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A portable EEG signal acquisition
system and a limited-electrode
channel classification network
for SSVEP

Yunxiao Ma, Jinming Huang*, Chuan Liu and Meiyu Shi

College of Engineering, Qufu Normal University, Rizhao, China

Brain-computer interfaces (BCIs) have garnered significant research attention,

yet their complexity has hindered widespread adoption in daily life. Most current

electroencephalography (EEG) systems rely on wet electrodes and numerous

electrodes to enhance signal quality, making them impractical for everyday

use. Portable and wearable devices o�er a promising solution, but the limited

number of electrodes in specific regions can lead to missing channels and

reduced BCI performance. To overcome these challenges and enable better

integration of BCI systems with external devices, this study developed an EEG

signal acquisition platform (Gaitech BCI) based on the Robot Operating System

(ROS) using a 10-channel dry electrode EEG device. Additionally, a multi-scale

channel attention selection network based on the Squeeze-and-Excitation (SE)

module (SEMSCS) is proposed to improve the classification performance of

portable BCI devices with limited channels. Steady-state visual evoked potential

(SSVEP) data were collected using the developed BCI system to evaluate both the

system and network performance. O	ine data from ten subjects were analyzed

using within-subject and cross-subject experiments, along with ablation studies.

The results demonstrated that the SEMSCS model achieved better classification

performance than the comparative referencemodel, even with a limited number

of channels. Additionally, the implementation of online experiments o�ers a

rational solution for controlling external devices via BCI.

KEYWORDS

Brain-Computer Interfaces (BCIs), Robot Operating System (ROS), BCI systems, steady-

state visual evoked potential (SSVEP), limited channels

1 Introduction

Brain-Computer Interfaces (BCIs) are a rapidly evolving field situated at the

convergence of neuroscience, signal processing, and artificial intelligence, providing

transformative opportunities for human-computer interaction. BCIs capture brain signals

through invasive or non-invasive devices and translate an individual’s intentions into

commands that control external systems, enabling direct communication between the

brain and these systems (Arpaia et al., 2020; Li et al., 2023). This technology holds

significant promise not only for patients with neurological disorders but also for

individuals with motor impairments, offering them the ability to control external devices,

such as prosthetics, wheelchairs, and robots, thereby enhancing their autonomy and quality

of life (Zhang et al., 2023; Lu et al., 2020). Beyond assistive technologies, BCIs are also

being explored in various other fields, including entertainment, communication, and

neurorehabilitation, where they can facilitate tasks ranging from controlling video games
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and smart home devices to aiding in motor recovery post-stroke

(Wu et al., 2022; Yao et al., 2020). In addition, with the rapid

development of intelligent driving technology, BCIs is increasingly

being applied within this field. Wang et al. (2018) and Xu et al.

(2021) effectively utilized BCI technology to explore its potential

applications in driving scenarios. Through the integration of

BCI technology with advanced algorithmic models, they achieved

precise monitoring and real-time alerting of driver fatigue.

Despite the substantial potential demonstrated by EEG-

based Brain-Computer Interface (BCI) systems, their transition

to everyday applications remains constrained by several factors.

For instance, signal acquisition is typically conducted in low-

interference laboratory environments, which, while ensuring high-

quality data collection, are not practical for maintaining a

consistently low-noise standard in real-world settings (Al-Fahoum

and Al-Fraihat, 2014; Minguillon et al., 2017; Valentin et al., 2018).

Additionally, many EEG-based BCI systems rely on numerous wet

electrodes to capture the necessary brain signals. This method

involves the use of conductive gel to maintain proper contact with

the scalp, which, although it enhances signal quality, is complex,

time-consuming, and impractical for everyday use (Xing et al.,

2018; Wang et al., 2021; Mhapankar and Shah, 2022). Furthermore,

the dependence on a large number of electrodes not only increases

the complexity of the setup but also introduces challenges in

signal processing. These limitations underscore the difficulties

in transitioning BCI technology from experimental research to

practical, user-friendly applications in daily life (Tam et al., 2011;

Ramirez-Quintana et al., 2021).

To address the challenges associated with traditional EEG-

based Brain-Computer Interface (BCI) systems, portable and

wearable EEG devices have emerged as promising solutions. These

devices offer significant advantages in terms of user convenience

and practicality (He et al., 2023). For example, dry electrode systems

eliminate the need for conductive gel, simplifying the setup process

and enhancing user comfort (Li et al., 2020). Wang et al. skillfully

employed a wireless dry-electrode EEG acquisition system (model

HD-72,manufactured by Cognionics Inc., USA) to collect extensive

EEG data from a large number of participants, establishing a

robust dataset for their comprehensive studies in this domain.

This data collection effort laid a solid foundation for their in-

depth research into various aspects of EEG-based fatigue detection

and cognitive state analysis, as demonstrated in their subsequent

works (Wang et al., 2020a,c,b; Chen C. et al., 2023). Portable EEG

devices, such as those developed by Emotiv EPOC+ (Chabin et al.,

2020) and Muse headband (Krigolson et al., 2021), are designed

to be lightweight and easy to use, making them suitable for real-

world applications. These advancements have paved the way for

more accessible and user-friendly BCI systems. However, despite

their benefits, wearable EEG devices face limitations due to the

constrained number of electrodes, which can lead to a decline in

BCI performance (Li et al., 2024). Several studies have examined

the impact of using a limited number of electrodes or non-feature

region channels for intent classification in BCIs. Lan et al. (2021)

demonstrated that combining non-occipital signals and reference

points could yield an accuracy of around 80%. Hsu et al. (2015)

showed that SSVEP signals from the frontal region could effectively

support BCIs. In scenarios with limited occipital channels, Ge et al.

(2021) achieved 76% accuracy with just three occipital channels.

Likewise, Chen et al. (2017) obtained accuracies of 86.58% in

simulations and 85.54% in real-world robot control using a single

channel. These results suggest that non-feature region electrodes

can be leveraged for intent classification when necessary.

Additionally, while mainstream BCI acquisition and analysis

platforms, such as OpenBCI, EEGLab, and OpenVibe, perform

well in EEG signal acquisition and processing, they lack integrated

solutions for controlling external devices (Tonin et al., 2022;

Beraldo et al., 2018). In recent years, several approaches have been

proposed to drive external devices using the aforementioned BCI

systems. For example, Casey et al. (2021) developed a BCI-based

robotic arm control solution using the OpenBCI platform to assist

in the rehabilitation of patients with neurological impairments.

