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technique to collect 
representative samples from 
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Ensuring representativeness of collected samples is the most critical requirement 
of water sampling. Unmanned surface vehicles (USVs) have been widely adopted 
in water sampling, but current USV sampling path planning tend to overemphasize 
path optimization, neglecting the representative samples collection. This study 
proposed a modified A* algorithm that combined remote sensing technique while 
considering both path length and the representativeness of collected samples. Water 
quality parameters were initially retrieved using satellite remote sensing imagery and 
a deep belief network model, with the parameter value incorporated as coefficient 
Q in the heuristic function of A* algorithm. The adjustment coefficient k was then 
introduced into the coefficient Q to optimize the trade-off between sampling 
representativeness and path length. To evaluate the effectiveness of this algorithm, 
Chlorophyll-a concentration (Chl-a) was employed as the test parameter, with 
Chaohu Lake as the study area. Results showed that the algorithm was effective in 
collecting more representative samples in real-world conditions. As the coefficient 
k increased, the representativeness of collected samples enhanced, indicated by 
the Chl-a closely approximating the overall mean Chl-a and exhibiting a gradient 
distribution. This enhancement was also associated with increased path length. 
This study is significant in USV water sampling and water environment protection.
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1 Introduction

Water pollution has long been a critical global concern (Schwarzenbach et al., 2010). Daily 
water safety has a direct and perpetual impact on human beings (Bhagwat, 2019). Water 
sampling and quality testing are essential components for safeguarding the water environment 
(Zhang, 2024; Behmel et al., 2016). Traditional water sampling methods primarily involve 
manual collection, which is time-consuming and labor-intensive (Pule et al., 2017). In recent 
years, the innovation of unmanned surface vehicles (USVs) has resulted in their widespread 
use in water sampling, effectively replacing traditional manual sampling methods 
(MahmoudZadeh et al., 2022). This advancement facilitates efficient and flexible water sample 
collection and environmental monitoring of aquatic ecosystems (Yu et al., 2022).

The initial USV-based sampling approach is typically collecting samples after reaching a 
designated water area through remote manipulation (Yu et al., 2019). While this technique is 
simple, effective control in vast water areas is challenging due to restrictions in observation 
and communication distance (Young and Peschel, 2020; Peng et al., 2021). Subsequently, 
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studies on path planning algorithms for USV sampling gradually 
emerged (Yu et al., 2022; Song et al., 2019; Liu and Bucknall, 2015), 
and USVs can navigate autonomously along the planned routes. 
Regardless of global, local or hybrid path planning algorithms, they 
all focus on the optimization of path length, time cost, smoothness, 
and collision avoidance (Xing et al., 2023; Yu et al., 2022; Vagale et al., 
2021; Yu et al., 2019; Yu et al., 2024). However, these studies tend to 
overemphasize path optimization, neglecting the core objective of 
collecting representative samples that accurately reflect the condition 
of the water body.

In an USV water sampling mission, multi-goal path planning is 
another prevalent path planning algorithm (Ma et al., 2021; Luo et al., 
2024). For example, USVs are employed to collect data and samples 
from multiple dispersed water quality monitoring stations (Liu and 
Bucknall, 2018). Unlike the aforementioned path planning algorithm 
that features a single goal point, the multi-goal path planning 
algorithm has multiple goal points, requiring the algorithm to design 
a route that efficiently visit each goal point with minimal cost (Liu and 
Bucknall, 2018). The task allocation in the multi-goal path planning 
can be summarized as a Travelling Salesman Problem. This type of 
algorithm is typically suitable for situations where the sampling points 
are predetermined, such as in the collection of samples from multiple 
monitoring stations or designated locations. Although samples 
collected by this method may be  representative, its practicality is 
restricted and it is not suitable for situations where the sampling site 
is not predetermined. Therefore, there is an urgent requirement for an 
algorithm that meets the three crucial needs: minimizing cost, 
ensuring collecting representative samples, and adapting to situations 
where sampling points are not predetermined.

