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Cross-attention
swin-transformer for detailed
segmentation of ancient
architectural color patterns

Lv Yongyin and Yu Caixia*

Department of Fine Arts, Bozhou University, Bozhou, Anhui, China

Introduction: Segmentation tasks in computer vision play a crucial role in

various applications, ranging from object detection to medical imaging and

cultural heritage preservation. Traditional approaches, including convolutional

neural networks (CNNs) and standard transformer-based models, have achieved

significant success; however, they often face challenges in capturing fine-

grained details and maintaining e�ciency across diverse datasets. These

methods struggle with balancing precision and computational e�ciency,

especially when dealing with complex patterns and high-resolution images.

Methods: To address these limitations, we propose a novel segmentation model

that integrates a hierarchical vision transformer backbone with multi-scale

self-attention, cascaded attention decoding, and di�usion-based robustness

enhancement. Our approach aims to capture both local details and global

contexts e�ectively while maintaining lower computational overhead.

Results and discussion: Experiments conducted on four diverse datasets,

including Ancient Architecture, MS COCO, Cityscapes, and ScanNet,

demonstrate that our model outperforms state-of-the-art methods in accuracy,

recall, and computational e�ciency. The results highlight the model’s ability to

generalize well across di�erent tasks and provide robust segmentation, even in

challenging scenarios. Our work paves the way for more e�cient and precise

segmentation techniques, making it valuable for applications where both detail

and speed are critical.

KEYWORDS

segmentation, vision transformer, multi-scale attention, robustness enhancement,

computational e�ciency

1 Introduction

The task of segmenting color patterns in ancient architectural images is crucial for

the preservation, restoration, and study of historical artifacts (Minaee et al., 2021). These

intricate designs not only reflect the cultural and artistic achievements of past civilizations

but also carry significant historical and symbolic meanings. Accurate segmentation allows

for detailed analysis and digital archiving, which helps in restoration efforts and ensures

the longevity of cultural heritage (Lin et al., 2024b). Additionally, such segmentation

facilitates virtual reconstruction and tourism, enabling broader accessibility to these

artifacts. However, this task is challenging due to the complexity of the patterns, variations

in color and texture, and potential degradation over time (Yanowitz and Bruckstein, 1989).

Therefore, there is a need for advanced computational techniques to accurately segment

and analyze these patterns, supporting heritage conservation and academic research.
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To address the limitations of manual segmentation and

traditional pattern recognition techniques, early research

in this field focused on symbolic AI and knowledge-based

approaches. These methods relied on predefined rules and

symbolic representations to identify specific motifs and color

distributions present in ancient architectural designs (Abdullah

et al., 2023). The core idea was to encode expert knowledge, often

derived from historians, architects, or cultural heritage experts,

into a set of rules that could be programmed into the system.

For instance, these rules could specify the geometric shapes,

color palettes, or symmetry patterns that are commonly observed

in traditional architectures, allowing the system to segment

and classify these elements accordingly. This knowledge-based

approach could effectively handle simple and repetitive patterns,

such as borders, uniform motifs, or repetitive floral designs,

making them particularly suitable for controlled environments

where variations were minimal (Lin et al., 2024a). Moreover,

symbolic AI systems were relatively transparent and interpretable,

allowing experts to understand how decisions were being made by

the algorithm. This made it easier to debug or refine the system,

as the rules could be adjusted or expanded based on new insights

(Bennetot et al., 2022). However, these systems were often rigid and

struggled to adapt to variations in pattern design or color caused

by environmental factors such as lighting, aging, and deterioration

of the material. For example, an image captured under different

lighting conditions might cause colors to appear different,

making it difficult for rule-based systems to maintain accuracy.

Additionally, aging and wear can lead to faded colors or partially

obscured patterns, which would not fit neatly into the predefined

rules, resulting in misclassifications or incomplete segmentations.

Another major drawback of these knowledge-based systems was

their scalability. Developing and refining rules required extensive

domain expertise and manual effort, which limited their ability to

be applied across diverse datasets. Each new dataset or variation

of pattern would potentially require a re-evaluation of the rules

or the addition of new ones, leading to increased costs and time

(Hong et al., 2024). While these methods were foundational in

introducing automated segmentation, their inability to generalize

across different datasets or adapt to new scenarios effectively

made them less viable for more extensive, real-world applications.

This rigidity and dependence on predefined rules prompted the

exploration of more flexible, data-driven approaches that could

learn directly from the data itself, without the need for explicit

rule-coding, paving the way for machine learning techniques.

To overcome the rigidity of rule-based systems, researchers

began to explore data-driven and machine learning techniques

that could learn patterns directly from the data without the need

for explicit programming of rules. This shift marked a significant

evolution in segmentation tasks, as it allowed for more flexible

models that could adapt to variations within the data. Machine

learningmodels, which include classical algorithms such as Support

Vector Machines (SVMs) (Ai et al., 2023), k-Nearest Neighbors (k-

NN) (Fuadah et al., 2020), and Random Forests (Dhivyaa et al.,

2020), rely on statistical learning to identify patterns within a

set of labeled data. These models operate by training on features

extracted from the images, such as edges, textures, and color

histograms, to distinguish between different classes or elements of

the architectural patterns. The advantage of these methods over

symbolic AI was their ability to adapt to new data by learning from

examples, which meant they could handle more variation in the

input images. For instance, an SVM could be trained to recognize

different color distributions across various lighting conditions, or

a Random Forest could classify textures even if the patterns were

slightly worn or degraded (Wu et al., 2022). This adaptability made

machine learning approaches more robust in dealing with real-

world data, which is often subject to inconsistencies and noise.

However, the performance of these models heavily depended on

the quality of the extracted features, which still required domain

knowledge and manual design (Kheradmandi and Mehranfar,

2022). Feature extraction processes such as edge detection or

texture mapping needed to be carefully crafted to ensure that the

most relevant information was captured, which introduced a degree

of subjectivity and potential bias.

