a

sequential manner, using a space-time attentionmethod. The visual

and haptic features are then concatenated and passed directly to the

downstream prediction FCN model.

In experiments, we took 8-frame vision images and 8-frame

haptic images as input. The predicted probabilities and labels were

provided to the cross-entropy function to get the loss values. The

Adam optimizer was utilized in conjunction with a learning rate of

8 × 10−4. A total of 200 rounds were conducted in batches of 48.

The comparison results are displayed in the Table 1.

4.2 Evaluation

From Table 1, we can see that the Vahagn can provide

classification results with higher accuracy. For the CNN-LSTM,

haptic-only with 81.84% significantly outperforms vision-only

with 55.13%, as shown by Liu et al. (2023b), and Transformer
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TABLE 2 Ablation studies results of Vahagn on encoder.

Temporal
encoder

Spatial
encoder

Acc Pre Recall

w/ w/ 93.59% 91.13% 97.44%

w/ w/o 51.52% 50.77% 91.92%

w/o w/ 81.31% 81.00% 81.82%

The incorporation of temporal encoder and spatial encoder has been demonstrated to result

in a 12.28 and 42.07% improvement in accuracy, respectively, the simultaneous use of both

encoders has been shown to significantly enhance the Vahagn. Bold values indicate the

optimal results.

models perform similarly for single modality case. For multi-

modalities case, Vahagn achieves 93.59% with accuracy, which

is +5% higher than VTFSA (88.46%) and +5% higher than

TimeSformer (87.88%), similar result was obtained when compared

to traditional CNN-LSTMmethod. Vahagn has better performance

than traditional methods and other Transformer models in the slip

detection task.

To understand the importance of temporal and spatial

information in prediction, we conducted ablation experiments on

encoder. The results on accuracy, precision, and recall are shown in

Table 2. From the results, we can see that, the accuracy is acceptable

for spatial-encoder-only with 81.31%, but the model struggles to

provide effective results when spatial encoder is missing. The

accuracy is significantly better when the input is jointly encoded

with temporal encoder and spatial encoder (93.59%).

The results show that Vahagn not only outperforms the

traditional method of CNN-LSTM, but also compares more

favorably with VTFSA, which also adopts the attentionmechanism.

And Vahagn performs equally well against the TimeSformer, which

takes into account the spatial-temporal features.

In comparison with the CNN-LSTM, the Vahagn employs

a distinctive design for the extraction of temporal and spatial

features. In contrast to VTFSA, Vahagn considered the relative

importance between different source and used a gate unit to

regulate it, enabling Vahagn to adjust the weight of visual

and haptic information. In contrast to the TimeSformer, we

distinguished between temporal and spatial feature extraction

and the two processes are relatively independent, which helps to

preserve deeper features from the input. Furthermore, the ablation

experiment on encoder validates the assumption that the input

image sequences contain different information about time and

space.

In order to validate the veracity of Vahagn’s structure and key

parameters, we conduct experiments on the length of sequence

input into the temporal encoderN and the size of the patches in the

spatial encoder. We also perform ablation experiments on several

key structural parts of Vahagn.

We firstly test on the length of input sequence N. Table 3

displays the results as the input sequence length N variations. We

train the Vahagn with different input lengths (6, 7, 8, 9, and 10) and

collected the corresponding accuracy, precision, and recall results.

The results show that the best accuracy was obtained when N is 8,

accompanied by the best pre and recall, while 10-frame input also

showed strong competitiveness.

When comes to the patch size ph × pw of spatial encoder, we

selected two parameter sets with patch sizes 28 × 28 and 56 × 56

for comparison. The results are listed in Table 4. From the result,

TABLE 3 Performance comparison of Vahagn, with di�erent input length

N.

N Acc Pre Recall

6 88.89% 85.32% 93.93%

7 90.08% 85.32% 96.83%

8 93.59% 91.13% 97.44%

9 90.28% 87.18% 94.44%

10 91.41% 87.96% 95.96%

The Vahagn model performs best when N is 8. Bold values indicate the optimal results.