The A* algorithm is a well-known global path planning algorithm 
used to find the shortest route in a known global map. As a heuristic 
search algorithm, A* is more efficient than other deterministic 
methods due to its ability to consistently provide an optimal path with 
the minimum cost, thereby ensuring its completeness (Song et al., 
2019). A* algorithm is widely used in the field of USV path planning 
due to its simplicity and high efficiency. It was initially introduced to 
this field by integrating with reactive navigation to propose an 
enhanced three-layered architecture for USV path planning within a 
harbor (Casalino et al., 2009). More studies were conducted on the 
basis of A* algorithm to adapt to the path planning in specific 
situations (Song et  al., 2019; Sang et  al., 2021; Singh et  al., 2018; 
Casalino et al., 2009; Naeem et al., 2012). For instance, Sang et al. 
(2021) proposed a hybrid path planning algorithm that combines A* 
and artificial potential field to solve the path planning problem of USV 
formations. Singh et al. (2018) proposed a constrained A* algorithm 
to address the motion planning problem for USV navigating in a 
maritime environment containing dynamic obstacles.

Remote sensing refers to the science of identifying Earth’s surface 
features and estimating their geo-biophysical properties through the 
use of electromagnetic radiation as a medium of interaction (Campbell 
and Wynne, 2011). With the advancement of remote sensing 
technology, it is now possible to obtain concentrations of water quality 
parameters in a non-contact manner, over large areas, and in quasi-
real time (Ritchie et al., 2003; Wang and Yang, 2019; Gholizadeh et al., 
2016). The concentrations of water quality parameters retrieved from 
remote sensing imagery can serve as prior knowledge for selecting 
sampling locations to address the representativeness of 
sampling points.

In this paper, a modified A* algorithm combining remote sensing 
technique was proposed, which simultaneously minimizes cost while 
ensuring that the sampling points are representative and not 
predetermined. Chlorophyll-a concentration (Chl-a), an important 
indicator of aquatic ecological status and can reflect the eutrophication 
level of the water body, was employed as the test water parameter to 
validate the proposed algorithm. Chaohu Lake was selected as the 
study area. The main contributions of this work are as follows:

 (1) To ensure the representativeness of collected samples, the 
heuristic function of the A* algorithm was modified by 
incorporating a sampling coefficient Q. The coefficient Q was 
derived from the Chl-a value retrieved by remote sensing 
technique through a negative exponential transformation of e. 
This adjustment ensured that Chl-a of the collected samples 
approximated the overall mean Chl-a of the entire water body 
and exhibited a gradient distribution.

 (2) To optimize the trade-off between sampling representativeness 
and path length, an adjustment coefficient k was introduced 
into the calculation formula of the sampling coefficient Q. As 
coefficient k increases, the modified A* algorithm plays less 
emphasis on path length but more emphasis on the Chl-a’s 
spatial distribution. More representative samples will 
be  collected at the expense of increasing path length, and 
vice versa.

2 Study area and materials

2.1 Overview of study area

Chaohu Lake, situated in central Anhui Province, is one of China’s 
five prominent freshwater lakes (Figure 1). Covering approximately 
770 km2, the lake maintains an average depth of 2.7 m and an average 
water level of 8.0 m (Fang et al., 2019). Chaohu Lake receives inflow 
from approximately 33 rivers, with 8 primary tributaries including 
Nanfei River, Shiwuli River, Pai River, Hangbu River, Zhegao River, 
Shuangqiao River, Zhao River, and Baishitian River, and its principal 
outflow is the Yuxi River (Wang and Dou, 1998). The annual mean 
temperature in the Chaohu Lake basin is approximately 15 ~ 16°C, and 
the average annual rainfall varies between 500 and 1800 mm (Yang 
et al., 2020). The escalating population within the basin, coupled with 
the swift advancement of industrial and agricultural activities, has 
resulted in the discharge of substantial amounts of industrial effluents 
and municipal wastewater into the lake. This influx has notably 
heightened the levels of nutrients and organic substances and 
accelerated the process of lake eutrophication (Yang et al., 2013).

