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3D convolutional neural network 
based on spatial-spectral feature 
pictures learning for decoding 
motor imagery EEG signal
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Non-invasive brain-computer interfaces (BCI) hold great promise in the field of 
neurorehabilitation. They are easy to use and do not require surgery, particularly 
in the area of motor imagery electroencephalography (EEG). However, motor 
imagery EEG signals often have a low signal-to-noise ratio and limited spatial 
and temporal resolution. Traditional deep neural networks typically only focus 
on the spatial and temporal features of EEG, resulting in relatively low decoding 
and accuracy rates for motor imagery tasks. To address these challenges, this 
paper proposes a 3D Convolutional Neural Network (P-3DCNN) decoding method 
that jointly learns spatial-frequency feature maps from the frequency and spatial 
domains of the EEG signals. First, the Welch method is used to calculate the 
frequency band power spectrum of the EEG, and a 2D matrix representing the spatial 
topology distribution of the electrodes is constructed. These spatial-frequency 
representations are then generated through cubic interpolation of the temporal 
EEG data. Next, the paper designs a 3DCNN network with 1D and 2D convolutional 
layers in series to optimize the convolutional kernel parameters and effectively 
learn the spatial-frequency features of the EEG. Batch normalization and dropout 
are also applied to improve the training speed and classification performance of 
the network. Finally, through experiments, the proposed method is compared 
to various classic machine learning and deep learning techniques. The results 
show an average decoding accuracy rate of 86.69%, surpassing other advanced 
networks. This demonstrates the effectiveness of our approach in decoding motor 
imagery EEG and offers valuable insights for the development of BCI.
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1 Introduction

Brain-Computer Interfaces (BCIs) enable direct connection between a user and a machine 
by translating brain activity into command signals for external device control. This technology 
can enhance the quality of life for patients with spinal cord or limb nerve damage and is 
increasingly applied in rehabilitation (Chen et al., 2023), such as using BCIs to assist robotic 
rehabilitation for patients with motor impairments (Gao et al., 2023). BCIs also have other 
broad applications, including robotic arms (Chen et al., 2019), gaming interfaces (Li et al., 
2021), and Virtual Reality (VR) control (Deng et al., 2023).

In BCIs, brain signals can be classified into evoked and spontaneous types based on their 
formation. In non-invasive BCIs, evoked potentials are typically triggered by external stimuli 
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(Wu and Wang, 2024), such as steady-state visual evoked potentials 
(SSVEP) and P300 potentials (Yin et al., 2014; Yin et al., 2013a; Yin 
et al., 2013b). In contrast, spontaneous EEG arises from cortical neural 
activity associated with mental processes, including Slow Cortical 
Potentials (SCP) and Motor Imagery (MI), and does not require 
external stimuli. Current EEG decoding research indicates that evoked 
potential BCI systems generally exhibit lower accuracy rates, while 
spontaneous EEG BCI systems demonstrate significant advantages. 
Notably, SCP-based BCIs remain underdeveloped, with research 
primarily focusing on Motor Imagery (Al-Saegh et al., 2021).

In Motor Imagery EEG signal acquisition, researchers have observed 
that different motor imagery tasks elicit responses from distinct brain 
regions. For instance, during ipsilateral versus contralateral movements, 
amplitude responses in the sensory-motor cortex vary across different 
frequency bands (8–12 Hz and 13–30 Hz), known as Event-Related 
Synchronization (ERS) and Event-Related Desynchronization (ERD) 
(Savić et  al., 2020). Based on these phenomena, various feature 
extraction methods have been proposed, including Short-Time Fourier 
Transform (STFT), spatial filtering, Continuous Wavelet Transform 
(CWT), Common Spatial Pattern (CSP), and other algorithms (Annaby 
et al., 2021; Malan and Sharma, 2022; Zhang et al., 2022). Classification 
algorithms such as artificial neural networks (ANN), Support Vector 
Machines (SVM), and Bayesian classifiers are also widely used (Echtioui 
et al., 2024; Echtioui et al., 2023; Thenmozhi and Helen, 2022; Wang 
et al., 2023). CSP is a spatial domain filtering technique that extracts 
spatial components for different classification tasks but focuses solely on 
spatial features while neglecting temporal and frequency domain 
features, potentially affecting experimental results.