TABLE 4 Performance comparison of Vahagn, with di�erent patch size.

Patch size Acc Pre Recall

28× 28 93.59% 91.13% 97.44%

56× 56 90.60% 89.26% 92.31%

Smaller patch size result in higher accuracy performance. Bold values indicate the optimal

results.

TABLE 5 Ablation studies results on gate units (MG & STG).

MG STG Acc Pre

w/ w/ 93.59% 91.13%

w/o w/ 88.89% 85.83%

w/ w/o 90.17% 84.06%

w/o w/o 60.49% 60.56%

Both MG and STG unit lead to performance improvements of 28 and 30%, respectively. Bold

values indicate the optimal results.

TABLE 6 Comparative studies results of Vahagn, on attention.

Spatial
attention

Temporal
attention

ACC Pre Recall

Vahagn +

SEA + SA

SEA SA 93.59% 91.13% 97.44%

Vahagn +

SEA

SEA SEA 91.88% 90.83% 93.16%

Vahagn +

SA

SA SA 49.79% – –

The method employing both SA and SCA demonstrated superior performance. Bold values

indicate the optimal results.

we can see that smaller patch lead to better classification accuracy,

with about 5% beter.

After that, we also need to verify the necessity of the modality

gate (MG) unit and spatial-temporal gate (STG) unit. We make

experiments to compare the performance with MG missing, STG

missing, and with both missing, respectively. The results of the

comparison experiments are shown in Table 5. From this, we

can see that both MG unit and STG unit has positive effects on

improving the model’s prediction accuracy. When both gate units

aremissing, Vahagn struggles to provide valid results for prediction.

To further validate the effectiveness of the attention used in

encoders, we conducted the following comparative experiments:

Vahagn + SEA + SA: We use the SEA mechanism in the spatial

encoder to extract key regions in the visual image and contact

regions in the haptic; and the SA mechanism is used to extract

correlations between frames in temporal encoder.
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FIGURE 5

Visualization of spatial attention on the last frame of a visual input

sequence. We show here the results for a set of three images. Figure

(a) is the distribution of attention on the di�erent patches and figure

(b) is the original vision image. The image is split into 8× 8 patches

with size 28× 28. The positions in figure (b) circled in red are the

main contact points of the jaws for grasping, which received high

scores in attention; the location circled in blue is the target, whose

gesture is rendered by the attention distributed around the object

contours. (a) SCA visualization. (b) Input vision.

Vahagn + SEA: The same SEA asVahagn + SEA + SA is used in

spatial encoder; in temporal encoder, SEAmodule is used to replace

SA.

Vahagn + SA: The same SA as Vahagn + SEA + SA is used in

temporal encoder; in spatial encoder, SA module is used to replace

SEA.

Despite employing different attentional mechanisms, the three

experiments used consistent data preprocessing and parameter

settings, We show the results of the accuracy, precision, and recall

in Table 6.

As shown in Table 6, compared with Vahagn + SEA + SA, the

accuracy decreases by 1+% after replacing the SA in the temporal

encoder with SEA. And when the SEA of spatial encoder is replaced

with SA, its accuracy came to 49%, which is pretty worse than

FIGURE 6

Spatial attention visualization of the last frame of a haptic input

sequence. We show here the results for a set of three images. Figure

(a) is the distribution of attention on di�erent patches and Figure (b)

is the haptic original image. The image is split into 8× 8 patches

with size 28× 28. The position in Figure (b) circled in red is the

traces acquired by the haptic sensors on the gel when the grasping

occurs, and this region scored high in attention map. (a) SCA

visualization. (b) Input vision.

the other. The results of the comparative experiments show that

the joint use of the two attention mechanisms is more effective

in helping Vahagn to extract the spatial-temporal feature in the

sequences.