2.2 Materials

Samples in Chaohu Lake were collected from a manned vessel 
under clear weather conditions coinciding with the transit of 
Sentinel-2 satellites on June 15, 2022, August 14, 2022, and June 10, 
2023. A total of 154, 80, and 49 samples were acquired on these 
respective dates, with the sampling sites delineated in Figure 1. At each 
sampling point, 1,000 mL of surface water samples were collected, and 
Chl-a was subsequently determined using spectrophotometric 
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method once the samples were transported back to the laboratory. For 
all sampling points, the highest Chl-a was recorded on June 10, 2023, 
at the northeastern shoreline of Chaohu Lake, reaching 192.78 mg/m3. 
The lowest value was observed on June 15, 2022, at the western part 
of the lake, at 23.25 mg/m3. The average Chl-a across the sampling sites 
was 65.43 mg/m3, indicating a significant level of eutrophication in 
Chaohu Lake.

The harmonized Sentinel-2 Multispectral Instrument (MSI) 
Level-2A surface reflectance datasets from the aforementioned 3 days 
were gathered for retrieving Chl-a. The MSI dataset was downloaded 
from the Google Earth Engine platform,1 with the cloud coverage 
remaining below 10%. Eleven bands from these images were selected, 
encompassing four 10-m resolution bands: 496 nm (B2), 560 nm (B3), 
665 nm (B4) and 835 nm (B8), and six 20-m resolution bands: 704 nm 
(B5), 740 nm (B6), 782 nm (B7), 864 nm (B8A), 1,613 nm (B11) and 
2,202 nm (B12), and one 60-m resolution band: 443 nm (B1).

3 Methods

3.1 Chlorophyll-a retrieval

In this study, a Deep Belief Network (DBN) model was utilized to 
retrieve Chl-a. DBN was proposed by Geoffrey Hinton in 2009 

1 https://earthengine.google.com/

(Hinton, 2009). It is a generative model consisting of multiple layers 
of latent variables, constructed by several sequentially stacking 
Restricted Boltzmann Machines (RBMs; Mohamed et al., 2011). Each 
RBM undergoes layer-by-layer unsupervised pre-training, followed by 
supervised fine-tuning of the entire network using the backpropagation 
algorithm (Hua et al., 2015). DBN has found widespread applications 
in remote sensing retrieval (Yuan et al., 2020), such as water quality 
parameters (Sagan et al., 2020), leaf area index (Sun et al., 2021), and 
soil moisture (Yang et al., 2021). The training of the DBN in this study 
was conducted using an 8-layer network structure with 64 neurons in 
each layer and a total of 1,000 training iterations.

To fit the relationship between the in situ Chl-a and reflectance 
spectra (termed as ( )rsR λ , λ refers to wavelength) of MSI, 80% of the 
samples (N = 227) were designated as the training dataset and input 
into the DBN model, while the remaining 20% (N = 56) were reserved 
as the testing dataset for assessing the model’s accuracy. The DBN 
model utilized in this study consists of 2 hidden layers, each with 128 
neurons, and was trained for 500 epochs. The model used the sigmoid 
activation function, cross-entropy as the loss function, and stochastic 
gradient descent as the optimizer. The initial seven bands of MSI, with 
bandwidths ranging from 443 to 782 nm, were employed as input 
features (Li et al., 2021; Pahlevan et al., 2020). To further strengthen 
the robustness of the developed model, we  included six band 
combinations derived from previously established high-performance 
Chl-a retrieval algorithms (Table  1). The bands specified in the 
reference model were substituted with the corresponding bands from 
the MSI. The output was the Chl-a (Figure 2).

FIGURE 1

Location and true-color image of the study area, Chaohu Lake. The sample points in different colors indicate samples collected on different dates, 
while the numbers in brackets represent the quantity of sample points.
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3.2 Water sampling path planning

3.2.1 A* algorithm
The A* algorithm, first published in 1968 by Peter Hart, Nils Nilsson, 

and Bertram Raphael from the Stanford Research Institute, is regarded 
as an extension of Dijkstra’s algorithm (Hart et al., 1968). It is a prominent 
heuristic search algorithm in the domain of artificial intelligence. The 
cost function of A* algorithm is formulated as Equation 1

 ( ) ( ) ( )f n g n h n= +  (1)

where ( )g n  denotes the cost from the initial node to node n, ( )h n  
represents the estimated cost from node n to the target node, i.e., 
heuristic function, and ( )f n  equals to the sum of ( )g n  and ( )h n  
(Hart et  al., 1968). The selection of the cost function is heavily 
influenced by the specific scenario.