In deep learning, Convolutional Neural Networks (CNNs) have 
shown mature applications in natural language processing (Mehrdad 
and Salimi, 2023) and computer vision (Bhatt et al., 2021). Recently, 
they have been introduced to EEG signal classification with promising 
results. For instance, Li et al. (2022) combined CNNs with Long Short-
Term Memory (LSTM) networks, achieving an average decoding 
accuracy and Kappa value of 87.68% and 0.8245, respectively. Zhang 
et al. (2023). developed a multi-branch fusion CNN model using two 
types of CNN networks to analyze EEG data and temporal-frequency 
maps, achieving a 78.52% average accuracy rate. Roy (2022) employed 
a multi-scale CNN combined with data augmentation to extract 
information across different frequency bands, reaching a 93.74% 
accuracy rate on the BCI Competition IV-2b dataset. Zhang et al. 
(2020) proposed a graph convolutional neural network with an 
attention mechanism, which assigns different weights to the features 
extracted by the CNN. This approach enhances the focus on critical 
spatiotemporal features. The model achieved an accuracy rate of 
74.71% on the EEG Motor Movement/Imagery Dataset, outperforming 
advanced networks at the time. These findings demonstrate that deep 
learning methods exhibit strong performance in classifying EEG 
signals. These results demonstrate the effectiveness of deep learning 
methods for EEG signal classification.

However, existing research primarily focuses on learning temporal 
or spatial–temporal features of EEG signals and does not fully exploit 
the frequency and spatial domain information contained within these 
signals. To better utilize the multidimensional characteristics of EEG 
signals, this study proposes the following innovations:

 1. To address the limitations of traditional convolutional networks 
that primarily focus on the spatial–temporal features of EEG 

signals, this study converts raw EEG data into two-dimensional 
spatial-frequency spectral images. EEG signal segments are 
extracted using a sliding window approach, and power spectral 
features are obtained via the Welch method. By selecting 
appropriate frequencies and electrode spatial topology and 
combining these with cubic interpolation, power spectral 
density (PSD) maps containing the spatial-frequency features 
of EEG signals are generated. This feature fusion method 
effectively extracts spatial-frequency characteristics and 
enriches the original data, providing more effective input for 
subsequent model training.

 2. To decode the spatial-frequency feature maps, this study 
proposes a novel 3D CNN architecture. By employing a 
combination of 1D and 2D convolutional structures in 
series, the network performs convolutions in both spatial 
and frequency domains. The dual-layer convolutional 
structure enhances the network’s capacity to extract both 
spatial and frequency domain features from EEG signals, 
facilitating effective learning of spatial-frequency 
characteristics and improving model training 
and performance.

 3. Analyzing the frequency band information of EEG signals 
allows for the identification of features particularly relevant to 
motor imagery tasks, leading to the optimization of the spatial-
frequency feature maps accordingly. By focusing on these key 
features, the training effectiveness and overall model 
performance are significantly enhanced. The proposed method 
is rigorously evaluated against classical machine learning and 
deep learning models using publicly available EEG datasets, 
demonstrating its superior effectiveness. Additionally, 
visualization techniques are employed to observe feature 
classification throughout the convolution process, thereby 
enhancing the model’s interpretability.

2 Data source and data transformation

2.1 Motor imagery dataset

The dataset used to evaluate the network performance in this 
study is the publicly available EEG Motor Movement/Imagery Dataset 
(Goldberger et al., 2000). This dataset includes EEG recordings from 
109 volunteers, capturing their brain activity during various motor 
and motor imagery tasks.