Similarly, An et al. (2024) introduced a robot control system based

on OpenViBE to enhance the practicality of BCI applications.

Shao et al. (2020) utilized the EEGLab toolbox to study and

effectively control a wall-climbing cleaning robot. While these

studies present control solutions for external devices based on

specific BCI systems, their implementation requires developing

customized underlying code for each external device, which limits

their integration efficiency. However, despite these advancements,

these platforms primarily focus on signal processing capabilities

and still require significant development to achieve seamless

integration with real-world applications, particularly in complex

environments and robotic interactions. With the advancement

of robotic technologies, the Robot Operating System (ROS) has

become a widely adopted development tool (Quigley et al., 2009;

Lee, 2021). Known for its high integrability with external devices,

ROS provides a robust framework for seamlessly integrating diverse

hardware and software components in robotics and automation.

It facilitates efficient communication between sensors, actuators,

and computational nodes, making it an ideal choice for controlling

complex systems (Caldas et al., 2024).

To address the aforementioned issues, the main contributions

of this study are as follows:

i. A ROS-based framework, Gaitech BCI, is proposed for BCI

signal acquisition and analysis using the portable dry-electrode

device H10C. The platform can be used to manage EEG

experiments, create datasets, and export data in formats such as

.mat, .fif, and .csv through a user interface;

ii. Three ROS packages were developed and integrated with the

BCI system, providing a solution for controlling external devices

through the BCI system;

iii. To address the issue of reduced BCI classification performance

caused by the limited number of channels in portable EEG

devices, a novel channel selection network based on SE attention

and multi-scale convolution is proposed, which extracts both

feature and non-feature channel information;

iv. The framework and network are validated through SSVEP data

collection from ten subjects, including within-subject, cross-

subject, and ablation experiments, as well as real-time testing,

demonstrating their effectiveness.

The rest of this article is organized as follows: Section 2

describes the proposed system framework, classification model

framework, and acquisition of experimental data, Section 3
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describes experimental details and result analysis, and Section 4

summarizes our work and discusses it. The model code and 3

python packages can be obtained at https://github.com/chiwuan6/

SEMSCS.

2 Materials and methods

In this study, we developed an electroencephalography (EEG)

acquisition and analysis system namedGaitech BCI using theH10C

dry electrode portable BCI device. The design of this platform

enables users to intuitively configure EEG-based BCI experiments

and create datasets for both offline analysis and online experiments.

The overall architecture of Gaitech BCI is illustrated in Figure 1.

The Gaitech BCI system is composed of two main components:

the upper layer, comprising the H10-EEG Headset and a Linux-

based API, and the lower layer, consisting of Python-based ROS

packages. The upper layer includes two key elements: the embedded

firmware that drives the hardware device and the API interface

responsible for device connectivity and data transmission. The

lower layer consists of three custom-developed ROS packages. Raw

signals are initially acquired by the hardware device, driven by

the embedded firmware in the upper layer, and then transmitted

via the API interface to the ROS environment in the lower layer.

Within the ROS environment, these signals are exchanged among

the ROS packages through topics and services, enabling seamless

integration and data flow. The three packages in the lower layer will

be described in detail later, and the following is an overview of the

three functional packages:

• gaitech_bci_bringup: As the core package of the framework,

this package contains all the necessary services and topics for

managing the device and acquiring raw EEG data from it;

• gaitech_bci_tools: This package serves as the system’s tool

management package, integrating various functionalities.

Through ROS nodes, users can invoke corresponding tools to

assist with experiments. Additionally, it includes a graphical

user interface (GUI) that provides access to the required

functions.

• gaitech_bci_teleop: This package acts as the interface between

the system and external devices, allowing users to configure

experiments for online or simulation validation. Users can

publish image topics in ROS to receive visualized images or

interfaces as needed.

2.1 Device

The signal acquisition device used in the proposed Gaitech BCI

system is the Avertus H10C EEG headset. The H10C has been

reasonably designed for functionality and comfort. Its lightweight,

ergonomic design allows for multiple hours of comfortable use.

Foam electrodes are used on FP1, FP2, and FPz to provide

comfort where there is no hair. Compared to traditional wet

electrodes, foam electrodes eliminate the need for conductive

gel, reducing preparation time and the inconvenience associated

with cleaning (Liao et al., 2012; Searle and Kirkup, 2000). Unlike

dry electrodes, which may suffer from inconsistent signal quality

due to varying scalp impedance, foam electrodes offer a balance

of comfort and reliable signal acquisition, especially in areas

without hair (Chi et al., 2011). However, foam electrodes may

not provide the same signal accuracy as wet electrodes in certain

high-precision applications (Yeung et al., 2015). Spring-loaded,

gold-plated electrodes at FCz, F7, F8, T3, T4, T5, T6, O1, and

O2 are designed for hair penetration, ensuring comfort and

delivering high-quality EEG signals. Both the foam and spring-

loaded electrodes are removable for easy cleaning and replacement

when needed. The H10C is adjustable with easy-to-use Velcro

straps because of its ability to conform to most head shapes and

sizes. The characteristics of H10C are shown in Figure 2.

2.2 Core packages

2.2.1 gaitech_bci_bringup
In this study, the gaitech_bci_bringup ROS package was

utilized for the comprehensive processing of BCI data. Specifically

designed for BCI applications, this package encapsulates a

complete workflow for data acquisition, preprocessing, and state

monitoring, facilitating seamless integration into ROS-based

research environments. A detailed explanation of the package is

provided in Figure 3. An itemized description of the functionalities

included in this package is provided in the following:

• Data acquisition: The gaitech_bci_bringup package establishes

a communication interface with BCI devices, enabling the

subscription and aggregation of raw data streams, including

EEG signals and device status information. This feature

ensures the timely capture of BCI data. The support for

different devices can also be expanded by users based on the

communication methods of their devices;

• Data preprocessing: By incorporating classical filtering

algorithms, such as high-pass, low-pass, and notch filters,

gaitech_bci_bringup allows researchers to tailor the data to

their specific analysis requirements. Additionally, it supports

the conversion of raw data into various reference formats (e.g.,

Average Reference, Common Reference, Longitudinal Bipolar,

and Transverse Bipolar) (Acharya and Acharya, 2019);

• State monitoring and services: The package incorporates

a state monitoring system, which continuously tracks the

status of BCI devices and filters. Through ROS services and

topics, gaitech_bci_bringup provides researchers with real-

time access to device connectivity status, filter configurations,

and other pertinent information (Koubâa et al., 2017);

• Configuration and deployment: To facilitate ease of use and

reproducibility, allowing researchers to configure the package

to their specific needs. Furthermore, the inclusion of launch

files simplifies the deployment process (Koubâa et al., 2017),

enabling researchers to quickly bring up the entire BCI data

processing environment with a single command.