4.3 Attention analysis

To clearly explore why the Vahagn model has better

performance, we visualize the scores calculated by the attention and

analyze them with the input images. This approach allows for an

intuitive understanding of the role played by input images in the

feature extraction process.
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FIGURE 7

Temporal attention visualization of a single frame of input vision images to others in the sequence. The eight frames of the original image before data

processing are shown at the top, and the images after data processing (without resizing) are shown at the corresponding position at the bottom. The

attention maps between the six frames, which are input to the temporal encoder, are shown in the lower left.

FIGURE 8

Temporal attention visualization of a single frame of input haptic images to others in the sequence. The eight frames of the original image before

data processing are shown at the top, and the images after data processing (without resizing) are shown at the corresponding position at the bottom.

The attention maps between the six frames, which are input to the temporal encoder, are shown in the lower left.

Figure 5 shows the attention heat map visualization of

visual input. The location of gripper-target contact in vision

receives significant attention, which is circled in red in Figure 5b.

Additionally, the object’s occupied position received an above-

average score, which is marked with a blue circle. This is crucial

for effectively understanding the overall spatial information.

Similarly, we visualized the attentional heat map

for the haptic, as shown in Figure 6, where attention is

mainly focused on the location of the contact (circled in

red in Figure 5b). From the visualization result of spatial

attention, we can see that spatial encoder could effectually

extract the information about the contact position and the

posture of target, which are critical for a successful grasping

action.

To more effectively demonstrate the relationship between the

data at each time point, we utilize a visual representation of

the correlation weights obtained through the temporal attention

mechanism. The strength of the correlation is indicated by the

darkness of the color of the connecting lines. Figure 7 shows the

temporal correlation of the visual input images, with a heat map

of the attention values located in the bottom left corner of the

figure. The eight images bearing serial numbers from −2 to 5

at the top are the visual image inputs necessary to perform a

single detection. The six images that are actually fed into the

model are displayed below, indexed from 0 to 5. In comparison

to the remaining four images, which primarily depict the outline

of the glass mouth, the images with serial numbers 2 and 3

demonstrate a markedly enhanced delineation of the glass outline

and correspond to considerably elevated attention values. It can

be observed that the network assigns a higher degree of attention

to images that exhibit discernible contrasts. This allows the model

to capture visual variability in the input segments, thus enabling

an assessment of the visual stability and continuity of the input.

Similarly, the correlation between the sequence of haptic results is

illustrated in Figure 8. The image with serial number 0 is indicative

of the result of temporary instability of contact, and all subsequent

images demonstrate a higher correlation with the image with

serial number 0. The model demonstrates a heightened focus on

haptic variation throughout the grasping process. This enables

the model to observe the relative motion of the fingertips during
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execution, thereby facilitating an assessment of haptic stability

and continuity.

4.4 Analysis

When examining the reasons for effectiveness, we consider

both its network structure and method of feature extraction. One

of the potential reasons is that we extract features from visual and

haptic separately, and we dynamically adjust the importance share

of visual and haptic by MG units, which is missing in the CNN-

LSTM. Unlike the VTFSA, which connects the two features and

applies the self-attention directly, it doesn’t actually distinguish

between information coming from the visual or haptic, and the

importance of different sources is not captured. The two-step

fusion method with gate units in Vahagn effectively facilitates two

dynamic adjustments of the input features. Firstly, in the fusion of

modal, adjusting the weight of the importance of visual and haptic

information helps Vahagn to discard the noise that is difficult to

bring effective discriminative information. Secondly, in the fusion

of spatial-temporal feature, the incorporation of gate units into the

fusion of spatial and temporal features enables the model to strike

a more optimal balance between temporal stability assessment

and spatial location accuracy assessment. This provides a more

comprehensive and balanced discriminative basis for Vahagn.

The second potential reason is that we employ different

attention mechanisms for spatial and temporal encoders. We

explored the effectiveness of the attention used by constructing

ablation experiments and visualizations of attention. In spatial

encoder, SEA mechanism is able to differentiate the importance

of each sub-region and augment the important region features,

which helps Vahagn to effectively perceive spatial information such

as grasping position and target posture. Meanwhile, in temporal

encoder, the SA mechanism is implied, it could extracts the

relevance of individual frames in the sequences.