The experimental procedure is as follows: EEG signals were 
collected from 64 electrode sites on the scalp of each participant using 
the BCI2000 system, adhering to the international 10–10 electrode 
system. The sampling rate was 160 Hz (excluding electrodes Nz, F9, 
F10, FT9, FT10, A1, A2, TP9, TP10, P9, and P10). Each participant sat 
in front of a monitor and, upon the display of specific instructions, 
either imagined or performed the corresponding movements. The 
system recorded EEG data corresponding to the motor executed and 
motor imagery (MI) tasks. Each participant completed multiple 
rounds of these tasks with appropriate rest periods between rounds. 
The MI tasks were binary classification tasks: imagining left-fist and 
right-fist movements. Due to the poor quality of EEG signals from 5 
participants (S004, S088, S089, S092, S100), the final analysis used 
EEG data from 104 participants.
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2.2 EEG signal preprocessing

In the signal data preprocessing, we employed segmentation and 
filtering methods. To enhance processing speed and focus on key time 
windows for motor imagery (MI) tasks, the raw EEG data were cut and 
divided into 4-s segments. For each subject and each EEG channel, a total 
of 640 EEG time points from one segment were preprocessed within this 
4-s window, tailored to the characteristics of the selected dataset. To 
minimize interference such as power-line noise, the segmented EEG 
signals were filtered. Relevant EEG frequency bands for MI tasks 
primarily focus on alpha and beta rhythms (Wu and Wang, 2024). 
Therefore, we used a bandpass MNE filter with a stopband attenuation 
value of 40 dB and a gain of approximately −3 dB, operating within the 
frequency range of 5–35 Hz. This filter effectively removes artifacts from 
sources such as electrocardiogram (ECG), eye movements, and unstable 
respiration, thereby improving the overall signal-to-noise ratio.

2.3 Welch power spectral density 
estimation

The Welch power spectral density (PSD) estimation is a method 
for spectral estimation based on averaging over segments of the signal, 
allowing for the determination of energy distribution across different 
frequencies. Compared to traditional spectral estimation methods, 
Welch’s approach offers improved computational efficiency and 
estimation accuracy and is widely used in fields such as signal 
processing, communications, and acoustics. The principle of 
Welch’s power spectral density estimation is as follows (Altan 
et al., 2021):

First, the data x(n) of length N is divided into L segments, each 
containing M data points. The i-th segment of data is denoted as Equation 1:

 
x n x n iM M n M i Li ( ) = + −( ) ≤ ≤ ≤ ≤, ,0 1

 
(1)

Then, using the Fast Fourier Transform (FFT), apply the window 
function w(n) to each data segment and calculate the power spectral 
density for each time segment. The power spectral density of the i-th 
segment is given by:
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In Equation 2, U is referred to as the normalization factor Equation 3:
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Assuming the power spectral densities of each segment are 
approximately independent, the final power spectral estimate, known 
as the Welch power spectral density, is given by Equation 4:
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This estimate is obtained by averaging the power spectral densities 
of individual segments, which reduces variance and improves 
reliability. In this paper, this technique utilizes 640 time points from 
one segment for analysis.

2.4 Data transformation

The process of dataset transformation is illustrated in Figure 1. 
The original EEG signals, collected from 64 channels, are first sliced 
into multiple short time windows using a Segment technique. For 
these EEG segments, the Welch PSD estimation method is employed 
to compute the power spectral density features in the 10–15 Hz 
frequency band for time segment. The selection of the 10–15 Hz 
frequency band is an optimized result obtained through experiments 
and is the most relevant EEG frequency band for the imagined 
movement of the left and right fists. The specific selection criteria are 
detailed in Section 3.1.

Next, we divide the 10–15 Hz frequency band into 10 sub-bands. 
For each sub-band, the signal values are organized into a 2D matrix 
based on the spatial distribution of the 64 electrodes in the dataset. Let 
the individual signal value be  denoted as vn, where 
v v v v vn n n n n= + + + …( )1 2 3 64. . An empty 2D matrix Tn is created, and 
vn is transformed into the 2D matrix Tn (vn) using the spatial 
information from the dataset, as shown below Equation 5:
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(5)

This method effectively represents the signal characteristic 
distribution at different electrode positions within this frequency 
band. EEG signals typically exhibit spatial correlation, where the 
signal variation trends of adjacent channels are similar. To further 
capture the spatial topology relationship among electrodes, this paper 
employs a triangulation-based cubic interpolation technique in 
MATLAB to interpolate the generated 2D matrix.

Specifically, 110 linear vectors are uniformly generated at one 
coordinate, and 100 linear vectors are generated at another. This 
transforms the original matrix shape of (11, 10) into a high-resolution 
matrix with the shape of (110, 100). The high-resolution matrix 
simulates the relatively dispersed distribution of brain electrodes on 
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the brain’s surface, allowing for smoother transitions of EEG signals 
in subsequent image generation processes and restoring more realistic 
features of biological EEG signals.