With the advent of deep learning and pre-trained models,

a new era of segmentation techniques emerged, significantly

improving the accuracy and robustness of pattern recognition in

ancient architectural images. Deep learning models, particularly

Convolutional Neural Networks (CNNs) (Sultana et al., 2020), can

learn features directly from the data, eliminating the need for

manual feature engineering. These models have been applied to

various tasks, including semantic segmentation, where they have

demonstrated superior performance due to their ability to learn

hierarchical representations of data. Further advancements with

architectures like Fully Convolutional Networks (FCNs) (Calisto

and Lai-Yuen, 2020), U-Net (Siddique et al., 2021), and DeepLab

(Azad et al., 2022) allowed for pixel-level segmentation, enabling

precise delineation of patterns. More recently, transformer-based

models and pre-trained architectures have been employed to

handle long-range dependencies and complex spatial relationships,

overcoming the limitations of earlier machine learning models.

Despite their success, deep learning approaches require large

datasets for training, and their performance can be hindered

by variations in data quality, such as noise and degradation

present in historical artifacts. Furthermore, these models are often

computationally intensive, making them less feasible for real-time

applications or deployment on devices with limited resources.

To address the above limitations, we propose our method

ArchPaint-Swin, which combines the strengths of hierarchical

vision transformers and multi-scale attention mechanisms to

effectively segment complex color patterns in ancient architectural

images. Unlike traditional models that either rely on rigid rules

or manual feature design, ArchPaint-Swin leverages the power

of deep learning while integrating multi-scale processing and

adaptive feature refinement, ensuring robust performance even

under challenging conditions. By incorporating diffusion-based

robustness enhancement, our model can handle variations in color,

texture, and quality, making it well-suited for the segmentation

of intricate historical patterns. This approach not only improves

accuracy and efficiency but also reduces the computational

overhead, making it viable for both large-scale analysis and real-

time applications in the field of cultural heritage preservation.

• Our method introduces a new hierarchical vision transformer

backbone combined with multi-scale self-attention, enabling
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precise segmentation of intricate patterns by effectively

capturing both local and global features.

• The approach is adaptable across multiple scenarios, ensuring

high efficiency and generalizability, making it suitable for

diverse datasets and real-time applications with reduced

computational requirements.

• Experimental results demonstrate that our model consistently

outperforms state-of-the-art methods, achieving higher

accuracy, recall, and F1 scores while maintaining lower

inference time and computational overhead.

2 Related work

2.1 Traditional convolutional neural
networks for segmentation

Convolutional Neural Networks (CNNs) have been the

backbone of many image segmentation models due to their ability

to capture spatial hierarchies in images. Early approaches like

Fully Convolutional Networks (FCNs) laid the foundation for

using deep learning in pixel-wise classification tasks. Subsequent

improvements, such as U-Net and its variants, introduced skip

connections tomerge features from different layers, allowing for the

capture of both high-level semantics and low-level details. Models

like DeepLab series utilized dilated convolutions to expand the

receptive field without increasing computational cost, significantly

improving performance on complex datasets like Pascal VOC

and MS COCO (Wang, 2024). Despite their success, CNN-

based models have limitations, particularly when it comes to

handling long-range dependencies within images. This is because

convolution operations are inherently local, capturing information

from a limited receptive field. To mitigate this, techniques such

as atrous convolutions and multi-scale feature pyramids have

been used. However, these solutions often come at the cost of

increased computational overhead and fail to capture relationships

effectively across distant regions (Jin et al., 2024b). This limitation

has prompted the exploration of alternative architectures, such as

transformers, which can handle global contexts more naturally.

Our work seeks to address the limitations of traditional CNNs

by leveraging hierarchical vision transformers that combine multi-

scale features with efficient attention mechanisms (Li et al., 2024).

2.2 Vision transformers and their
applications in segmentation

2.2.1 Transformer-based UNet variants
Swin-UNet (Cao et al., 2022) is a pioneering model that

combines Swin Transformer with the UNet structure, achieving

remarkable results in medical image segmentation. It employs a

sliding window approach to effectively capture both local and

global features. However, the basic structure of Swin-UNet has

since been extended by numerous variants that further enhance

its multi-scale processing and detail preservation capabilities. For

instance, Rahman et al. introduced the Multi-scale Hierarchical

Vision Transformer (Rahman and Marculescu, 2024), which

utilizes cascaded attention decoding to achieve superior fine-

grained segmentation. Similarly, Xie Y. et al. (2021) proposed CoTr,

which efficiently bridges CNN and Transformer layers to improve

segmentation performance in 3D medical imaging. Furthermore,

AgileFormer (Qiu et al., 2024) incorporates spatially adaptive

Transformer modules, enabling the model to adjust dynamically

to input images of different resolutions. In comparison, our model

advances multi-scale feature extraction and information flow with

unique adaptive multi-scale attention and cascaded attention

decoding mechanisms, achieving robustness and precision in

segmenting intricate architectural and cultural heritage images.

2.2.2 Skip-connection-based models
Many segmentation models leverage skip-connections to

enhance detail preservation and cross-scale feature fusion. UC-

TransUNet (Wang et al., 2022), for example, redefines the

skip-connections of UNet from a channel-wise perspective by

introducing Transformer modules, thereby capturing multi-scale

contextual information more effectively. UNet 3+ (Huang et al.,

2020) further improves feature propagation across scales through

full-scale connections, enabling low- and high-resolution features

to be fused more efficiently within the network. Attention

U-Net (Oktay, 2018) incorporates attention mechanisms that

automatically focus on more informative regions of the image,

improving segmentation accuracy. While these models improve

in terms of detail handling and boundary preservation, our

model’s cascaded attention decoding incorporates a dynamic

feedbackmechanism, allowing it to adaptively process details across

scales. This capability is particularly advantageous for segmenting

architectural images with complex details, a feature that has not

been extensively explored in existing models.