2.2.2 gaitech_bci_tools
The gaitech_bci_tools package facilitates EEG experiments

and analysis within a ROS framework, providing tools

for real-time monitoring, data processing, and device

management. These functionalities, along with integration
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FIGURE 1

Overall architecture of Gaitech BCI.

FIGURE 2

Several characteristics of the Avertus H10C EEG Headset.

with gaitech_bci_bringup for device setup, are accessible through

a graphical user interface (GUI). The structural overview of the

package is presented in Figure 4, with specific details outlined

as follows:

• User interface: The gaitech_bci_tools package provides a

user interface for managing EEG devices. Users can view

bio data and bio events in real-time, facilitating monitoring

and debugging during experiments. Additionally, the package

includes a view_bci_data tool, which creates EEG datasets for

BCI experiments, allowing researchers to access and analyze

recorded data;

• Data conversion tools: A key feature of the gaitech_bci_tools

package is its suite of data processing and conversion

tools. These tools enable researchers to convert recorded

EEG datasets from ROS bag files into various formats,

including MNE (.fif), MATLAB (.mat), and CSV (.csv),

thereby enhancing the interoperability of EEG data with other

analysis software;

• ROS services for EEG device management: The package

incorporates ROS services that facilitate the management

of EEG devices (Koubâa et al., 2017). For instance, the

view_psd service enables researchers to visualize the power

spectral density of EEG signals, providing insights into

the frequency content of the recorded data. Additionally,

the video_experiment_builder tool simplifies the process

of annotating videos and collecting labeled EEG datasets,

while the make_experiment service converts EEG experiment

protocols (in CSV format) into executable experiment

configurations;
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FIGURE 3

Detailed description of the gaitech_bci_bringup ROS package.

• Integration with gaitech_bci_bringup: The gaitech_bci_tools

package seamlessly integrates with the gaitech_bci_bringup

ROS package, which handles the initial setup and

configuration of EEG devices. This integration ensures that

researchers can quickly bring up their EEG data processing

environment, from device connection to data visualization

and analysis, within a unified ROS-based framework.

2.2.3 gaitech_bci_teleop
This package serves as a communication interface between the

system and external devices, leveraging the ROS capability of cross-

language and cross-version communication, enabling the flexible

deployment of signal recognition algorithms and establishing a

bridge for interactions between the system and external peripherals

(Koubâa et al., 2017; Fairchild and Harman, 2016). The structural

organization of the package is illustrated in Figure 5, and its main

features are as follows:

• EEG signal transmission: The EEG signals are captured

through the gaitech_bci_device hardware interface, and these

signals along with device information are transmitted within

the ROS network in the form of ROS topics. This approach

facilitates seamless data flow and integration with the ROS

ecosystem (Koubâa et al., 2017; Fairchild and Harman, 2016);

• Robot control command generation: Based on the analytical

outcomes of the EEG signals, corresponding robot control

commands are generated and dispatched to the robot via ROS

standard topics (e.g., /cmd_vel) (Koubâa et al., 2017; Fairchild

and Harman, 2016), thereby directing its movements. This

mechanism allows for dynamic and responsive control

strategies based on brain-computer interaction;

• ROS interface design: Through the modular architecture of

ROS nodes and services, this package offers interfaces that

simplify integration and extension with other ROS packages

or system components (Koubâa et al., 2017; Fairchild and

Harman, 2016).

Overall, the interaction and data flow between the three

core ROS packages are as follows. The data flow begins with

signals transmitted from upper level BCI devices, which

are received and processed by gaitech_bci_bringup. This

package is responsible for raw EEG signal acquisition and

preprocessing, including filtering and formatting the data for

subsequent analysis.

The preprocessed data is then passed to gaitech_bci_tools,

which offers a graphical interface for real-time monitoring,

dataset creation, and visualization. This interface also enables

users to interactively modify the preprocessing parameters

of gaitech_bci_bringup, facilitating system customization and

adaptability to specific experimental requirements.

Finally, the processed datasets and outputs from

gaitech_bci_tools are utilized by gaitech_bci_teleop to generate

robot control commands. These commands, based on EEG signal

interpretations, are transmitted through the ROS network to

execute robot actions. This hierarchical data flow and modular
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gaitech_bci_tools (ROS Package)

gaitech_bci_bringup

ROS Services for 

managing EEG Device

gaitech_bci_device

ROS topics related to 

EEG signals and Device 

info

/view_bci_data/event gaitech_bci_bringup: EEGEvent

rosbag_matlab

ROS nodes

rosbag_csv

view_image

view_psd

make_experiment

video_experiment_builder

rosbag_matlab

rosbag_mne

view_bci_experiment

view_bci_data
User Interface for managing EEG device(s) and 

creating EEG datasets for BCI experiments

User Interface for visualizing and editing recorded 
EEG datasets (rosbag files)

Tool to convert recorded rosbag EEG dataset into 
mne format(.fif)

Tool to convert recorded rosbag EEG dataset into 
matlab format (.mat)

Tool to convert recorded rosbag EEG dataset into 
comma separated format (.csv)

Tool to view flickering shape on screen at desired 
frequency and color for SSVEP experimentation

Tool to visualize power spectral density of EEG 
signals (Power-frequency plot)

Tool to annotate any video for easily collecting 
labeled EEG datasets

Tool to convert EEG Experiment protocol (csv file) 
into an annotated video

FIGURE 4

Detailed description of gaitech_bci_tools.

FIGURE 5

Detailed description of gaitech_bci_teleop ROS package.

integration establish a pipeline from signal acquisition to real-

world application, with each package contributing a distinct

but interconnected layer of functionality, thereby supporting a

ROS-based BCI research framework.The above description is

shown in Figure 6.