Next, a 2D EEG map of the frequency sub-bands features is 
formed using the high-resolution matrix data. Finally, we integrate the 
2D EEG maps corresponding to the 10 frequency sub-bands into a 
three-dimensional spatial frequency image dataset. This fusion of 
spatial frequency domain features enhances the capture of the complex 
characteristics of EEG signals and provides richer input data for 
subsequent deep learning models.

3 Motor imagery EEG decoding 
method

3.1 3D convolutional neural network based 
on spatial-spectral feature pictures 
learning

Traditional convolutional network models are limited by the type 
of input raw EEG signals, typically processing only time-frequency or 
spatiotemporal features while neglecting the exploration of spatial and 
frequency domains. To address this limitation, this study proposes a 
MI EEG decoding method based on spatial frequency feature maps, 
utilizing 3D convolutional neural networks (P-3DCNN). This 
approach leverages the local receptive field and weight-sharing 
characteristics of convolutional networks, enabling CNN to learn 
richer feature representations through specially designed 
convolutional structures in both frequency and spatial dimensions. 

Specifically, the method employs two sets of 3D convolutional 
structures to abstractly learn spatial frequency features and capture 
multidimensional EEG signal information. The network comprises 
two sets of convolutional components, each containing spatial 
convolution, frequency domain convolution, and a pooling layer, as 
illustrated in Figure 2.

 1. Input layer: The input to the network is the transformed 2D 
EEG spatial-frequency map dataset. Each sample is represented 
by a data matrix of size 110 × 100 × 10, where 110 and 100 
denote the number of pixels in the x and y axes of the 2D EEG 
map (representing spatial information), and 10 denotes the 
number of image frames in each MI task (representing 
frequency domain information).

 2. Spatial-frequency pseudo-3D convolution module: This module is 
designed to extract spatial and frequency domain features from the 
spatial-frequency maps. Pseudo-3D convolutions sequentially 
convolve EEG map sequences in both spatial and frequency 
directions. For the spatial direction convolution, the 3D convolution 
kernel in Convolution Layer 1 has its frequency domain parameters 
set to 1, while the spatial parameters are configured to 5 × 5. This 
configuration emphasizes spatial convolution, allowing the model 
to focus on the spatial relationships within the EEG data. In 
Convolution Layer 2, the kernel parameters are adjusted to capture 
frequency domain features: the frequency domain parameters are 
set to 5, and the spatial direction parameters are set to 1 × 1. This 
setup enables the layer to effectively extract key frequency 
characteristics from the EEG signals. Following these convolutions, 
operations such as squaring, 3D convolution-pooling, and 

FIGURE 1

Dataset transformation process.
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logarithmic transformations are applied to fully extract and 
enhance the spatial-frequency features of the EEG samples. 
Throughout all convolution layers, we utilize non-linear Rectified 
Linear Unit (ReLU) activation functions in Equation 6 to introduce 
non-linearity and improve the model’s capability to learn 
complex patterns.

 
f x x( ) = ( )max ,0

 
(6)

 3. 3D convolution-pooling module: The convolution-pooling 
module reduces the dimensionality of the EEG signal’s spatial-
frequency features and learns more abstract high-level features, 
achieving multi-scale learning. 3D convolution operations alter 
the data structure, with a stride of 2 and no padding to reduce 
feature map size during pooling. This 3D convolution also 
computes more advanced feature representations from the 
spatial-frequency features extracted by the spatial-frequency 
3D convolution module.