The heuristic function ( )h n  has a profound impact on the 
performance of the A* algorithm. If ( )h n  is always less than or equal 
to the cost from node n to the target node, the A* algorithm guarantees 
finding the shortest path. However, a smaller value of ( )h n  means the 
algorithm will explore more nodes, leading to a slower performance. 
If ( )h n  is greater than the actual cost from node n to the target node, 

the A* algorithm may not guarantee finding the shortest path, but it 
will be efficient. Hence, through modifying the heuristic function, 
we  can regulate the algorithm’s speed and accuracy. In certain 
instances, instead of seeking the shortest path, we  may prioritize 
finding a path as quickly as possible.

For grid-based graphs, the heuristic function can utilize Manhattan 
distance, diagonal distance, and Euclidean distance. In this study, the 
eight-neighborhood node expansion method was employed in a raster 
map, with the Euclidean distance from the current node to the target node 
as the heuristic function. The ( )h n  is formulated as Equation 2

 ( ) ( ) ( )2 22
t n t nh n x x y y= − + −  (2)

where tx  and ty  denote the horizontal and vertical coordinates of 
the target node, respectively, whereas nx  and ny  represent the 
coordinates of the current node n.

3.2.2 The modified a* algorithm for water 
sampling path planning

Environmental modeling is the foundation of USV path planning. 
In this study, Chl-a retrieved in Section 3.1 is resampled to a 
200 m-resolution raster map. The Chl-a value is treated as a property 

TABLE 1 The band combinations used in this study and their reference indexes.

Band combination used Reference band combination References

( )
( )

3 560
1 443

B
B

( )
( )

562
483

R
R

rs
rs

Ha et al. (2017)

( )
( )

5 705
4 665

B
B

( )
( )

709
665

R
R

rs
rs

Duan et al. (2012); Gurlin et al. (2011)

( )
( )

6 740
4 665

B
B

( )
( )

743 ~ 753
662 ~ 672

R
R

rs
rs

Gitelson et al. (2008)

( ) ( )
( ) ( )

5 705 4 665
5 705 4 665

B B
B B

−
+

( ) ( )
( ) ( )
709 665
709 665

R R
R R

rs rs
rs rs

−
+

Mishra and Mishra, 2012, Gitelson et al. (2008)

( ) ( )( ) ( )4 665 5 704 6 7401 1B B B− ∗− − ( ) ( )( ) ( )~ 670 ~ 710 ~ 7501 1R R Rrs rs rs− ∗− − Gitelson et al. (2011)

( ) ( )
( ) ( )

4 665 5 704

6 740 5 704

1 1

1 1
B B

B B

−

−

− −

− −
( ) ( )
( ) ( )
665 704

740 704

1 1

1 1
R R

R R
rs rs

rs rs

−

−

− −

− −

Yang et al. (2010)

FIGURE 2

Schematic diagram of the main process for estimating chlorophyll-a concentration (Chl-a) using a deep belief network (DBN) model.
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of the grid. The grid with a Chl-a value was assigned 1, while the grid 
with null value was assigned 0, serving as an obstacle. All the grids 
along a USV route are considered as sampling points. By reducing the 
movements of USVs to eight possible directions, the trajectory is 
decomposed into individual movements, each of which will 
be recorded. The actual grid coordinates are used as unique identifiers 
for each grid position, allowing the planned path to be used directly 
for real-world sampling. The technology roadmap of water sampling 
path planning for USVs is demonstrated in Figure 3.

This modified A* algorithm necessitates a route that is as brief as 
possible, while ensuring the collected samples are representative. To 
ensure the sampling representativeness, it is crucial to ensure that the 
average Chl-a of the collected samples closely approximates the 
average concentration of the entire water body. Simultaneously, 
maintaining a gradient in Chl-a among the collected samples is also 
necessary. This means that Chl-a of the collected samples should not 
be limited to a specific concentration range, but should instead exhibit 
maximum variance.