2.3 Network structure

In this research, we introduce a neural network architecture

called SEMSCS, which integrates the SE attention mechanism (Hu

et al., 2018; Li et al., 2021) with multi-scale convolution (Ko et al.,
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FIGURE 6

Data flow and interaction between core ROS packages in the Gaitech BCI framework.

2021; Liu et al., 2022). This architecture leverages both channel

attention andmulti-scale convolution techniques to extract features

from the complete set of channels with limited electrode data.

The SEMSCS model is depicted in Figure 7. The design draws

inspiration from EEGNet (Lawhern et al., 2018), incorporating

elements of channel attention and multi-scale convolution for

improved feature extraction.

The SEMSCS model is composed of four key components: a

channel selection and attention block based on an improved SE

block, a multi-scale convolution block, a pointwise convolution

block, and a final processing layer consisting of depthwise and

separable convolutions. Initially, the raw EEG data is reshaped

into two parts: paradigm-related feature channel data and non-

feature channel data. This study employs the SSVEP paradigm

to experimentally evaluate the network and system. The feature

channels are electrodes located in the occipital region. For the

dry electrode device H10C, which contains 10 channels, the data

is divided into two parts accordingly: the non-feature channels

correspond to the 8 electrodes in non-occipital regions, while the

feature channels correspond to the 2 electrodes in the occipital

region (O1, O2). This configuration was selected to align with the

experimental paradigm in this study and to adapt to the electrode

layout of the device used. Importantly, the proposed network

is adaptable and allows flexible feature channel selection during

initialization, accommodating different devices and electrode

distributions based on specific experimental requirements. Next,

latent features from the non-feature channels are extracted using

the improved SE block (SECNCS).

The structural overview of the SECNCS is presented in Figure 8.

The input data for SECNCS is denoted as X, X ∈ R
B×C×S,

where B is the batch size, C is the number of channels, and

S is the length of the time series. Then, X flows into two

branches. In the first branche, the global information of each

channel is obtained primarily by aggregating data across the time

dimension. This process can be formulated as z =
1
s

∑s
s=1 Xc,s.

Subsequently, two linear transformations are applied. The former

transformation, with weight matrix W1 ∈ R
C×C/r , compresses

thechannel dimension. Meanwhile, a nonlinear activation function

σ1 (relu) is adopted to enhance the model’s attention for the

important features. Further, the later linear transformation with

W2 ∈ R
C/r×C, restores the original channel dimension after

applying activation function σ2 (sigmoid). This process generates

the attention weights a, which reflect the importance of each

channel. The attention weights are then multiplied with the input

data channel-wise to produce the output features X1 of the first

branch. In the second branch, channel data are processed along

the time dimension using local weighted summation, similar to

a convolution operation. Specifically, a filter weight vector Wfilter

is applied to compute the weighted sum across segments of the

time series, producing the filtered data y. This filtered result is

then aggregated along the time dimension and acts as a one-

dimensional mean pooling operation that enhances the contrast

of feature information to obtain the features Zfilter of the second

branch. In the end, a learnable weight vector ω ∈ R
C is introduced

to combine the results from the two branches. We stress that value

of ω is constrained between 0 and 1 by using the sigmoid function.

This weight controls the combination ratio of the features from

the two branches. Consequently, the fusion feature weight can be

obtained as:

f (X) = ω ⊙ X1 + (1− ω)⊙ Zfilter (1)

where:⊙ represents element-wise (Hadamard) multiplication, a =

σ2(W2σ1(W1z)), X1 = a ⊙ X, Zfilter =
1
S

∑S
i=1 yc,s, yc,s =

∑4
i=1 Wfilter,iXc,i : i+s−1 and in this study r = 8.

Finally, the fused features are multiplied element-wise with the

original input data to produce the final output Xout, given by:

Xout = f (X)⊙ X (2)
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FIGURE 7

The architecture of SEMSCS, consisting of four main blocks: (1) an improved SE attention mechanism (Block 1), (2) a multi-scale convolutional layer

(Block 2), (3) a pointwise convolutional layer (Block 3), and (4) a block combining deep convolutional and separable convolutional layers (Block 4).

FIGURE 8

The architecture of the improved SE block (SECNCS).

The processed non-feature channel data, along with the original

feature channel data, are merged along the channel dimension to

restore the original data shape before being fed into the multi-scale

convolution layer. This layer contains three parallel convolution

operations: one with a kernel size of (1, 4) to capture short-

range dependencies, another with a kernel size of (1, 64) to

extract mid-range dependencies, and a third with a kernel size

of (1, 128) to capture long-range dependencies (Tao et al., 2023).

Batch normalization is applied after each convolution to ensure a

stable learning process. The outputs from these convolutions are

concatenated along the feature map dimension to create a unified

feature map.

Subsequently, the unified feature map is processed through

a pointwise convolution layer, employing a 1 × 1 convolution

to integrate the three sets of feature maps from the previous

multi-scale layer into one. This step reduces the dimensionality

of the combined feature maps to match the number of input

channels (Ko et al., 2021), followed by batch normalization and

ELU activation, which contribute to maintaining network stability

and effective regularization.

The final layers consist of a depthwise convolution, where

a channel-wise operation is performed, followed by batch

normalization, ELU activation, average pooling, and dropout.

The separable convolution layer further refines the feature map

through depthwise and pointwise convolutions, again followed by

batch normalization, ELU activation, average pooling, and dropout.

Ultimately, the processed feature map is flattened and passed

through a fully connected layer for classification, with the output

probabilities calculated via a softmax function (Lawhern et al.,

2018).
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FIGURE 9

SSVEP experiment stimulation interface.

2.4 Signal acquisition

In this study, we conducted an SSVEP-based experiment using

a custom-designed Gaitech BCI system to record EEG signals.

Visual stimuli were presented on a 21.5-inch LCD monitor with

a resolution of 1,920 × 1,080 pixels and a refresh rate of 60

Hz. Eight visual targets, arranged in a 3 × 3 matrix with the

center target removed, were displayed to participants. To ensure

precise modulation of the flickering stimuli, we employed a

joint frequency-phase modulation (JFPM) method to control the

sinusoidal flicker of each target. This approach allowed for accurate

manipulation of both frequency and phase for the generation of

SSVEP (Wang et al., 2016; Pan et al., 2022).