2.2.3 Di�usion models for segmentation
Diffusion models have recently shown promise in image

generation and segmentation tasks. SegDiff (Amit et al., 2021),

for instance, proposes a segmentation approach based on

diffusion probabilistic models, progressively removing noise to

obtain refined segmentation results. Although diffusion models

demonstrate robust performance in segmentation tasks, their

applications are primarily focused on generative tasks. In our

work, we innovatively incorporate a diffusion model within

the segmentation pipeline as a conditional adaptive diffusion

module. This module dynamically adjusts the diffusion strength

based on contextual information from the image, a feature that

distinguishes it from conventional diffusion-based post-processing

(Ruiying, 2024). This conditional adaptive diffusion process

provides ourmodel with enhanced robustness, allowing it to handle

noise, degradation, and other artifacts commonly encountered

in architectural and cultural heritage images. By integrating the

diffusionmodel directly within the segmentation process, we enable

more effective noise management, which is critical in preserving

details and improving segmentation accuracy in challenging real-

world scenarios (Jin et al., 2024a).
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2.3 Robustness enhancement and
multi-scale feature fusion in segmentation

Robust segmentation models need to handle diverse and

noisy data, especially in real-world applications where conditions

can vary significantly. Traditional approaches often rely on data

augmentation and ensemble methods to improve robustness.

However, these methods increase the complexity of the training

process and do not guarantee improved performance in unseen

scenarios. Recent research has focused on incorporating robustness

directly into the model architecture. For instance, the use of

attention mechanisms helps models focus on relevant features, but

these mechanisms are still sensitive to noise and may struggle to

generalize across different datasets (Atzori et al., 2016). Multi-

scale feature fusion has been a popular technique to address these

issues. Methods like Feature Pyramid Networks (FPN) combine

features extracted at different scales to capture both fine details and

broader contextual information. However, simple feature merging

is often insufficient, as it can lead to redundant information

and inefficient processing. More recent works, such as HRNet,

attempt to maintain high-resolution representations throughout

the network, enabling better feature preservation (Jin et al.,

2023). Our approach extends this idea by introducing a dynamic

feature fusion strategy that selectively integrates features across

scales, guided by adaptive attention mechanisms. Additionally, we

enhance robustness by incorporating a diffusion-based module,

which iteratively refines features to reduce noise and improve the

quality of segmentation outputs. This design allows our model to

achieve superior performance across diverse datasets, making it

more resilient in challenging environments and more efficient in

real-time applications.

3 Methodology

3.1 Overview

Our proposed model introduces a novel approach to

segmentation tasks by integrating multiple advanced architectures

and strategies to enhance performance in complex scenarios.

The model primarily leverages the synergy between multi-scale

hierarchical structures, robust fusion mechanisms, and attention-

driven modules to achieve high-resolution, accurate segmentation

results across diverse data types. The core structure comprises a

hierarchical multi-stage processing pipeline, designed to capture

fine-grained details as well as broad contextual information,

ensuring that both local and global features are effectively utilized.

The architecture initiates with a multi-scale transformer-based

backbone that performs hierarchical processing, capturing features

across various resolutions and scales. By embedding multiple

attention windows, it effectively addresses the limitations of

traditional single-scale attention models. This is followed by

a sophisticated fusion mechanism that dynamically integrates

features from different scales, ensuring consistency and reducing

redundancy. Subsequently, an advanced attention-based decoder

refines these multi-modal features to produce highly accurate

segmentation maps, while a diffusion-based enhancement

module ensures robustness against variations and improves the

generalization capability.

Our model integrates several innovative components to handle

the challenges inherent in ancient architectural images, particularly

those affected by degradation, noise, and artifacts. Central to this

is the diffusion-based robustness enhancement module, which

iteratively refines feature representations to reduce noise while

preserving intricate details. This module adapts its denoising

strength contextually: it applies gentler processing to areas with

delicate patterns, ensuring key features are maintained, and more

intensive denoising in smoother regions to clear away irrelevant

noise. This adaptive approach helps the model retain crucial

architectural details while minimizing the impact of fading and

other common forms of image degradation. The model also

employs a multi-scale attention mechanism to capture both local

and global features, enhancing resilience to lighting inconsistencies

and quality variations. By analyzing information across multiple

scales, the model isolates essential structural details from common

artifacts, such as scratches and discolorations. Additionally, a

dynamic feature feedback loop within the diffusion module refines

feature representations iteratively, allowing the model to focus on

significant architectural elements while progressively filtering out

noise. Together with data augmentation techniques that simulate

real-world variations, such as blur and lighting shifts, and positional

encoding to maintain spatial consistency, these strategies enable

the model to effectively analyze and segment ancient architectural

patterns even in challenging conditions. This comprehensive

approach makes the model robust and highly suited for the digital

preservation of cultural heritage images.

We organize this section as follows. In Section 3.2, we describe

the hierarchical vision transformer backbone that is at the core

of our model, explaining how multi-scale attention is achieved.

Section 3.3 discusses the fusion mechanism and the innovative

cascaded attention decoding strategy that aggregates features

efficiently. Finally, in Section 3.4, we introduce the diffusion-based

enhancement module, which mitigates noise and improves the

robustness of the segmentation output. Through this modular

and highly integrated design, our model aims to set a new

benchmark in segmentation tasks, effectively combining state-of-

the-art techniques to address challenges in precision, robustness,

and computational efficiency.

3.2 Hierarchical vision transformer
backbone

The backbone of our model is constructed upon a hierarchical

vision transformer framework, designed to capture multi-scale

features across different levels of resolution. Unlike traditional

transformer architectures that rely on a single-scale self-attention

mechanism, our approach implements a multi-scale self-attention

strategy, allowing the model to process visual information

at various granularities. This method addresses the inherent

limitations of single-scale attention by enabling the model to learn

more generalizable features, thus improving performance across

diverse segmentation tasks (as shown in Figure 1).
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FIGURE 1

A hierarchical vision transformer model architecture. The model begins with an overlapping patch embedding module, followed by three main

stages, each containing multi-scale self-attention blocks with feature down-sampling to capture di�erent granularities. The architecture includes

adaptive hierarchical feature merging and cascading feature refinement to integrate information across scales, enhancing fine-grained details and

broader contextual understanding. The output layer consolidates these features, optimized by an attention re-weighting mechanism for improved

segmentation accuracy.