5 Conclusion

In this paper, we propose a new method of visual-haptic

feature extraction based on attention mechanism for slip detection.

Comparative experiments are conducted on the slip dataset

with traditional CNN-LSTM method, as well as VTFSA and

TimeSformer, which also are based on attention mechanism.

The experiment results indicate that the Vahagn performs

better on the slip detection task, achieving the accuracy of 93.59%.

Ablation experiments on spatial-temporal features demonstrate the

important role of the encoders in extracting temporal and spatial

information. Additionally, ablation experiments on gate units

illustrate that the capabilities of balance mechanisms and causal

inferences processes, which are investigated in human perception,

can also be useful in the field of robotic perception. We then

conduct the comparison experiments on the attention used in

encoders. The results illustrate that SEA is an appropriate method

for identifying critical regions for spatial encoder, whereas SA

is more effective for determining criticality between frames for

temporal encoder. Meanwhile, the visualization of the attention

shows that the Vahagn exhibits better interpretability and predictive

performance than traditional models.

The Vahagn proposed in this paper has made notable

advancements in joint visual-tactile perception. In the slide

detection task with visual and haptic image sequences as input,

we integrate the attributes of temporal and spatial dimensions,

and combine SEA and SA to construct independent encoders for

feature extraction. In the fusion stage, we employ a two-step fusion

method and introduce gate units to regulate the relative importance

of the different information. In the future, we will continue to delve

into the fusion method of visual and haptic information, with the

objective of enhancing the comprehensive perceptual capability of

robots.

Data availability statement

Publicly available datasets were analyzed in this study. This data

can be found at: https://github.com/wkoa/slip_detection.

Author contributions

JW: Methodology, Validation, Visualization, Writing – original

draft, Writing – review & editing. YJ: Formal analysis, Supervision,

Writing – review & editing. HY: Conceptualization, Funding

acquisition, Writing – review & editing.

Funding

The author(s) declare financial support was received for

the research, authorship, and/or publication of this article. This

work was funded by 2035 Innovation Pilot Program of Sichuan

University, China.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers inNeurorobotics 11 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1484751
https://github.com/wkoa/slip_detection
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wang et al. 10.3389/fnbot.2024.1484751

References

Calandra, R., Owens, A., Upadhyaya, M., Yuan, W., Lin, J., Adelson, E. H., et al.
(2017). “The feeling of success: does touch sensing help predict grasp outcomes,” in
Conference on Robot Learning (PMLR).

Cui, S., Wang, R., Wei, J., Hu, J., and Wang, S. (2020). Self-attention based visual-
tactile fusion learning for predicting grasp outcomes. IEEE Robot. Autom. Lett. 5,
5827–5834. doi: 10.1109/LRA.2020.3010720

Dong, S., Yuan, W., and Adelson, E. H. (2017). “Improved gelsight tactile
sensor for measuring geometry and slip,” in 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) (Vancouver, BC: IEEE), 137–144.
doi: 10.1109/IROS.2017.8202149

Ernst, M. O., and Banks, M. S. (2002). Humans integrate visual and
haptic information in a statistically optimal fashion. Nature 415, 429–433.
doi: 10.1038/415429a

Fang, S., Yi, Z., Mi, T., Zhou, Z., Ye, C., Shang, W., et al. (2023). Tactonet: tactile
ordinal network based on unimodal probability for object hardness classification. IEEE
Trans. Autom. Sci. Eng., 20, 2784–2794. doi: 10.1109/TASE.2022.3200073

Girbes-Juan, V., Schettino, V., Demiris, Y., and Tornero, J. (2020). Haptic and visual
feedback assistance for dual-arm robot teleoperation in surface conditioning tasks.
IEEE Trans. Haptics 14, 44–56. doi: 10.1109/TOH.2020.3004388