In order to achieve the above purpose, the retrieved Chl-a and 
path length were combined as the cost function of A* algorithm, 
instead of only considering the path length. The key steps of the A* 
algorithm involve computing the movement cost from the current 

node to its eight neighboring nodes, and the node with the lowest cost 
is then removed from the OPEN_list (a list that contains all the nodes 
waiting for expansion) and added to the CLOSE_list (a list that 
contains all the nodes that have already been expanded). The improved 
cost function is ( )F n  Equation 3

  ( ) ( )F n f n Q= ∗  (3)

 ( )exp | – – |Q k Chl a Chl a= − ∗ −

where ( )f n  is the cost function only considering the path length, 
Q is called the sampling coefficient, –Chl a and –Chl a is Chl-a of an 
eight neighboring node and the average Chl-a of the entire water body, 
respectively, and [ )0,k ∈ +∞  is called the adjustment coefficient.

The adjustment coefficient k holds a pivotal position in the 
modified A* algorithm for water sampling path planning. By adjusting 
the value of k, we  can modify the influence of Chl-a’s spatial 
distribution on the routing of USVs. As k increases, the algorithm 
plays more emphasis on the Chl-a’s spatial distribution. Thus, USV is 
more likely to navigate towards nodes where the Chl-a deviates from 

FIGURE 3

Technology roadmap of water sampling path planning for unmanned surface vehicles (USVs).
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the average concentration of the entire water body ( –Chl a ). 
Conversely, a smaller k implies a greater influence of path length on 
route selection, with USVs more likely to choose a shorter route. In 
the extreme case, when the coefficient k equals to zero, the modified 
A* algorithm degenerates into a classic A* algorithm.

To validate the effectiveness of this algorithm, we recorded the 
path length, as well as the mean and variance of Chl-a in the collected 
samples, and analyzed their change trend as coefficient k increases. 
We also performed a one-way analysis of variance (ANOVA) on Chl-a 
of collected samples under different k values to assess whether the 
coefficient k has a significant effect on the variability of the 
collected samples.

4 Results

4.1 Chlorophyll-a retrieval

The statistical metrics obtained from the training and testing 
dataset indicate good performance for the DBN model, with an R2 of 
0.883 and 0.821, respectively. The retrieved Chl-a of Chaohu Lake in 
June 10, 2023 is demonstrated in Figure 4 after resampling to 200-m 
resolution. The retrieval results reveal that Chl-a is higher in the 
shoreline of Chaohu Lake and the eastern coast of its islands, usually 
exceeding 100 mg/m3, and even achieving 180 mg/m3. Except for these 
areas, the majority of regions exhibit low Chl-a, not exceeding 50 mg/
m3. Moreover, Chl-a in the western part of Chaohu Lake is higher 
compared to the eastern part. This is primarily due to the proximity 
of the western part of Chaohu Lake to urban areas, where domestic 
and industrial wastewater is discharged.

The measured Chl-a values at 49 points on June 10, 2023, are 
compared with the retrieval values, and the resulting scatter plot is 
shown in Figure 4. The mean relative error (MAE), root mean square 
error (RMSE) and R2 are 17.702, 21.231, and 0.768, respectively. This 
indicates that the retrieved Chl-a demonstrates high accuracy, 
providing a robust foundation for subsequent path planning. Based 
on the resampled Chl-a raster map, we completed the environmental 
modeling for Chaohu Lake, as demonstrated in 
Supplementary Figure S1 online.

4.2 Water sampling path planning

By adjusting the coefficient k from 0.0 to 2.0, various USV routes 
are derived (Figure 5; Supplementary Figure S2). The grey route (k = 0) 
represents the shortest trajectory, with the path length of 257.17 grid 
units, where the spatial resolution of the raster Chl-a is 200 m. The 
routes depicted in green, cyan, and maroon correspond to k values of 
0.5, 1.0, and 2.0, respectively, with path lengths of 282.18, 296.18, and 
299.08 grid units accordingly.

As the coefficient k increases, the modified A* algorithm 
demonstrates a decreasing emphasis on path length but a growing 
emphasis on the Chl-a’s spatial distribution (Figure 6). The path length 
gradually increases from 257.17 (k = 0) to 297.00 grid units (k = 0.8), 
until reaching a plateau between 297.00 and 299.08 grid units (k = 2.0). 
The average Chl-a of the collected samples exhibits a fluctuating 
decline from 56.78 to 54.54 mg/m3, gradually approaching the mean 
concentration of the entire water body ( –Chl a  = 53.70 mg/m3). The 
variance of Chl-a for the collected samples increases from 130.51 
(k = 0.1) to 217.13 (k = 2.0). When k = 0, the variance of Chl-a is 

FIGURE 4

The retrieved Chl-a of Chaohu Lake in June 10, 2023 and the scatter plot of predicted and measured Chl-a.
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extremely high (Figure 6), because the route travels through an area 
with exceptionally high concentration (Figure 5 ①).