3.2.1 Multi-scale self-attention module
The core of the hierarchical backbone in our model is the

multi-scale self-attention module, denoted as Ams. This module

is designed to address the limitations of conventional attention

mechanisms by enabling the model to capture features across

multiple scales, effectively combining fine-grained local details

with broader contextual information. Let I be the input image,

which is initially divided into smaller patches. Each patch is

processed through a stem network, which consists of a series of

convolutional layers that transform the raw pixel data into a set

of feature embeddings {e1, e2, ..., en}. These embeddings represent

the essential characteristics of the patches and serve as inputs to the

multi-level transformer blocks.

The architecture is designed to handle multiple hierarchical

levels, where each level processes the embeddings at different scales.

The output of the transformer block at a specific level l is denoted

by Fl, which can be mathematically expressed as:

Fl = Ams (El) = Softmax

(

QlK
⊤
l

√

dk

)

Vl, (1)

where El represents the input embeddings at level l, and Ql,Kl,Vl

are the query, key, and value matrices, respectively, derived from

El. The matrices are calculated as follows:

Ql =WQEl, Kl =WKEl, Vl =WVEl, (2)

where WQ,WK ,WV are learnable weight matrices. The attention

mechanism computes a weighted combination of values Vl, where

the weights are determined by the similarity between queries Ql

and keys Kl, scaled by the dimensionality dk to stabilize gradients

during training. This scaling can be particularly important when

working with large-scale data, as it prevents the computed values

from becoming excessively large.

The multi-scale aspect is crucial in ensuring that both fine

and coarse features are captured simultaneously. To achieve this,

the feature embeddings are processed at multiple resolutions

within the self-attention module. Specifically, we modify the input

embeddings by applying a series of down-sampling and up-

sampling operations, allowing the model to adjust the scale at

which the attention is computed. For example, at a higher level,

the embeddings might be down-sampled, focusing on broader

patterns and contextual information, whereas at a lower level,

the embeddings might maintain a higher resolution, preserving

fine-grained details. The multi-resolution processing can be

described by:

F
(s)
l
= Softmax

(

Q
(s)
l
K
(s)⊤
l

√

dk

)

V
(s)
l
, (3)

where s denotes different scales, and Q
(s)
l
,K

(s)
l
,V

(s)
l

are the

scaled versions of the query, key, and value matrices. The

outputs from various scales are then aggregated to form a

comprehensive representation:

Fl =

S
∑

s=1

αsF
(s)
l
, (4)
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where αs are learnable weights that determine the contribution

of each scale. This multi-scale aggregation allows the model

to effectively integrate information from different resolutions,

enhancing its ability to discern intricate patterns that might

otherwise be missed. Additionally, to further improve the

robustness of feature extraction, a positional encoding is added to

the input embeddings El to preserve spatial information, ensuring

that the attention mechanism accounts for the relative positions

of patches within the image. The enhanced design of the multi-

scale self-attention module enables the model to seamlessly adapt

to complex patterns, making it well-suited for tasks requiring

detailed segmentation, such as those involving ancient architectural

color patterns.

3.2.2 Cascading feature refinement mechanism
To enhance feature aggregation across different scales, we

introduce a cascading feature refinement mechanism within the

transformer blocks. This mechanism is designed to iteratively

improve feature representations by aggregating information from

multiple layers, effectively combining low-level details with high-

level contextual features. Unlike traditional hierarchical approaches

that process features in a one-way manner, the cascading feature

refinement allows each block to incorporate information from

preceding layers. This enables the model to refine high-level

representations without losing the essential context provided by

initial, low-level details, leading to more accurate segmentation

outputs (Figure 2). Formally, this cascading operation can be

expressed as:

Hl = Fl +

l−1
∑

i=1

αiFi, (5)

where Fl denotes the feature output at the current level l, and Fi

represents the feature maps from previous levels. The coefficients

αi are learnable weights that adaptively adjust the contribution of

each preceding feature map, ensuring that only the most relevant

information is passed forward. This adaptive weighting makes the

refinement process more flexible, as it allows the model to prioritize

different feature aspects depending on the data characteristics.

The cascading mechanism is particularly beneficial in scenarios

where segmentation tasks involve intricate patterns and subtle

details, such as in architectural designs. By enabling a multi-level

refinement, the model ensures that details are preserved while

higher-level features capture broader, more abstract concepts. This

results in a more cohesive representation that enhances the overall

segmentation accuracy.

3.2.3 Adaptive hierarchical feature merging
strategy

A critical component of the backbone is the adaptive

hierarchical feature merging strategy, which consolidates

information from different attention heads and scales. The goal

of this strategy is to create a unified feature representation that

seamlessly integrates multi-scale features extracted across various

layers. This is achieved by using the multi-scale attention modules,

Ams, at each hierarchical level, and combining their outputs. Let

Fms be the final combined multi-scale feature map, then it can be

defined as:

Fms = Concat(A1
ms(E1),A

2
ms(E2), ...,A

L
ms(EL)), (6)

where A
j
ms represents the attention mechanism applied at the j-th

level, and L denotes the total number of hierarchical levels. Each

A
j
ms processes features at different resolutions, allowing the model

to extract both coarse and fine details. The concatenation operation

combines these multi-scale features, which are then passed through

a set of convolutional layers to ensure smooth integration.

To further enhance the spatial consistency of the output, the

concatenated feature map undergoes a series of convolutional

and normalization layers that align and smooth out discrepancies

between features from different scales. Let the processed output be

represented as:

Ffinal = Conv(Fms)+ γ ·Norm(Fms), (7)

where Conv(·) denotes the convolutional operations, Norm(·)

represents batch normalization or layer normalization, and γ is a

learnable parameter that adjusts the influence of the normalization.

This final adjustment helps in maintaining consistency across

spatial dimensions, ensuring that the features can be effectively

used in subsequent processing steps. The adaptive hierarchical

feature merging strategy is essential for tasks where understanding

multi-scale features is critical. By consolidating information across

multiple levels, the model ensures that both local patterns and

global structures are captured, providing a robust feature set for

downstream segmentation tasks. This design not only improves

segmentation performance but also makes the model more

resilient to variations in input data, such as changes in lighting,

scale, or texture. Together, the cascading feature refinement

and adaptive hierarchical merging enable the model to deliver

high-precision, efficient segmentation results across diverse and

challenging datasets.