Han, Y., Yu, K., Batra, R., Boyd, N., Mehta, C., Zhao, T., et al. (2023). Learning
generalizable vision-tactile robotic grasping strategy for deformable objects via
transformer. arXiv. [Preprint]. arXiv:2112.06374. doi: 10.48550/arXiv.2112.06374

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural
Comput. 9, 1735–1780. doi: 10.1162/neco.1997.9.8.1735

Holm, E. A., Cohn, R., Gao, N., Kitahara, A. R., Matson, T. P., Lei, B., et al. (2020).
Overview: Computer vision and machine learning for microstructural characterization
and analysis. Metall. Mater. Trans. A 51, 5985–5999. doi: 10.1007/s11661-020-0
6008-4

Hu, J., Shen, L., and Sun, G. (2018). “Squeeze-and-excitation networks,” in 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition (Salt Lake City, UT:
IEEE), 7132–7141. doi: 10.1109/CVPR.2018.00745

Landy, M. S., Banks, M. S., and Knill, D. C. (2011). “Ideal-observer models
of cue integration,” in Sensory Cue Integration, eds. J. Trommershäuser,
K. Kording, and M. S. Landy (Oxford: Oxford Academic), 5–29.
doi: 10.1093/acprof:oso/9780195387247.003.0001

Li, J., Dong, S., and Adelson, E. (2018). “Slip detection with combined tactile and
visual information,” in 2018 IEEE International Conference on Robotics and Automation
(ICRA) (Brisbane, QLD: IEEE), 7772–7777. doi: 10.1109/ICRA.2018.8460495

Liao, J., Xiong, P., Liu, P. X., Li, Z., and Song, A. (2024). Enhancing robotic
tactile exploration with multireceptive graph convolutional networks. IEEE Trans. Ind.
Electron. 71, 9297–9308. doi: 10.1109/TIE.2023.3323695

Liu, C., Huang, B., Liu, Y., Su, Y., Mai, K., Zhang, Y., et al. (2023a). “A self-
supervised contrastive learning method for grasp outcomes prediction,” in 2023 IEEE
International Conference on Real-time Computing and Robotics (RCAR) (Datong:
IEEE), 737–742. doi: 10.1109/RCAR58764.2023.10249649

Liu, C., Yi, Z., Huang, B., Zhou, Z., Fang, S., Li, X., et al. (2023b). A deep learning
method based on triplet network using self-attention for tactile grasp outcomes
prediction. IEEE Trans. Instrum. Meas. 72, 1–14. doi: 10.1109/TIM.2023.3285986

Luo, S., Mou, W., Althoefer, K., and Liu, H. (2017). Iterative closest labeled
point for tactile object shape recognition. arXiv [Preprint]. arXiv:1708.04436.
doi: 10.48550/arXiv.1708.04436

Mahler, J., Matl, M., Satish, V., Danielczuk, M., DeRose, B., McKinley, S.,
et al. (2019). Learning ambidextrous robot grasping policies. Sci. Robot. 4:eaau4984.
doi: 10.1126/scirobotics.aau4984

McKinzie, B., Gan, Z., Fauconnier, J.-P., Dodge, S., Zhang, B., Dufter, P., et al. (2024).
Mm1: Methods, analysis insights from multimodal llm pre-training. arXiv [Preprint].
arXiv:2403.09611. doi: 10.48550/arXiv.2403.09611

Munkhdalai, T., Faruqui, M., and Gopal, S. (2024). Leave no context behind:
efficient infinite context transformers with infini-attention. arXiv [Preprint].
arXiv:2404.07143. doi: 10.48550/arXiv.2404.07143

Phelan, B. R., Ranney, K. I., Gallagher, K. A., Clark, J. T., Sherbondy,
K. D., Narayanan, R. M., et al. (2017). Design of ultrawideband stepped-
frequency radar for imaging of obscured targets. IEEE Sens. J. 17, 4435–4446.
doi: 10.1109/JSEN.2017.2707340