 4. Fully connected layer and softmax output layer: This part maps the 
feature representations to the final classification results, achieving 
motor imagery task classification. The features extracted by the 
convolution-pooling module are processed into feature vectors. 
The fully connected layer consists of 256 neurons, each connected 
to all feature vectors, using ReLU as the activation function. The 
Softmax output layer is widely used for classification tasks, 
normalizing input values into a probability distribution between 
0 and 1. This study’s Softmax layer includes two neurons 
corresponding to the left and right fist motor imagery tasks. The 
calculation for the Softmax output layer is as follows Equation 7:

 
y softmax z softmax W x b


= ( ) = +( )T

 
(7)

Here, x represents the input to the fully connected layer, W is the 
weight matrix, b is the bias term, and ŷ  denotes the output 
probabilities of the Softmax function, given by Equation 8:
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K represents the number of labeled outputs. For instance, K = 2.
 5. Training and optimization of the P-3DCNN network: To 

achieve effective convergence of the P-3DCNN network and 
ensure that the model’s predictions are as close as possible to 
the correct classifications, it is essential to define and 
minimize the network’s loss function. The P-3DCNN network 
can be represented by the mapping function g (Xj; θ): RC×T→ 
RK, where Xj is the given input to the network, which in this 
study is the spatial-frequency EEG dataset, C and T represent 
spatial and frequency features, θ represents all parameters in 
the P-3DCNN network, and is a crucial optimization target 
in network training, and K denotes the number of 
output classes.

To compute the conditional probability distribution 
of the network input Xj given different labels lk, the formula is as 
follows Equation 9:
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To optimize θ and determine the optimal parameters for the 
P-3DCNN, the goal is to minimize the sum of the loss across all 
samples. The optimization can be formulated as follows Equation 10:
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In this context, yj represents the actual class of the sample Xj, and 
loss(g) denotes the loss function, also known as the Negative 
Log-Likelihood Function (NLL) (Murphy, 2012). The Negative 
Log-Likelihood Function for classification tasks, particularly when 
using Softmax, is defined as Equation 11:

FIGURE 2

The architecture of 3D CNN based on spatial-spectral feature pictures learning (P-3DCNN). The convolution kernel sizes for the three convolutional 
layers are (5 × 5 × 1), (1 × 1 × 5), and (2 × 2 × 2), respectively.
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To enhance the training performance of the P-3DCNN network, 
the following optimization strategies were employed:

 1. Mini-batch stochastic gradient descent: The mini-batch stochastic 
gradient descent (SGD) was utilized to update and optimize the 
network parameters (Woodworth et al., 2020). This optimization 
method not only improves model stability and generalization but 
also effectively optimizes memory usage, reduces computational 
requirements, and shortens decoding time.

 2. Batch normalization: After the second and sixth convolutional 
layers, batch normalization (BN) was incorporated. This 
technique helps prevent overfitting and enhances the 
robustness of the model by normalizing the activations and 
gradients, ensuring that the network learns more effectively.

 3. Dropout: A dropout operation with a probability of 50% was 
added after the sixth convolutional layer. Dropout further 
improves the model’s convergence speed, generalization 
performance, and classification accuracy by randomly 
deactivating a subset of neurons during training, which helps 
in reducing overfitting.

 4. These strategies collectively contribute to a more efficient and 
effective training process for the P-3DCNN network, leading 
to better overall performance.

3.2 Evaluation criteria and statistical 
methods

For each subject’s temporal-frequency image dataset, the split 
function in Python is used with a random seed of 42 to shuffle the entire 
dataset. The data is then divided into training and testing sets with a 
75–25% split. Various machine learning and deep learning models are 
trained and evaluated using these sets. The primary evaluation metrics 
include: (1) the average accuracy rate of each model on the subject data. 
The formula for calculating Recall is Equation 12:
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In this formula, N represents the total number of subjects, Ri 
represents the number of correct predictions for subject i, Si represents the 
total number of instances for subject i; (2) the Kappa coefficient, which 
measures the consistency of classification results compared to completely 
random classification, calculated using the following formula Equation 13:

 
Kappa P P

P
o e

e
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−
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(13)

In this context, Po represents the overall accuracy rate, Pe denotes the 
random classification rate (for binary classification problems, Pe is defined 

as 0.5); (3) Recall, which reflects the model’s ability to correctly identify 
positive samples. The formula for calculating Recall is Equation 14:

 
Recall TP

TP FN
=

+  
(14)

Here, True Positive (TP) represents the number of samples 
correctly predicted as positive, and False Negative (FN) represents the 
number of positive samples predicted as negative. A higher recall 
indicates a model’s stronger ability to identify positive samples 
correctly. (4) F1 Score is a metric that combines accuracy rate and 
recall, with its calculation formula being Equation 15:

 
F Precision Recall

Precision call1
2

=
× ×

+Re  
(15)

Here, Precision represents the proportion of true positives among 
the samples predicted as positive. The F1 Score ranges from [0, 1], with 
a higher value indicating better performance of the classification 
model. F1 Score integrates both Precision and Recall, serving as a 
comprehensive evaluation metric. When both Precision and Recall are 
high, the F1 Score will also be high. (5) The confusion matrix for each 
type of motor imagery EEG is computed, which visually reflects the 
classification model’s accuracy for each category and illustrates how 
samples are misclassified into other categories.