Chl-a of all collected samples along USV routes with different 
coefficient k is represented in Figure 7. The peak in the gray line 
(k = 0) marked with a red circle indicates the area with unusually 
high Chl-a (Figure 5 ①). As the coefficient k rises from 0.5 to 2.0, 
the line chart of Chl-a exhibits increasingly pronounced 
fluctuations, with corresponding variances of 183.97, 195.67, and 

217.13, respectively. This phenomenon can also be  observed in 
Figure 5 ②–④, where the three colored routes, as opposed to the 
grey route (the shortest route), tend to pass through areas where 
Chl-a deviates from the overall mean concentration. The results of 
one-way ANOVA revealed that coefficient k has a significant effect 
on the variability of Chl-a in the collected samples, with an F value 
of 1.781 exceeding the critical value of 1.573, and a p value of 0.017 
(<0.05).

FIGURE 5

The calculated USV routes based on the modified A* algorithm. The two red triangles represent the starting and ending point, respectively.

FIGURE 6

The graph of changes in path length, mean and variance of Chl-a for different routes obtained by the modified A* algorithm as the coefficient k 
increases from 0.0 to 2.0.
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5 Discussion

5.1 Comparisons with previous studies

This study proposed a modified A* algorithm that takes into account 
not only the path length, but also the sampling representativeness in the 
water quality sampling path planning of USVs. The verification results 
showed that the proposed algorithm was effective in real-world 
conditions and achieved the trade-off between the representativeness of 
sampling points and the path length. As the coefficient k increased, the 
representativeness of the collected samples enhanced, but this came at 
the cost of increased path length, and vice versa.

This study differs significantly from previous researches, which 
focused primarily on factors such as path length, time consumption, 
path smoothness, and collision avoidance. Until now, there have been 
no observed studies on USV-based water quality sampling path 
planning that consider the representativeness of collected samples. 
Table 2 lists several typical studies on USV path planning, including 
studies on water quality sampling path planning of USVs. Researches 
on path planning with a single target point (referred to here as single-
goal path planning) can be broadly categorized into global, local, and 
hybrid algorithms. In all three types of studies, path design typically 
takes into account both path length and time consumption, while 
some studies also consider path smoothness. Global path planning 
also focuses on global obstacle avoidance, whereas local path planning 
usually emphasizes dynamic obstacle avoidance. Hybrid algorithms 
typically take into account all the aforementioned four factors. For 
instance, Yu et al. (2019) introduced a hybrid approach that combined 
A* and artificial potential field. This method took into account the 
four factors and demonstrated effectiveness in surface water 
environment with unknown districts. Multi-goal path planning 
algorithms typically focus on path length and time consumption, with 
few studies also considering path smoothness, such as Zhao et al. 
(2023) and Yu et al. (2024).

Another distinguishing aspect of our path planning research with 
current studies is its integration of remote sensing technology, which 
is rarely seen in current USV path planning field. Although, some 
recent studies have employed satellite imagery for environmental 
modelling in USV path planning, demonstrating the practicality of 
their algorithms in the real world (Yang et al., 2015; Su et al., 2023; 
Song et al., 2019), these studies fail to fully harness the information 
contained within the imagery. Our study, for instance, utilized Chl-a 
values retrieved from remote sensing imagery as prior knowledge to 
facilitate the collection of representative samples.

5.2 Possible factors influencing the 
adjustment amplitude of coefficient k

As mentioned above, the modified A* algorithm can alter the 
emphasis placed on path length and Chl-a’s spatial distribution by 
adjusting the coefficient k. Therefore, after obtaining the retrieved Chl-a 
and determining the starting and ending points of USVs, our only 
approach is to incrementally increase the k value to achieve the optimal 
routing. However, we still do not know the appropriate adjustment 
amplitude for a specific water body. The distance between the starting 
and ending points and the data distribution of Chl-a are two potential 
factors influencing the adjustment amplitude of coefficient k.