Piacenza, P., Lee, D., and Isler, V. (2022). “Pouring by feel: an analysis of tactile
and proprioceptive sensing for accurate pouring,” in 2022 International Conference
on Robotics and Automation (ICRA) (Philadelphia, PA: IEEE), 10248–10254.
doi: 10.1109/ICRA46639.2022.9811898

Rideaux, R., Storrs, K. R., Maiello, G., and Welchman, A. E. (2021). How
multisensory neurons solve causal inference. Proc. Natl. Acad. Sci. 118:e2106235118.
doi: 10.1073/pnas.2106235118

Ryan, F., Jiang, H., Shukla, A., Rehg, J. M., and Ithapu, V. K. (2023). “Egocentric
auditory attention localization in conversations,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) (Vancouver, BC:
IEEE), 14663–14674. doi: 10.1109/CVPR52729.2023.01409

Sundermeyer, M., Mousavian, A., Triebel, R., and Fox, D. (2021). “Contact-
graspnet: efficient 6-dof grasp generation in cluttered scenes,” in 2021 IEEE
International Conference on Robotics and Automation (ICRA) (Xi’an: IEEE),
13438–13444. doi: 10.1109/ICRA48506.2021.9561877

Tatiya, G., and Sinapov, J. (2019). “Deep multi-sensory object category recognition
using interactive behavioral exploration,” in International Conference on Robotics and
Automation, ICRA 2019, Montreal, QC, Canada, May 20-24 (Montreal, QC: IEEE),
7872–7878. doi: 10.1109/ICRA.2019.8794095

Vaswani, A., Shazeer, N. M., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2017). “Attention is all you need,” in Neural Information Processing Systems (Curran
Associates Inc.).

Wang, C., Zang, X., Zhang, H., Chen, H., Lin, Z., Zhao, J., et al. (2021). Status
identification and object in-hand reorientation using force/torque sensors. IEEE Sens.
J. 21, 20694–20703. doi: 10.1109/JSEN.2021.3100149

Wang, Y., Held, D., and Erickson, Z. (2022). Visual haptic reasoning: estimating
contact forces by observing deformable object interactions. IEEE Robot. Autom. Lett. 7,
11426–11433. doi: 10.1109/LRA.2022.3199684

Wettels, N., Fishel, J. A., and Loeb, G. E. (2014). Multimodal Tactile Sensor. Cham:
Springer International Publishing, 405–429. doi: 10.1007/978-3-319-03017-3_19

Xiong, P., He, K., Song, A., and Liu, P. X. (2023a). Robotic haptic adjective
perception based on coupled sparse coding. Sci. China Inf. Sci. 66:129201.
doi: 10.1007/s11432-021-3512-6

Xiong, P., Liao, J., Zhou, M., Song, A., and Liu, P. X. (2023b). Deeply supervised
subspace learning for cross-modal material perception of known and unknown objects.
IEEE Trans. Ind. Inf. 19, 2259–2268. doi: 10.1109/TII.2022.3195171

Xiong, P., Tong, X., Liu, P. X., Song, A., and Li, Z. (2023c). Robotic object perception
based on multispectral few-shot coupled learning. IEEE Trans. Syst. Man Cybern. Syst.
53, 6119–6131. doi: 10.1109/TSMC.2023.3279023

Yak, S., Dong, Y., Gonzalvo, J., and Arik, S. (2023). “IngesTables: scalable and
efficient training of LLM-enabled tabular foundation models,” in NeurIPS 2023 Second
Table Representation Learning Workshop (Curran Associates Inc.).

Yang, B., Wang, L., Wong, D. F., Shi, S., and Tu, Z. (2021). Context-aware self-
attention networks for natural language processing. Neurocomputing 458, 157–169.
doi: 10.1016/j.neucom.2021.06.009

Yang, F.,Ma, C., Zhang, J., Zhu, J., Yuan,W., Owens, A., et al. (2022). “Touch and go:
learning from human-collected vision and touch,” in Advances in Neural Information
Processing Systems 35: Annual Conference on Neural Information Processing Systems
2022, NeurIPS 2022, eds. S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
A. Oh, editors (New Orleans, LA).