4 Experimental results and analysis

4.1 Optimization of specific frequency 
bands

Due to the inherent weakness of EEG signals, they are inevitably 
affected by environmental factors such as power line noise and eye 
movement artifacts during data collection. Even with extensive efforts 
to remove these artifacts during the preprocessing stage, complete 
elimination remains challenging. Therefore, before converting the raw 
EEG signals into two-dimensional EEG topographic maps, the EEG 
topographic maps generated for different frequency bands are first 
subdivided, with frequency bands segmented into 5 Hz intervals (Pei 
et al., 2021), as shown in Figure 3. Subsequently, these subdivided data 
are pre-classified, and the classification results are presented in Table 1.

Based on the classification results in Table 1, it is evident that the 
10–15 Hz frequency band dataset performs better than others, with 
an average accuracy rate higher than that of the other bands. 
Therefore, this study has decided to use the 10–15 Hz frequency band 
data for subsequent EEG signal decoding and classification. This 
choice not only capitalizes on the significant features within this 
frequency band but also effectively reduces decoding time and 
enhances overall classification performance.

4.2 Comparison of results from decoding 
methods

The experimental setup was designed to evaluate the performance 
of the proposed model under controlled conditions. We conducted the 
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training for a total of 500 epochs, employing a learning rate of 0.001 
to facilitate effective convergence. The batch size was set to 64, 
optimizing the trade-off between training speed and memory usage. 
All experiments were executed on an NVIDIA RTX 3090 GPU-24GB, 
ensuring sufficient computational resources to handle the demands of 
deep learning tasks. These configurations were selected to enhance the 
robustness and accuracy of the model’s performance in the 
decoding tasks.

To validate the decoding performance of the P-3DCNN network, 
we  compared it with several advanced algorithms, including two 
traditional machine learning algorithms and five state-of-the-art deep 
learning algorithms.

Antony et  al. (2022) used online recursive independent 
component analysis to analyze seven principal components and 
employed adaptive SVM for classification. Yacine et  al. (2022) 
combined Riemannian space with artificial neural networks, using 144 
samples of 253-dimensional data as input, with ReLU as the activation 
function, completing the classification task after 60 iterations. Zhang 
et  al. (2023) utilized two convolutional neural network-based 
architectures to extract temporal and frequency features. These 
features are then fused and input into a fully connected layer for 
classification. Li and Ruan (2021) proposed a four-layer 3DCNN for 
feature extraction from EEG data, optimizing decoding capabilities 
with ReLU and batch normalization after each convolution. Lawhern 
et al. (2018) introduced EEGNet, utilizing one-dimensional and deep 
convolutional layers for real-time feature extraction. Chaudhary et al. 
(2019) created DeepConvNet with a convolutional layer and pooling 
layer, enhanced by short-time Fourier transform for improved time-
frequency feature capture. Milanes Hermosilla et al. (2021) developed 
ShallowConNet, which uses two shallow convolutional layers with 
small kernels, enabling fast decoding and effective handling of local 
time-frequency features. The decoding performance of these 

networks, based on publicly available datasets, is summarized in 
Table 2.