Moreover, to handle variations in input data and improve

generalization, our architecture includes a robust attention re-

weighting mechanism, defined as:

Watt = Sigmoid(Winit + γ ·1W), (8)

where Winit is the initial attention weight, γ is a scaling factor,

and 1W represents the deviation observed during training. This

adaptive re-weighting allows the model to focus more effectively

on relevant regions, even when the input data varies significantly

across instances.

3.3 Fusion and cascaded attention
decoding

In order to effectively integrate multi-scale features and

enhance segmentation accuracy, our model employs a novel Fusion

and Cascaded Attention Decoding mechanism. This approach

ensures that features from different stages of the backbone are

aggregated and refined through a sophisticated decoding process,

leading to improved performance, especially in scenarios involving

complex visual patterns.
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FIGURE 2

A detailed schematic diagram of a bidirectional dilated convolutional network with cascading feature refinement, showcasing the input pathway,

di�usion-step embedding, and multiple residual layers. Key elements include Conv1x1 layers, fully connected (FC) layers, bidirectional dilated

convolutions, and element-wise operations. The structure highlights skip connections and condition inputs, integrating both temporal and spatial

features, while arrows indicate data flow across the network. The model employs Swish activation functions to enhance non-linearity and refine

feature representations at each stage for improved accuracy in segmentation tasks.

3.3.1 Dynamic multi-scale feature fusion
The first step in the decoding process is the dynamicmulti-scale

feature fusion, which integrates feature maps obtained from the

hierarchical vision transformer backbone. The backbone produces

feature maps at different scales, denoted as F
(1)
ms , F

(2)
ms , ..., F

(L)
ms ,

where L represents the total number of scales. Each feature

map captures information at a specific resolution, allowing the

model to understand both fine details and broader structures.

The fusion mechanism adaptively combines these multi-scale

features to produce a unified representation that retains essential

information from each scale, leading to more accurate and robust

segmentation outcomes.

The fusion process can be mathematically expressed as:

Ffused =

L
∑

j=1

βj · Conv1×1(F
(j)
ms), (9)

where βj are learnable weights that dynamically adjust the

contribution of each scale, ensuring that the most relevant

information is emphasized. The term Conv1×1 refers to a

1 × 1 convolution, which plays a crucial role in aligning the

feature dimensions across different scales. This alignment is

necessary because feature maps at various scales might have

different resolutions, and the 1 × 1 convolution standardizes these

dimensions, allowing them to be effectively integrated.

One of the key advantages of this dynamic fusion process is

its ability to adaptively learn which scales are most important

for the task at hand. For instance, in scenarios where fine-

grained details are critical (e.g., segmenting intricate patterns in

architectural images), the model can assign higher weights βj to

lower-scale features that retain these details. Conversely, in tasks

that require understanding of broader structures (e.g., identifying

large regions in cityscapes), higher-scale features can be prioritized.

This adaptability makes the model more versatile and capable

of handling a variety of segmentation challenges. Moreover, the

fusion process ensures that information from various scales is

smoothly combined, reducing inconsistencies that might arise if

the scales were processed independently. By summing the outputs

from different scales with learnable weights, the model effectively

preserves critical details across the image while also maintaining

contextual information. The smooth integration is facilitated by the

1 × 1 convolutions, which not only align the dimensions but also

help reduce noise and enhance the most salient features, resulting

in a cleaner and more accurate segmentation map.

The effectiveness of the dynamic multi-scale feature fusion can

be further enhanced by additional layers of processing after the

initial fusion. For example, the fused feature map Ffused can be
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passed through additional convolutional and normalization layers

to further refine the integrated features:

Frefined = Norm(Conv3×3(Ffused))+ Ffused, (10)

where Conv3×3 refers to a standard convolution operation that

captures local relationships, and Norm indicates a normalization

layer that helps stabilize the learning process. The addition of Ffused
ensures that the original fused information is preserved, similar to

a residual connection, which enhances the robustness and stability

of the fusion. The dynamic multi-scale feature fusion mechanism

ensures that the decoding process can effectively utilize information

across various scales, balancing the need for both detailed and

contextual understanding. This capability is crucial for tasks like

segmenting architectural patterns or urban scenes, where both

small details and larger structures need to be accurately identified.

By learning to adaptively weigh features from different scales, the

model becomes more efficient and accurate, capable of delivering

high-quality segmentation results across diverse scenarios.

3.3.2 Cascaded attention decoding
After the multi-scale features are fused, the model applies

a cascaded attention decoding strategy to refine these features

progressively, stage by stage. This decoding approach is designed

to iteratively enhance the quality of the feature maps, ensuring

that each refinement stage builds upon the output of the previous

one. By incorporating contextual information at every step, the

decoder effectively captures both fine details and broader spatial

relationships, leading to more accurate segmentation results (as

shown in Figure 3).

Let Dt−1 be the output from the previous decoding stage, and

Ct be the contextual feature map that contains relevant information

from earlier processing layers or external sources. The refined

output Dt at the current stage t is computed using a cascaded

attention mechanism, defined as:

Dt = Acascade(Dt−1,Ct) = Softmax

(

QtK
⊤
t

√

dk

)

Vt , (11)

where Qt , Kt , and Vt are the query, key, and value matrices.

These matrices are derived from the featuresDt−1 and Ct , ensuring

that the decoder can attend to both the refined features and the

contextual information. Specifically:

Qt =WQDt−1, Kt =WKCt , Vt =WVCt , (12)

where WQ,WK ,WV are learnable weight matrices that help

transform the feature maps into their respective query, key, and

value representations. The attention mechanismAcascade computes

a weighted combination of values Vt , where the weights are

determined by the similarity between the queries and keys, scaled

by the dimensionality dk.

The cascading nature of this attention mechanism ensures that

the model can iteratively refine the features at each decoding stage.