Yi, Z., Xu, T., Shang, W., and Wu, X. (2022). Touch modality identification with
tensorial tactile signals: a kernel-based approach. IEEE Trans. Autom. Sci. Eng. 19,
959–968. doi: 10.1109/TASE.2021.3055251

Zhao, H., Jia, J., and Koltun, V. (2020). “Exploring self-attention
for image recognition,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (Washington, DC: IEEE).
doi: 10.1109/CVPR42600.2020.01009

Zhou, X., Lan, S., Wang, W., Li, X., Zhou, S., Yang, H., et al. (2023).
“Visual-haptic-kinesthetic object recognition with multimodal transformer,” in
International Conference on Artificial Neural Networks (Cham: Springer), 233–245.
doi: 10.1007/978-3-031-44195-0_20

Zhu, L., Wang, X., Ke, Z., Zhang, W., and Lau, R. W. (2023). “Biformer: vision
transformer with bi-level routing attention,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) (Vancouver: IEEE), 10323–10333.
doi: 10.1109/CVPR52729.2023.00995

Frontiers inNeurorobotics 12 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1484751
https://doi.org/10.1109/LRA.2020.3010720
https://doi.org/10.1109/IROS.2017.8202149
https://doi.org/10.1038/415429a
https://doi.org/10.1109/TASE.2022.3200073
https://doi.org/10.1109/TOH.2020.3004388
https://doi.org/10.48550/arXiv.2112.06374
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1007/s11661-020-06008-4
https://doi.org/10.1109/CVPR.2018.00745
https://doi.org/10.1093/acprof:oso/9780195387247.003.0001
https://doi.org/10.1109/ICRA.2018.8460495
https://doi.org/10.1109/TIE.2023.3323695
https://doi.org/10.1109/RCAR58764.2023.10249649
https://doi.org/10.1109/TIM.2023.3285986
https://doi.org/10.48550/arXiv.1708.04436
https://doi.org/10.1126/scirobotics.aau4984
https://doi.org/10.48550/arXiv.2403.09611
https://doi.org/10.48550/arXiv.2404.07143
https://doi.org/10.1109/JSEN.2017.2707340
https://doi.org/10.1109/ICRA46639.2022.9811898
https://doi.org/10.1073/pnas.2106235118
https://doi.org/10.1109/CVPR52729.2023.01409
https://doi.org/10.1109/ICRA48506.2021.9561877
https://doi.org/10.1109/ICRA.2019.8794095
https://doi.org/10.1109/JSEN.2021.3100149
https://doi.org/10.1109/LRA.2022.3199684
https://doi.org/10.1007/978-3-319-03017-3_19
https://doi.org/10.1007/s11432-021-3512-6
https://doi.org/10.1109/TII.2022.3195171
https://doi.org/10.1109/TSMC.2023.3279023
https://doi.org/10.1016/j.neucom.2021.06.009
https://doi.org/10.1109/TASE.2021.3055251
https://doi.org/10.1109/CVPR42600.2020.01009
https://doi.org/10.1007/978-3-031-44195-0_20
https://doi.org/10.1109/CVPR52729.2023.00995
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

	Vahagn: VisuAl Haptic Attention Gate Net for slip detection
	1 Introduction
	2 Realated work
	2.1 Haptic sensors
	2.2 Slip detection
	2.3 Attention mechanisms

	3 Methods
	3.1 Slip dataset
	3.2 The overall framework
	3.2.1 Data processing
	3.2.2 Feature extraction
	3.2.2.1 Spatial encoder
	3.2.2.2 Temporal encoder

	3.2.3 Two-step fusion
	3.2.3.1 Cross-modality fusion
	3.2.3.2 Spatial-Temporal fusion

	3.2.4 Classification


	4 Experiment
	4.1 Implementation details
	4.2 Evaluation
	4.3 Attention analysis
	4.4 Analysis

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