Ci(t) = sin(2π fit + φi) (3)

where Ci(t) represents the contrast of the i-th target at time t, fi is

the flickering frequency of the i-th target, and φi denotes its phase

offset. The target frequencies were set at 7, 8, 9, 10, 11, 12, 13, and 15

Hz, with corresponding phase shifts φi distributed from 0 to 7π/4.

The stimulus interface is shown in Figure 9. The following formulas

represent the frequency and phase of the stimulus square at position

(i, j) (Li et al., 2024).



















f1(i, j) = 7+ 3i+ j, (i, j) = (0, 0), (0, 1), (0, 2), (1, 0), (2, 2)

f2(i, j) = 6+ 3i+ j, (i, j) = (1, 2), (2, 0), (2, 1)

φ1(i, j) =
π
4 (3i+ j), (i, j) = (0, 0), (0, 1), (0, 2), (1, 0)

φ2(i, j) =
π
4 (3i+ j− 1), (i, j) = (1, 2), (2, 0), (2, 1), (2, 2)

(4)

The participants were seated at a fixed distance of 70 cm from

the monitor, ensuring optimal visibility without strain. A total of

10 healthy volunteers with normal or corrected-to-normal vision

participated in the experiment (4 females and 6males, aged between

22 and 28 years, with a mean age of 24.1 years) (Wang et al.,

2016; Karas et al., 2023). Each participant had prior experience

with similar experiments and provided informed consent before

participation and the protocol was approved by the Biomedical

Ethics Committee of Qufu Normal University (2024-126).

During the experiment, participants were required to fixate

their gaze on a cued target, indicated by a static highlight for 0.5

seconds before the flickering began. Following the cue, all eight

targets flickered simultaneously for 5 seconds, after which the

screen was blank for 0.5 seconds before the next trial. Each trial

lasted 6 seconds, and participants were instructed to avoid blinking

during the 5-second stimulation period. To minimize fatigue,

participants were allowed to take breaks between blocks. The

sampling frequency was set to 1,000 Hz, and the data were filtered

using filters from the gaitech_bci_tools package. The filtering

process included a high-pass filter at 6.5 Hz, a notch filter between

47–53 Hz (remove power frequency noise), and a low-pass filter at

65 Hz. After filtering, all data were downsampled to 250 Hz. A total

of 40 trials were conducted for each target. The data acquisition

interface is presented in Figure 10, with two subfigures included:

the parameter setting interface is shown in Figure 10A, while the

experiment data preview interface is illustrated in Figure 10B.

In this study, we processed each subject’s data through weighted

averaging. First, we computed the average of all 40 time series for

each frequency file, then aggregated the results across 8 frequencies.

Finally, the average of these aggregated results was calculated to

obtain the subject’s final time series (Wang et al., 2016). This process

is represented by the following formula:

Di(t) =
1

8

8
∑

f=1

1

40

40
∑

n=1

di,f ,n(t) (5)

where di,f ,n(t) denotes the data at time t for the n-th time series

under frequency f for subject i.

The EEG topographies for ten subjects were averaged and

plotted over a 6-second duration, from 0.5s to 5.5s with a 1s

step size, as shown in Figure 11. Notable electrode activity in

the occipital region (the feature channel) was observed during

stimulation for each subject; however, responses were also evident

at other locations (such as the temporal and frontal regions).

According to the studies Lan et al. (2021) and Hsu et al. (2015),

electrodes in these non-standard feature cortical regions can also

provide valuable information for extracting standard features,

particularly for portable EEG devices with a limited number

of channels.

2.5 Decoding methods for comparison

In addition to the SEMSCS, six signal decoding methods

were employed in this study, among which Canonical Correlation

Analysis (CCA) and Multivariate Synchronization Index (MSI) are

classical signal processing and statistical analysis methods. The

remaining four methods involved models built and trained using

PyTorch.

i) CCA: Is a statistical method used to identify and quantify the

relationship between two sets of variables by maximizing the

correlation between their linear combinations, making it useful

for matching EEG signals with stimulus frequencies in SSVEP

classification (Lin et al., 2006).

ii) MSI: Is a measure used to evaluate the synchronization or

phase consistency among multiple EEG signals, which helps

in assessing the coherence between brain regions and stimulus

frequencies in SSVEP classification (Zhang et al., 2014).
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FIGURE 10

GUI of the Gaitech BCI system. (A) Data acquisition parameter setting interface. (B) Experiment data preview interface.

iii) CNN: A deep learning model designed for image

and signal processing, utilizing convolutional layers

to automatically learn spatial hierarchies and features

from raw data, which is effective for extracting spatial

patterns in EEG signals for classification (Ravi et al.,

2020).
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FIGURE 11

The EEG topographies for each subject (ten subjects in total) were recorded over a 0.5–5.5s interval with a 1s step size.

iv) EEGNet: A compact convolutional network with a single

branch that can decode EEG signals of multiple paradigms,

consisting of two-dimensional convolution, deep convolution,

and separable convolution, has been widely studied (Lawhern

et al., 2018).

v) atten-CCNN: A convolutional network designed to

address the performance degradation of BCI in the case

of few channels, integrating attention mechanisms into

the convolutional neural network to selectively focus

on the most relevant features in EEG signals (Li et al.,

2024).

vi) FB-tCNN: Incorporating frequency band-specific convolutional

layers with transformer blocks, FB-tCNN captures both

spectral and temporal features of EEG signals, thereby

enhancing the model’s performance in SSVEP classification

by leveraging frequency-domain information (Ding et al.,

2021).

3 Experiments and results

3.1 Metrics

In this study, all experiments were conducted on a server

platform equipped with an Intel(R) Xeon(R) Gold 6240 CPU

@2.60GHz and an NVIDIA V100S GPU, using PyTorch 1.12 for

model construction. The training of all deep learning models was

conducted using five-fold cross-validation. A model checkpoint

callback function was applied at the end of each epoch during

training to save the model weights with the best classification

accuracy, and the saved best model was loaded during the

testing phase. Additionally, early stopping was implemented during

training to enhance model performance and prevent overfitting,

with training halted if no improvement was observed after 50

epochs (Chen J. et al., 2023).

For evaluating the classification performance of the model,

both within-subject and cross-subject experiments were conducted.

In the within-subject experiments, the average accuracy and

Information Transfer Rate (ITR) were used as metrics to assess

the model’s classification performance. The formula for calculating

accuracy is as follows:

acc =
TP + TN

TP + TN + FP + FN
(6)

where TP is the number of true positives, TN is the number of true

negatives, FP is the number of false positives, and FN is the number

of false negatives. Accuracy is the proportion of correctly classified

samples and is one of the most commonly used evaluation metrics.