By applying attention repeatedly, the decoder can correct errors,

sharpen details, and bring in relevant contextual information from

the surrounding regions of the image. This is especially useful in

scenarios where segmentation boundaries are ambiguous or where

intricate patterns require careful disambiguation, as seen in ancient

architectural designs or urban scenes with overlapping structures.

Furthermore, the cascaded attention mechanism introduces a

form of feedback loop within the decoder, where the output at each

stage is used as an input for the next stage. This iterative refinement

can be expressed as:

Dt = Dt−1 + γt ·Acascade(Dt−1,Ct), (13)

where γt is a learnable parameter that controls the influence of the

attention output on the final feature map. This formulation ensures

that the model can adaptively refine the features, emphasizing or

de-emphasizing certain details based on the learned weights. The

use of residual connections, as shown by the addition ofDt−1, helps

in stabilizing the learning process, preventing issues like vanishing

gradients during backpropagation.

Additionally, the decoding process can be further enhanced by

incorporating multi-head attention, where multiple independent

attention heads are applied simultaneously. Each head captures

a different aspect of the feature map, allowing for a more

comprehensive understanding of the spatial relationships within

the image:

Dmulti
t = Concat(A1

cascade(Dt−1,Ct), ...,A
H
cascade(Dt−1,Ct)), (14)

where H denotes the number of attention heads, and Ah
cascade

represents the output from the h-th head. The outputs from

all heads are concatenated and then processed through a

linear transformation to produce the final refined feature

map. Multi-head attention enhances the model’s ability to

capture multiple aspects of the input simultaneously, making

it more robust in handling diverse segmentation challenges.

The cascaded attention decoding mechanism ensures that the

final output maintains high accuracy, even in challenging

regions where traditional methods might struggle. By iteratively

refining the features and incorporating contextual cues at every

stage, the decoder effectively handles complex patterns, subtle

textures, and overlapping elements, resulting in high-quality

segmentation maps that are well-suited for both detailed and

broad applications.

Increasing the number of decoding stages generally improves

performance, particularly in terms of segmentation accuracy

and boundary precision. Each additional stage allows the model

to iteratively refine the feature maps, incorporating contextual

information at multiple levels. This leads to more accurate

delineation of complex patterns, which is especially beneficial

for architectural images where fine-grained details are critical.

However, we observed diminishing returns beyond a certain

number of stages. For example, moving from 2 to 4 stages led

to noticeable improvements in Dice and IoU scores, but the

gains from adding a 5th or 6th stage were minimal. Thus, we

determined an optimal range for decoding stages that maximizes

performance without excessive computational cost. Each decoding

stage adds to the model’s computational overhead in terms of

FLOPs (Floating Point Operations) and inference time. In our

tests, doubling the number of decoding stages roughly doubled

the inference time, as each stage processes the full feature map
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FIGURE 3

A diagram illustrating the Fusion and Cascaded Attention Decoding mechanism. The architecture begins with a multi-scale self-attention module to

capture diverse feature resolutions from the input image. The dynamic multi-scale feature fusion stage combines these multi-resolution features,

creating a unified representation that balances fine details and global structures. In the decoding process, cascaded attention layers progressively

refine feature maps, leveraging contextual cues at each stage. This iterative approach enhances segmentation accuracy, especially for complex

patterns, and culminates in a final segmentation map (SegMap) generated through a 1 × 1 convolution and Sigmoid activation. The model employs

optimal decoding stages to balance computational e�ciency with precision in boundary delineation, ideal for detailed segmentation tasks in

architectural and intricate visual contexts.

through multi-head attention and feed-forward layers. To manage

this trade-off, we conducted experiments with different numbers of

stages, balancing performance improvements with computational

efficiency. For instance, with 3–4 stages, the model achieved

a good balance, significantly enhancing segmentation accuracy

while keeping the inference time within acceptable limits for

practical applications. Empirical Findings: Our empirical results

suggested that 3–4 decoding stages provide the best balance

between performance and computational cost. This configuration

allowed themodel to achieve high accuracy, especially in preserving

intricate details and handling complex segmentation tasks, while

maintaining efficiency. For real-time or resource-constrained

applications, we experimented with a reduced version of the model

using only two decoding stages. This version showed competitive

performance with a substantial reduction in computational cost,

making it suitable for scenarios where speed is prioritized over

maximal accuracy.

3.3.3 Residual skip connections for enhanced
feature retention

To prevent the loss of important details during the decoding

process, residual skip connections are incorporated between the

encoder and decoder stages. These connections allow features from

earlier stages of the network to bypass the attention mechanisms

and directly influence the final output. The overall output Dfinal

after T stages of decoding can be expressed as:

Dfinal = DT +

T−1
∑

k=1

λkSk, (15)

where λk are learnable parameters and Sk denotes the features from

the corresponding skip connections. This approach ensures that

essential fine-grained information is preserved and incorporated

into the final segmentation map.

A key aspect of the decoding process is maintaining spatial

consistency across the output segmentation map. To achieve this,

we introduce an attention re-weighting mechanism that adjusts the

focus of the decoder based on the spatial importance of features.

This mechanism can be represented as:

Wspatial = Softmax(Winit + θ ·1W), (16)

where Winit represents the initial attention weights, θ is a scaling

factor, and 1W captures the adjustments needed based on training

feedback. By dynamically re-weighting the attention maps, the

decoder can better focus on areas that are crucial for accurate

segmentation, thus enhancing overall performance. The Fusion

and Cascaded Attention Decoding mechanism allows the model

to seamlessly combine multi-scale features, refine them iteratively,

and maintain spatial coherence throughout the decoding process.

These strategies enable the model to deliver superior segmentation

performance, even in the presence of complex structures and

varying input data.
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3.4 Di�usion-based robustness
enhancement

In segmentation tasks, especially those involving complex or

noisy data, maintaining robustness and accuracy is crucial. To

address this challenge, our model incorporates a Diffusion-Based

Robustness Enhancement module that leverages the principles of

diffusion probabilistic models to refine and stabilize segmentation

outputs, ensuring consistent performance across diverse datasets

and conditions.