5.2.1 The distance between the starting and 
ending points

The distance between the starting and end points of USVs has a 
significant impact the adjustment amplitude of coefficient k, with the 
adjustment amplitude of k generally increasing as the distance 
between these two points decreases. In practical experiments, it is 
common for the starting and end points of USVs to be very close or 
even coinciding. In this case, selecting routes with more representative 
samples, as opposed to the shortest route, will lead to a significant 

FIGURE 7

Chl-a of collected samples for routes with different coefficient k obtained by the modified A* algorithm.
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increase in path length. Therefore, after calculating the total cost, the 
modified A* algorithm tends to select a route with a shorter length 
rather than one with more representative samples. Thus, to address 
this issue, increasing the value of coefficient k is essential to place 
greater emphasis on the spatial distribution of Chl-a within the 
algorithm. This adjustment will compel the algorithm to overcome the 
cost associated with increased path length and to consider the spatial 
distribution of Chl-a.

Figure 8 suggests that when the starting and ending points are in 
close proximity, the adjustment amplitude of coefficient k is 20 times 
greater in order to significantly alter the routes compared to when 
these two points are at a greater distance (Figure 5). Additionally, the 
routes calculated with an adjustment amplitude of 1.0 are depicted in 
Supplementary Figure S3. It is evident that the routes generated by the 
modified A* algorithm (k > 0) primarily focus on path length rather 
than the Chl-a’s spatial distribution, resulting in slight variations 
compared to the shortest path (k = 0).

5.2.2 The data distribution of Chl-a
As the aggregation degree of Chl-a’s data distribution increases, a 

larger adjustment amplitude of coefficient k is typically required. For 
the sampling coefficient ( )expQ kx= − , the convergence rate to zero 
accelerates with an increase of the adjustment coefficient k (k ≥ 0). As 
the distribution of Chl-a data becomes more aggregated, the value of 

– –Chl a Chl a−  will tend to concentrate to zero (Figure 9). This 

necessitates that the function ( )expQ kx= −  converges rapidly, 
resulting in a broadened distribution range of Q values (avoiding 
excessive concentration to 1). The expansion of Q will further affect the 
distribution of the cost function F(n) (Equation 3), thereby amplifying 
the influence of Chl-a’s spatial distribution on route regulation.

The two datasets presented in Figure 9 are used as a reference. 
Dataset A, which is more aggregated with a smaller range of 

– –Chl a Chl a−  is more suitable for the function ( )exp 1.5Q x= −  
with faster convergence speed (colored with blue). Conversely, Dataset 
B better suited for the function ( )exp 0.5Q x= −  with slower 
convergence speed (colored with red). However, if the function 

( )exp 0.5Q x= −  is employed for the aggregated dataset A, the 
obtained Q value will tend to concentrate to 1. Conversely, if the 
function ( )exp 1.5Q x= −  is employed for dataset B, the range of Q 
values obtained will be  concentrated to 0. Therefore, when the 
aggregation degree of Chl-a’s data distribution increases, a larger 
adjustment amplitude of coefficient k is typically more appropriate.

5.3 Shortcomings and future work

This study proposed a modified A* algorithm that concurrently 
considers the spatial distribution of water quality parameters and path 
length. While this algorithm exhibits perfect results, it also has 
several shortcomings.

TABLE 2 Factors in consideration for previous studies on USV path planning.

Single-/Multi-
goal path 
planning

Algorithm Factors in consideration References

Path 
length

Time 
consumption

Path 
smoothness

Dynamic 
obstacle 

avoidance

Single-goal Global A* algorithm √ √ √ Song et al. (2019)

Constrained A* algorithm √ √ √ Singh et al. (2018)

Complete coverage neural network √ √ √ √ Xu et al. (2021)

Finite Angle A* algorithm √ √ √ Yang et al. (2015)

Local Constrained fast marching √ √ √ Liu and Bucknall, 2015

Locking sweeping method √ √ √ √ Su et al. (2023)

Improved artificial potential field √ √ √ Song et al. (2018)

Model predictive artificial potential 

field

√ √ √ √ He et al. (2023)

Hybrid A* + Artificial potential filed √ √ √ √ Yu et al. (2019)

B-Spline data frame + Particle 

swarm optimization

√ √ √ √ MahmoudZadeh et al. 