The ITR was calculated using the following formula:

ITR =
60

T

(

log2(N)+ P · log2(P)+ (1− P) · log2

(

1− P

N − 1

))

(7)

where N is the number of stimulus targets, P denotes the

classification accuracy, and T represents the length of the time

window (Yin et al., 2022; Zhang et al., 2024). The ITR is used in

within-subject experiments to evaluate the efficiency of the brain-

computer interface by quantifying the amount of information

transferred per unit time, with higher ITR values indicating better

performance in terms of faster and more reliable communication

between the brain and the interface.

In cross-subject experiments, the model’s performance was

evaluated using average accuracy, Kappa value, F1 score, and

Precision score. These metrics (excluding average accuracy) are

described in detail as follows.

The Kappa statistic measures the agreement between the

classification results and random outcomes, with values ranging

from –1 (complete disagreement) to 1 (complete agreement). A

higher value indicates better consistency. The calculation formula
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is given by:

κ =
acc− pe

1− pe
(8)

where acc represents the observed agreement (or accuracy), and pe
denotes the expected agreement by chance.

The F1 score is the harmonic mean of precision and recall, used

to provide a comprehensive evaluation of amodel’s performance on

positive samples. The calculation formula is:

F1 = 2 ·
Precision · Recall

Precision+ Recall
(9)

where Precision is the ratio of correctly predicted positive samples

to all samples predicted as positive, and Recall is the ratio of

correctly predicted positive samples to all actual positive samples.

Their formula is as follows:

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

Since Precision, Recall, and Accuracy all rely on the same

elements, they provide complementary perspectives on the model’s

performance. In this study, Recall is included within the F1 score,

which combines both Precision and Recall to give a balanced

evaluation of the model’s ability to classify positive samples. A

higher Precision indicates a lower false positive rate, while a higher

F1 score suggests a better overall trade-off between Precision and

Recall, ensuring both high accuracy in positive predictions and

thorough identification of all actual positive samples.

3.2 Within-subject experiment

For all the data, we first conducted within-subject experiments.

We calculated the average accuracy and ITR for all subjects using

seven different methods with varying data lengths. All data were

processed using a non-overlapping sliding window, where the time

window was set to [0.5 + l + n] (Ravi et al., 2020), with 0.5

representing the stimulus onset time, l representing five different

time window sizes, and n denoting the fixed step size for the non-

overlapping window. The classification accuracy and ITR obtained

by the seven decoding models are illustrated in Figure 12, the

detailed data can be found in Table 1.

Firstly, traditional methods (CCA and MSI) perform

significantly worse across all time windows. Particularly in the

shortest 0.2-second time window, the classification accuracy

of CCA and MSI is only 21.5% ± 2.2% and 16.0% ± 1.5%,

respectively, with ITR values of 13.5 bit/min and 2.2 bit/min,

which are far lower than those of the deep learning models.

This indicates that traditional methods have limited capacity for

processing short time windows, struggling to effectively extract

key information from EEG signals, particularly in tasks with high

real-time demands. As the time window increases, the performance

of traditional methods improves, but it still does not reach the level

of deep learning models.

Among deep learning models, CNN and EEGNet outperform

traditional methods in short time windows, especially EEGNet,

which achieves an accuracy of 63.8% ± 4.9% and an ITR of

311.5 bit/min at 0.2 seconds, showing significant improvement

over CCA and MSI. However, these models still do not perform

as well in short time windows as they do in longer ones, and

their ability to capture temporal features is relatively limited

(lower than atten-CCNN, FB-tCNN, and SEMSCS). This may

be due to their network architectures, which use a single-

layer approach for temporal feature extraction and lack specific

mechanisms for channel feature extraction. As a result, these

models are unable to fully capture the detailed temporal and

channel-specific information from complex signals, which limits

their performance. In contrast, atten-CCNN and FB-tCNN show

more stable performance in the 0.4-second and 0.6-second

time windows, with accuracy above 75% and higher ITR. This

improvement is likely due to the more complex feature extraction

mechanisms employed by these models, particularly in capturing

both temporal and channel features. Unlike CNN and EEGNet,

which use single-layer temporal feature extraction, atten-CCNN

and FB-tCNN leverage multi-layer, more detailed feature learning

techniques (e.g., attention mechanisms and filter banks) that better

adapt to complex signals, thereby enhancing their classification

performance and information transfer efficiency.However, the

more intricate architecture of atten-CCNN and FB-tCNN also

results in increased errors and reduced robustness compared to the

first two models.

The SEMSCS model demonstrates consistently favorable

performance across all time windows, achieving reliable results.

In the 0.2-second time window, SEMSCS achieves an accuracy

of 66.9% ± 2.5% and an ITR of 346.8 bit/min, significantly

outperforming other models. As the time window increases,

SEMSCS continues to maintain robust performance, particularly

in the 1.0-second window, where accuracy reaches 87.5% ±

4.0% and ITR is 126.4 bit/min. In addition, the SEMSCS model

does not experience significant fluctuations in error despite the

enhancements in its architecture. The core advantage of SEMSCS

lies in its multi-scale convolution and channel feature extraction

mechanisms, which effectively capture information across multiple

time scales. This approach allows the model to show strong

robustness and high classification accuracy, especially in handling

long time series.While other deep learningmodels such as EEGNet,

atten-CCNN, and FB-tCNN also perform well under certain

conditions, they are less effective when the number of channels

is limited.

3.3 Cross-subject experiment

Based on the analysis of within-subject experimental results,

we observed that all models achieved satisfactory classification

performance with a time window of 1.0 seconds. Furthermore, deep

learning models outperform traditional methods (CCA, MSI) in

terms of classification performance. Therefore, this section focuses

exclusively on cross-subject experiments and analysis of five deep

learning methods: CNN, EEGNet, atten-CCNN, FB-tCNN, and

SEMSCS. Table 2 presents the classification results for different

Frontiers inNeurorobotics 12 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1502560
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Ma et al. 10.3389/fnbot.2024.1502560

0.2s 0.4s 0.6s 0.8s 1.0s
10

20

30

40

50

60

70

80

90

100

A
cc
u
ra
cy
(%
)

Time window length (s)

CCA

MSI

CNN

EEGNet

atten-CCNN

FB-tCNN

SEMSCS

0.2s 0.4s 0.6s 0.8s 1.0s
0

50

100

150

200

250

300

350

IT
R
(b
it
s/
m
in
)

Time window length (s)

A

B

FIGURE 12

Comparison of performance across seven methods under di�erent time length(s). (A) The average accuracy of the seven methods at various time

length(s). (B) The ITR for the di�erent methods across di�erent time windows.

methods across various subjects. The following sections provide a

detailed analysis of the cross-subject performance of thesemethods.