The comparison results in Table  2 indicate that deep learning 
methods, compared to traditional machine learning approaches such as 
CSP + SVM and ANN, significantly enhance EEG signal classification 
accuracy and Kappa coefficient metrics. Specifically, the proposed 
P-3DCNN method achieves an average accuracy rate of 86.69%, which is 
12–31% higher than traditional machine learning and existing advanced 
deep learning algorithms. The P-3DCNN method also attains an average 
Kappa coefficient of 0.751, falling between 0.61 and 0.80, reflecting a high 
level of consistency. Among similar machine learning and deep learning 
methods, 3DCNN has the highest Kappa coefficient of 0.506, but it is still 
lower than that of the proposed P-3DCNN. The P-3DCNN method also 
performs well in terms of recall and F1 score. Overall, P-3DCNN 
significantly improves decoding performance compared to methods like 
CSP + SVM, EEGNet, and DeepCovNet, validating its effectiveness in the 
domain of motor imagery EEG decoding.

Further analysis reveals that considering both frequency and 
spatial domain information, 3DCNN improves the average accuracy 
rate by 12.29% over traditional CNN. By optimizing the CNN 
architecture and employing methods such as spectrogram generation, 
the proposed P-3DCNN achieves an 11.61% improvement in average 
accuracy rate over 3DCNN, while also achieving higher Kappa 
coefficients, recall rates, and F1 scores. This underscores the superior 
performance of the P-3DCNN decoding scheme for motor imagery 
EEG classification tasks.

4.3 Analysis of confusion matrix results

To provide a more comprehensive evaluation of the proposed 
method’s performance in recognizing various types of motor imagery 

FIGURE 3

Frequency band segmentation method.

TABLE 1 The average accuracy rate for each frequency band.

Frequency 
bands

5–10 Hz 10–15 Hz 15–20 Hz 20–25 Hz 25–30 Hz 30–35 Hz

Accuracy ± std 85.34% ± 3.7% 87.33% ± 3.3% 86.98% ± 3.5% 87.15% ± 3.8% 87.28% ± 3.6% 86.83% ± 3.1%
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FIGURE 4

The distribution of features of the different model’s processing layers during the training of subject-2. (A) Raw data, (B) the Conv1, (C) the first pooling 
layer, (D) the second pooling layer, (E) fully connected layer, (F) the softmax layer.

EEG, we  calculated the average confusion matrix, as shown in 
Figure 5. In the confusion matrix, rows represent the actual motor 
imagery categories (e.g., left fist, right fist), while columns represent 
the predicted motor imagery categories. When the row and column 
categories match, it indicates the proportion of correctly classified 
motor imagery tasks; mismatches represent the proportion of 
misclassified tasks.

Figures  5A,B show that EEGNet and DeepConvNet methods 
exhibit similar performance in recognizing motor imagery EEG for 
this task, with accuracy rates both below 80%. Figure 5C reveals that 
ShallowConvNet performs well for left fist imagery, with accuracy 
rates exceeding 80%, but struggles with right fist imagery, where the 
accuracy rate falls below 70%. Figure 5D illustrates that the basic CNN 
network structure yields suboptimal classification results compared to 
other networks, although 3DCNN (Figure  5E) shows substantial 
improvement. However, the accuracy rate for left fist imagery still does 

not exceed 80%. This may be due to both left and right fist motor 
imagery occupying the same sensory motor area, leading to lower 
spatial resolution of EEG signals. This suggests that while 3DCNN 
attempts to analyze the data from spatial and frequency domains, its 
decoding performance is still not ideal and does not fully leverage 
spatial-frequency domain information. Hence, even with advanced 
machine learning algorithms, there are inherent limitations in 
recognizing EEG signals for left and right fist motor imagery, 
indicating substantial room for improvement.

In contrast, the proposed P-3DCNN method (Figure  5F) 
significantly improves accuracy rates for both left and right fist motor 
imagery EEG, with rates reaching 86 and 87%, respectively. This 
indicates that the P-3DCNN method more effectively extracts spatial-
frequency domain information from the 2D spectrograms, resulting 
in better decoding performance by analyzing higher resolution 
spatial-frequency features.

TABLE 2 The decoding performance for each method.