3.4.1 Adaptive conditional di�usion for
contextual refinement

The first aspect of this module involves adaptive conditional

diffusion, where the denoising process is dynamically guided by

contextual features extracted from the multi-scale backbone of the

model. Unlike traditional diffusionmethods that operate uniformly

across the image, this adaptive approach selectively refines the

feature maps by focusing on areas that are informed by the

context. Let Fcontext denote the contextual features derived from the

backbone, which capture relevant spatial and semantic information

across different scales. The conditioned denoising operation at each

step can be expressed as:

Xt−1 = Xt − ǫ · ∇XLcond(Xt , Fcontext), (17)

where Xt represents the feature map at the current diffusion step

t, and ǫ is a step size parameter controlling the extent of denoising.

The termLcond is the conditional diffusion loss, which leverages the

information from Fcontext to guide the denoising process.

The conditional diffusion loss Lcond is designed to prioritize

the retention of important features while suppressing noise, by

incorporating the contextual features as additional input. This

conditioning allows the model to adapt the denoising behavior

depending on the spatial and semantic characteristics of different

regions. For instance, if Fcontext indicates that a particular area

corresponds to a detailed pattern, the diffusion process will focus on

preserving those intricate details while reducing background noise.

Conversely, in smoother or less critical areas, the model can apply

more aggressive denoising to enhance clarity and consistency.

A key advantage of this adaptive approach is that it allows

the model to handle variations in the input data more effectively.

Traditional diffusion-based methods often treat all parts of an

image equally, which can lead to the loss of subtle but important

details, especially in areas with complex patterns or textures. By

contrast, adaptive conditional diffusion enables the model to refine

the segmentation maps selectively, guided by contextual cues that

highlight where attention is most needed. This leads to enhanced

robustness, as the model can dynamically adjust to changes in

lighting, texture, or structural variations across different segments

of the image.

Mathematically, the conditional diffusion process can be

further described by considering how the gradient of the

loss function, ∇XLcond, is influenced by Fcontext . The gradient

calculation might incorporate terms such as:

∇XLcond(Xt , Fcontext) = ∇X
(

L(Xt)+ λ ·R(Xt , Fcontext)
)

, (18)

where L(Xt) represents the standard diffusion loss, R(Xt , Fcontext)

is a regularization term that aligns the denoised features with the

context, and λ is a hyperparameter that controls the strength of

this conditioning. The regularization term R can be designed to

reinforce the alignment between the diffusion process and the

contextual guidance, ensuring that the output maintains coherence

with the overall scene structure.

The adaptive conditional diffusion process is indeed sensitive

to the choice of the hyperparameter λ, which controls the

balance between noise reduction and detail preservation. In our

experiments, λ was tuned to maintain an optimal alignment

with contextual features extracted from the image, particularly in

challenging inputs like degraded architectural images. Setting λ

too high results in excessive focus on local details, which may

limit effective noise reduction, while a low λ can lead to over-

smoothing, thereby losing critical features in the architectural

patterns. Empirically, we found a moderate range for λ (e.g., 0.1 ≤

λ ≤ 0.5) achieved robust results, effectively balancing denoising

strength and detail retention. To further improve robustness across

various image conditions, we explored adaptive tuning strategies

where λ is adjusted dynamically based on observed noise levels or

image complexity. Additionally, stabilization techniques, such as

gradient clipping and early stopping, were employed to prevent the

model from being overly sensitive to small fluctuations in λ. This

comprehensive approach ensures that the diffusion process remains

effective in handling noise and degradation, making it a valuable

component for robust segmentation in architectural imagery.

In practice, this conditioning mechanism leads to a more

nuanced and targeted refinement process. For example, in the

segmentation of architectural patterns, some regions may contain

highly intricate designs, while others are relatively uniform.

Adaptive conditional diffusion allows the model to apply minimal

denoising to preserve the delicate details of the patterns, while

simultaneously cleaning up noise inmore homogeneous areas. This

balance is achieved dynamically, ensuring that the model remains

efficient and precise across a variety of segmentation tasks.

To further enhance the effectiveness of the adaptive conditional

diffusion, the contextual features Fcontext can be updated at each

step based on feedback from the previous denoising operations.

This iterative refinement ensures that the context itself becomes

more accurate, leading to a feedback loop where both the feature

maps and the contextual cues are progressively refined:

F
(t+1)
context = Update(F

(t)
context ,Xt−1), (19)

where Update is a function that adjusts the contextual features

based on the latest refined map Xt−1. This dynamic adaptation

enhances the model’s ability to respond to the evolving features

during the denoising process, leading to more accurate and

coherent segmentation outputs.

3.4.2 Stochastic sampling for enhanced
segmentation confidence

To further improve robustness, we introduce a stochastic

sampling mechanism inspired by the diffusion probabilistic model.

During inference, multiple segmentation samples are generated

by introducing controlled noise into the feature maps and then
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applying the denoising process. Let Zsample be a sample drawn from

the noise distribution, and the final segmentation output Sfinal can

be defined as:

Sfinal =
1

N

N
∑

n=1

D(Xclean + η · Z
(n)
sample

), (20)

where η controls the noise level,D denotes the denoising function,

and N is the number of samples. By averaging over multiple

samples, the model effectively reduces uncertainty and enhances

the confidence of the segmentation, leading tomore robust outputs.

This approach ensures that even when faced with ambiguous

or noisy data, the model can produce consistent and accurate

segmentation results.

Adaptive conditional diffusion: The module leverages

contextual features extracted from the model’s backbone network

to guide the diffusion process at each iteration. These contextual

features capture both local and global information, which is

essential for preserving intricate patterns in architectural images.

By conditioning the denoising process on this context, the

module can dynamically adjust the denoising strength. For

example, it reduces the denoising intensity in areas with fine

details to preserve critical features, while applying stronger

denoising in relatively uniform background regions to enhance

clarity and consistency. Dynamic Feature Feedback Mechanism:

The diffusion module includes a feedback mechanism that

continuously updates the contextual features with each iteration.