In cross-subject tasks, accuracy serves as a direct indicator

of model classification performance. Although all models achieve

accuracy rates above 60%, SEMSCS outperforms the others with

an accuracy of 81.2%. In contrast, CNN shows a significantly

lower accuracy of 66.6%, and atten-CCNN performs worse than

other deep learning models (EEGNet: 78.0%, FB-tCNN: 79.3%),

with an accuracy of 69.3%. Additionally, the kappa score, which

reflects model prediction consistency and error levels, further

supports these findings. SEMSCS achieves the highest kappa

score of 0.7851, indicating its strong consistency and reliable

classification results in cross-subject experiments. In comparison,

CNN and atten-CCNN have kappa scores of 0.6181 and 0.6488,

respectively, indicating poorer consistency across subjects, which

aligns with their lower accuracy. FB-tCNN and EEGNet also

perform well in terms of kappa scores (0.7632 and 0.7489,

respectively), suggesting higher classification consistency. F1-score

and precision, as comprehensive evaluationmetrics, reveal a similar

trend in identifying positive class samples. SEMSCS achieves an

F1-score of 0.8001 and a precision of 0.8080, demonstrating high

accuracy in recognizing positive class samples while effectively

reducing false positives. In comparison, FB-tCNN’s F1-score is

0.7804 and precision is 0.7973, slightly lower than SEMSCS but
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TABLE 1 Within-subject experimental results: accuracy ± yEr (%) and ITR (bit/min) are presented.

Data length Index CCA MSI CNN EEGNet Atten-CCNN FB-tCNN SEMSCS

0.2s
Acc± yEr 21.5± 2.2 16.0± 1.5 49.1± 4.5 63.8± 4.9 65.7± 9.1 66.7± 10.4 66.9± 2.5

ITR 13.5 2.2 171.7 311.5 332.8 344.1 346.8

0.4s
Acc± yEr 43.1± 2.6 35.7± 2.5 65.6± 7.3 73.4± 3.2 75.0± 11.0 75.4± 12.1 78.2± 5.4

ITR 62.6 38.2 165.7 212.9 223.3 226.0 244.8

0.6s
Acc± yEr 55.5± 3.0 57.2± 3.4 70.6± 6.8 75.9± 3.3 80.3± 6.7 79.5± 8.5 82.6± 5.4

ITR 75.8 81.3 130.2 152.7 173.1 169.4 184.4

0.8s
Acc± yEr 63.6± 3.2 64.1± 3.7 72.7± 6.5 78.8± 2.3 82.6± 10.3 84.6± 10.8 87.4± 3.5

ITR 77.4 78.9 104.1 124.3 138.3 146.0 157.3

1.0s
Acc± yEr 68.1± 4.3 68.2± 4.0 74.1± 5.9 85.9± 3.3 85.5± 4.3 86.4± 5.2 87.5± 4.0

ITR 72.1 72.4 86.8 120.9 119.7 122.5 126.4

TABLE 2 Comparison of methods on di�erent subjects.

Subject CNN EEGNet Atten-
CCNN

FB-
tCNN

SEMSCS

S01 75.8% 80.8% 58.6% 80.6% 80.3%

S02 75.4% 80.3% 74.4% 79.2% 82.1%

S03 64.3% 75.4% 70.2% 79.3% 80.2%

S04 58.9% 78.1% 77.0% 74.9% 80.5%

S05 58.4% 82.4% 69.8% 82.6% 84.0%

S06 58.3% 73.6% 67.3% 76.6% 79.2%

S07 71.3% 76.7% 57.2% 78.3% 81.3%

S08 77.0% 82.7% 76.6% 88.8% 84.2%

S09 55.6% 73.6% 73.1% 73.4% 78.4%

S10 70.9% 76.6% 68.4% 79.1% 81.9%

Average 66.6% 78.0% 69.3% 79.3% 81.2%

K-score 0.6181 0.7489 0.6488 0.7632 0.7851

F1-score 0.6564 0.7684 0.6790 0.7804 0.8001

Precision 0.6835 0.7827 0.7077 0.7973 0.8080

still excellent. EEGNet and atten-CCNN perform worse than FB-

tCNN in both F1-score and precision, with CNN showing the

weakest performance, with an F1-score of 0.6564 and precision of

0.6835, indicating poor positive class recognition and a higher false

positive rate.

These differences may be closely related to the architectural

characteristics of each model. SEMSCS integrates an enhanced

SE attention mechanism, multi-scale convolution blocks, and

deep convolutions from EEGNet, enabling it to effectively focus

on key channels, temporal features, and spatial information,

thus demonstrating strong adaptability in cross-subject tasks.

In contrast, the relatively simple structure of CNN lacks the

ability to thoroughly process multi-channel and temporal features,

leading to poorer performance in cross-subject experiments. While

atten-CCNN introduces an attention mechanism that theoretically

enhances feature selection, its traditional convolution layer design

fails to adequately capture the diversity of EEG signals across

individuals in both the time and frequency domains, limiting

its generalization ability. FB-tCNN performs better than atten-

CCNN but still falls short of SEMSCS, potentially due to its

use of filter banks to suppress interference outside the stimulus

frequency range. While this enhances signal clarity to some extent,

it may also result in the loss of subtle features, affecting its

performance in cross-subject experiments. In summary, SEMSCS

stands out with its combination of multi-scale convolution and the

SE attention mechanism, demonstrating superior generalization

and consistency in cross-subject experiments.

3.4 Ablation experiment

To investigate the effect of each module in the proposed

network, the SEMSCS network was selected as the baseline model

for ablation studies. Cross-subject training was conducted using

data with a time length of 1 second from 10 subjects. The

decoding performance of the ablation experiments is presented

in Table 3. The first row shows the decoding performance of the

baseline model, while the subsequent rows (rows 2–5) display the

results obtained by progressively removing each of the four blocks.