Method Decoding performance (Average)

Accuracy ± std Kappa Recall F1-score

CSP + SVM (Antony et al., 2022) 56.73% ± 6.34% 0.087 0.163 0.261

ANN (Yacine et al., 2022) 61.43% ± 9.66% 0.368 0.788 0.686

CNN (Mehrdad and Salimi, 2023) 63.43% ± 8.62% 0.282 0.364 0.414

3DCNN (Li and Ruan, 2021) 75.72% ± 5.82% 0.506 0.646 0.704

EEGNet (Lawhern et al., 2018) 63.39% ± 10.34% 0.278 0.511 0.571

DeepConvNet (Chaudhary et al., 2019) 62.56% ± 6.03% 0.248 0.987 0.729

ShallowConNet (Milanes Hermosilla et al., 

2021)
67.83% ± 9.93% 0.363 0.777 0.674

P-3DCNN 86.69% ± 3.35% 0.751 0.826 0.864
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4.4 Visualization

In this section, we will visualize the process of the P-3DCNN to 
gain an intuitive understanding of its performance. We focus on the 
training process of Subject-2 to examine both accuracy and loss over 
the training epochs. As shown in Figure  6, the model’s accuracy 
improves rapidly between epochs 25 and 75, demonstrating a period 
of significant learning. After epoch 100, the accuracy stabilizes, 
indicating that the model has reached a steady state in terms of 
performance. Concurrently, the loss function approaches zero after 
100 epochs, reflecting the excellent convergence capability of the 
P-3DCNN model. These observations highlight the model’s efficiency 
in learning and its ability to effectively minimize error, illustrating the 
robustness and effectiveness of the P-3DCNN approach in handling 
the given task (Figure 6).

To further investigate the discriminability of the features extracted 
by the model, we use t-SNE to visualize the feature parameters learned 
by the P-3DCNN model. Figure 4 presents the distribution of features 
at various stages of the model’s processing layers.

In Figure 4A, the raw data is scattered with no clear structure. 
After processing through the first convolutional layer, as shown in 
Figure 4B, the features become more concentrated, reflecting the 
model’s initial capability to identify and organize important 
patterns. The output of the first pooling layer in Figure 4C reveals a 
more defined feature separation into two main classes, indicating 
an improved ability to differentiate features. Figure 4D shows the 
output of the second pooling layer, where the features are further 
refined, demonstrating enhanced classification performance. This 
refinement is due to the model’s deeper analysis of EEG features 

from both temporal and frequency domains, leading to more 
effective decoding of the EEG signals. The output of the fully 
connected layer in Figure 4E maps high-dimensional features to the 
target space and integrates global information, preparing the data 
for final classification. Finally, Figure 4F displays the output of the 
softmax layer, showing the final classification results. This final 
visualization confirms that the P-3DCNN model effectively extracts 
and classifies the most discriminative Motor Imagery (MI) EEG 
features from the raw signal.

5 Discussion and conclusion

This study proposes a Pseudo-3D Convolutional Neural Network 
(P-3DCNN) structure based on spatial-frequency feature learning to 
extract more distinguishable features from motor imagery EEG signals, 
enhancing EEG signal classification performance. First, pseudo-3D 
convolutional layers are designed in the frequency and spatial domains 
to extract spectral and spatial distribution features from EEG signals. 
Next, a combination of two special 3D convolutional structures is used 
to model these spatial-frequency features jointly. Finally, the output 
layer processes these features to classify two motor imagery tasks.

Experimental results show that the proposed P-3DCNN method 
outperforms traditional machine learning and deep learning methods, 
with improvements in the average accuracy rate (86.89%) and Kappa 
coefficient (0.751). This indicates that the rich discriminative features 
in the frequency and spatial domains can significantly enhance EEG 
signal classification performance. Compared to directly using raw 
time-domain EEG signals, this method effectively decodes 

FIGURE 5

The confusion matrix for motor imagery EEG classes with deep learning decoding method. (A) EEGNet, (B) DeepConvNet, (C) ShallowConvNet, 
(D) CNN, (E) 3DCNN, (F) P-3DCNN, respectively.
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spatial-frequency information through feature extraction and deep 
learning model design, thereby improving the accuracy and reliability 
of classification.

Currently, the designed deep convolutional network extracts 
spatial-frequency features of EEG within the 10–15 Hz band, but the 
available EEG dataset is limited in size. Future research will focus on 
addressing the data scarcity issue by employing methods such as 
Generative Adversarial Networks for data augmentation, increasing 
the dataset size, and further optimizing the P-3DCNN model’s 
generalization capability to provide more stable and reliable 
algorithmic support for motor imagery brain-computer 
interface systems.
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