(2022)

Improved A* + Artificial potential field √ √ √ √ Sang et al. (2021)

Non-uniform Theta* + Improved 

dynamic window approach

√ √ √ √ Han et al. (2022)

Multi-goal Greedy Partheno Genetic Algorithm √ √ √ Zhao et al. (2023)

Genetic algorithm based on 

improved crossover operators

√ √ Chen et al. (2021)

Self-organizing map + Artificial 

repulsive force field

√ √ Liu and Bucknall, 2018

D*Lite algorithm + Dubins search 

tree algorithm + Reeds-Shepp curves

√ √ √ Yu et al. (2024)
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Firstly, the use of deep learning constrains the practicality of this 
approach. Actually, the algorithm proposed in this study does not 
necessitate high precision in the retrieval of water quality parameters, 
and it solely requires an approximate determination of their spatial 
distribution. Thus, empirical models (Woo Kim et al., 2022; Li et al., 
2021; Gurlin et al., 2011; Gitelson et al., 2008) can also be effectively 
employed in the parameter retrieval. Moreover, the readily available 
Chl-a products from satellites like Sentinel-3 can also be  used 
directly, which could provide comprehensive coverage and consistent 
data quality (Pahlevan et al., 2020).

Secondly, the algorithm is not applicable when the starting and 
ending points are completely coincident. Nevertheless, effectively 

addressing the routing problem can be achieved by maintaining an 
adequate distance between these two points and increasing the 
adjustment amplitude of coefficient k.

Thirdly, considering that water quality parameters often display 
a right-skewed distribution (with the distribution of retrieved 
Chl-a in Chaohu Lake presented in Supplementary Figure S4), it is 
worth further exploring whether using the median instead of the 
mean ( –Chl a ) would be  more suitable in cases of extreme 
right skewness.

Fourthly, this study utilized Chl-a as the water quality parameter 
to test the proposed algorithm, and additional water parameters such 
as turbidity, colored dissolved organic matter (CDOM), and total 

FIGURE 8

USV paths based on the modified A* algorithm when the starting and ending points are in close proximity.

FIGURE 9

The influence of Chl-a data’s distribution to the adjustment amplitude of coefficient k.
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suspended matter (TSM) could also be  employed for further 
testing purposes.

Fifthly, the proposed modified A* algorithm is an initial version 
aimed at highlighting the importance of representativeness of 
sampling points in water sampling path planning. Future optimizations 
could include collision avoidance, increasing path smoothness, and 
improving efficiency etc.

6 Conclusion

To address the easily overlooked problem of representative 
sampling in the water quality sampling path planning of USVs, a 
modified A* algorithm that integrates remote sensing technique has 
been proposed. Specifically, the heuristic function of the A* algorithm 
was modified by incorporating a sampling coefficient Q to ensure the 
representativeness of collected samples. Subsequently, an adjustment 
coefficient k was introduced into the coefficient Q to optimize the 
trade-off between the representativeness of sampling points and the 
path length. The verification results showed that the proposed algorithm 
was effective in collecting more representative samples in real-world 
conditions. As the coefficient k increased, the representativeness of the 
collected samples enhanced, indicated by the Chl-a closely 
approximating the overall mean Chl-a and exhibiting a gradient 
distribution. However, this enhancement was also associated with 
increased path length, and vice versa. The distance between the starting 
and ending points and the data distribution of water quality parameters 
are two potential factors influencing the adjustment amplitude of 
coefficient k. A reduced distance between the starting and ending points 
or an increased degree of aggregation in the distribution of parameter 
data will result in a larger adjustment amplitude of coefficient k.

Regarding future research, Chl-a values retrieved from empirical 
models or Chl-a products can serve as prior knowledge for water 
quality sampling path planning. Besides Chl-a, water parameters like 
turbidity, CDOM, and TSM can be employed for algorithm testing. 
The proposed algorithm should also be optimized to avoid collision, 
increase path smoothness, and improve efficiency etc.
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