Furthermore, to further evaluate the effectiveness of the improved

SE attentionmechanism, we introduced traditional SE, SK, and self-

attentionmechanisms while retaining the Block 2-3 structure in the

network. The experimental results are shown in rows 6–8 of Table 3.

Using the baseline model as a reference, comparisons were

made with rows 6, 7, and 8. In row 2, removing Block 1 (the

improved SE attention mechanism) led to a decrease in accuracy

to 78.9%, with other metrics also showing a downward trend.

This 2.3% reduction from the baseline model (81.2%) suggests

that Block 1, as the improved SE module, plays a role in

extracting features from non-characteristic channel data under

limited electrode conditions. Replacing Block 1 with the original

SE module (row 6) increased accuracy to 79.5%, indicating that

the original SE module can recover some performance in channel

attention modeling, though it still underperforms compared to

the improved SE module. In contrast, replacing Block 1 with the

SK attention mechanism (row 7) resulted in a further decrease in
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TABLE 3 Results of ablation experiment.

No. Block 1 Block 2 Block 3 Block 4 SE SK SA Acc K-score F1-score Precision

1 X X X X 81.2% 0.7851 0.8001 0.8080

2 X X X 78.9% 0.7590 0.7739 0.7940

3 X X X 75.9% 0.7250 0.7443 0.7691

4 X X X 78.4% 0.7535 0.7736 0.7936

5 X X X 73.8% 0.7004 0.7267 0.7438

6 X X X X 79.5% 0.7662 0.7813 0.7978

7 X X X X 78.6% 0.7558 0.7730 0.7889

8 X X X X 79.3% 0.7634 0.7784 0.7936

accuracy to 78.6%, slightly lower than removing Block 1 (78.9%).

While the SK attention mechanism dynamically selects features

across different scales, its main role is feature fusion, which may

not effectively extract features from non-characteristic channel data

with limited electrodes. Replacing Block 1 with the self-attention

mechanism (row 8) resulted in a slight recovery, with accuracy

increasing to 79.3%, higher than deleting Block 1. This suggests

that self-attention enhances inter-channel information exchange

through global feature modeling, but its performance remains

lower than the improved SE module, possibly due to less precise

capture of local non-characteristic channel information during

global attention weighting.

In the experiments removing Block 2 to Block 4, the

contribution of each module was further confirmed. Removing

Block 2 (row 3) significantly decreased accuracy to 75.9%,

emphasizing the importance of Block 2 in multi-scale temporal

feature extraction. In contrast, removing Block 3 (row 4) resulted

in a smaller decrease, with accuracy remaining at 78.4%, suggesting

a more moderate effect of Block 3’s feature fusion on overall

performance. The most significant drop occurred when Block 4

was removed (row 5), with accuracy falling to 73.8% and a notable

decrease in F1 score. This indicates the critical role of Block 4 in

extracting spatial features, especially when the number of channels

is limited, as the loss of spatial information led to substantial

performance degradation.

3.5 ROS online simulation

Online experiments were conducted using the Gaitech BCI

and SEMSCS during the night, when fewer unrelated personnel

were present, with external interference minimized by turning

off unnecessary devices and maintaining a stable light source

to reduce the impact of 50 Hz electrical noise. A turtlesim

simulator was created in the ROS environment, allowing the turtle’s

position, orientation, and other information to be accessed via topic

messages for control. Package 1 sends the collected data to Package

2, where real-time filtering is performed. The filtered data is then

published to the model. ROS Bridge enables data transmission

across different environments and languages. The model outputs

the classification label, which is then published to the script in

Package 3. The Python script was used to publish messages to

the “cmd_vel” topic, a standard ROS topic for robot control. The

script included eight commands corresponding to the eight SSVEP

stimuli, with each command defining a fixed movement direction

for the turtle, while the speed remained constant. An “image_topic”

was implemented to receive the turtle’s pose, which was displayed in

“gaitech_bci_teleop” to visualize the turtle’s movement trajectory.

This setup facilitated comparison with the path generated in

the simulator, enabling online validation of the SEMSCS model’s

performance in controlling robot motion through SSVEP signals.

As shown in Figure 13, the figure presents the turtle’s movement

controlled by the eight target classes, alongside the pose images

returned by the “image_topic.”

4 Conclusion and discussion

In this study, we developed a data acquisition and analysis

framework for portable wearable BCI devices based on the ROS

system and proposed the SEMSCS model, which incorporates an

improved SE attention mechanism. The model effectively utilizes

limited electrode data and enhances feature selection, particularly

in scenarios with restricted channel data. The Gaitech BCI system

demonstrated practical utility, offering a reliable solution for EEG

signal acquisition and analysis, as well as a feasible approach for

controlling external devices.Environmental factors, such as power

line interference and external noise, can affect signal quality. In

this study, we used Gaitech BCI’s Package 2, which includes

high-pass, low-pass, and notch filters, along with measures like

turning off unnecessary devices and using stable light sources,

to minimize external noise and ensure data reliability. However,

physiological noise, particularly due to individual differences

among participants, remains a challenge. Despite substantial

research on suppressing eye, muscle, and heart artifacts, the

complexity of individual variations requires further exploration.

Future work will focus on increasing the participant pool to collect

more diverse data, analyzing individual differences, and developing

personalized noise suppression techniques. Additionally, we plan

to improve the experimental setup by simulating more dynamic,

real-world environments to enhance the system’s reliability in

practical applications.

While the SEMSCS model showed good performance with

the current dataset, the small sample size may lead to overfitting.

Expanding the dataset will not only address this concern but
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FIGURE 13

Online simulation validation using the ROS turtlesim simulator and the gaitech_bci_teleop package.

also help validate the model’s generalizability. Future research will

explore methods to reduce overfitting and optimize computational

efficiency, especially in resource-constrained environments, as

model complexity increases.

With the increasing adoption of portable BCI devices, our

work may open new avenues for their application in healthcare,

education, and assistive technologies. The SEMSCS model,

combined with portable EEG devices, could offer more flexible and

efficient brain-machine interfaces for clinical patients, supporting

motor rehabilitation and health monitoring. Additionally, the

ROS-based system may facilitate easier integration with external

devices, enhancing scalability for educational settings and

improving EEG signal analysis. Continued optimization could

further advance the deployment of BCI technologies across

various fields.
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