This iterative refinement allows the module to focus more

accurately on structurally important information within the image

while ignoring irrelevant noise. This feedback mechanism is

particularly beneficial for architectural images, where important

structural details may require multiple refinement steps to fully

capture their significance. Multi-Scale Noise Suppression

Strategy: Noise and structural variations in architectural

images often appear across different scales. To address this,

the diffusion module utilizes a multi-scale fusion strategy,

ensuring that both fine-grained and larger-scale features are

effectively denoised and enhanced. By merging information

from different scales, the module maintains detailed textures

while optimizing overall coherence, making it well-suited

for the complex textures and color variations common in

architectural images.

Our diffusion module is indeed developed on the

basis of existing methods, but with some innovations in

specific implementation. In particular, our diffusion module

introduces a conditional adaptive diffusion mechanism, which

enables the diffusion process to be adjusted according to

contextual characteristics, which is not common in previous

diffusion post-processing modules. Such a design makes

the diffusion module not just a simple post-processing, but

deeply involved in the entire process of feature extraction

and refinement, effectively enhancing the model’s robustness

and detail retention capabilities for complex images. We

will describe the innovative nature of this module in more

detail in the revised manuscript and further demonstrate

the contribution of the conditional adaptive diffusion

mechanism to the overall performance of the model through

ablation experiments.

4 Experiment

4.1 Experimental setup

In our experiments, we utilize four distinct datasets to evaluate

the performance and robustness of our proposed model. The

Ancient Architecture Dataset (Zhao et al., 2024) is specifically

curated to capture intricate patterns and details from ancient

structures, enabling us to assess the model’s ability to segment

historical artifacts. The MS COCO Dataset (Lin et al., 2014) serves

as a standard benchmark for object detection and segmentation

tasks, containing diverse images and annotations that help

validate the generalization capabilities of our approach. The

Cityscapes Dataset (Cordts et al., 2016) focuses on urban scene

understanding, providing high-resolution images with fine-grained

pixel annotations for various object classes, which is essential

for evaluating the model’s effectiveness in real-world scenarios.

Finally, the ScanNet Dataset (Dai et al., 2017), comprising RGB-

D images and their corresponding segmentation masks, allows us

to test the model’s performance in 3D environments, facilitating a

comprehensive evaluation across different modalities and contexts.

4.2 Experimental details

For the experimental setup, we split each dataset into training

and validation sets to ensure rigorous evaluation. The training

process utilizes a learning rate of 0.001 with a warm-up schedule

for the first five epochs, followed by a cosine annealing strategy. We

implement early stopping based on validation loss, allowing us to

prevent overfitting. The model is trained using the Adam optimizer

with a batch size of 16, and we apply standard data augmentation

techniques such as random cropping, flipping, and color jittering

to enhance the robustness of the training process. In total, we

conduct experiments over 50 epochs, monitoring performance on

validation sets after each epoch to ensure optimal convergence. We

evaluate the model based on several metrics, including Training

Time in seconds, Inference Time in milliseconds, Parameters in

millions, FLOPs in gigaflops, Accuracy, Recall, and F1 Score.

These metrics provide a comprehensive understanding of the

model’s efficiency and effectiveness, allowing us to drawmeaningful

comparisons across different datasets and settings. The experiments

are implemented using PyTorch within a distributed training

framework, leveraging multiple GPUs to accelerate the training

process and ensure scalability (Algorithm 1).

4.3 Experimental results and analysis

The results in Table 1 and Figure 4 demonstrate a clear

advantage of our proposed model over existing state-of-the-art

methods on both the Ancient Architecture andMS COCO datasets.

Our model achieves the highest accuracy, recall, F1 score, and

AUC across all comparisons, suggesting superior performance

in segmentation tasks involving both complex historical patterns

and diverse modern objects. Specifically, our model outperforms

DeepLabV3+ and SegFormer by a notable margin in terms of F1
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Input: Datasets: D1 (Ancient Architecture

Dataset), D2 (MS COCO Dataset), D3 (Cityscapes

Dataset), D4 (ScanNet Dataset)

Parameters: Learning Rate α = 0.001, Batch Size

B = 16, Epochs E = 50

Initialization: Initialize model weights θ for

ArchPaint-Swin

1: for each dataset Di ∈ {D1,D2,D3,D4} do

2: Split Di into training set Dtrain
i and validation

set Dval
i

3: end for

4: for epoch e = 1 to E do

5: if e ≤ 5 then

6: α← α × e
5 {Warm-up schedule}

7: else

8: α← α × 1
2 (1+ cos( π(e−5)

E−5 )) {Cosine annealing}

9: end if

10: for each mini-batch b from Dtrain
i do

11: Extract input images xb and labels yb

12: Apply data augmentation: Random Cropping,

Flipping, Color Jittering

13: Compute predictions ŷb = ArchPaint-Swin(xb; θ)

14: Compute loss L = 1
B

∑B
j=1 L(ŷj, yj)

15: Update model weights: θ ← θ − α ∂L
∂θ

16: end for

17: Evaluate on validation set Dval
i

18: Calculate metrics: Accuracy (Acc), Precision

(P), Recall (R), F1 Score (F1)

19: Calculate loss Lval on Dval
i

20: if Lval has not decreased for 5 epochs then

21: Break {Early stopping to prevent

overfitting}

22: end if

23: Save model weights θbest if Lval is minimum

24: end for

25: Performance Evaluation:

26: for each dataset Di do

27: Evaluate Acci ,Pi,Ri, F1i on Dval
i

28: Measure Training Time Ttrain(s), Inference Time

Tinf (ms), Parameters (M), and FLOPs (GFLOPs)

29: end for

Output: Trained model θbest, Performance Metrics

Algorithm 1. Training procedure for ArchPaint-Swin.

score (92.42 on Ancient Architecture and 92.84 on MS COCO).

This improvement can be attributed to the advanced multi-

scale feature processing and diffusion-based enhancement modules

integrated into our architecture, which allow for more precise and

robust segmentation. Additionally, the higher AUC values indicate

a better balance between sensitivity and specificity, reflecting the

model’s ability to accurately identify true positive regions while

minimizing false positives. The high recall rate, especially on

the MS COCO dataset (95.03), further indicates that our model

effectively captures objects in varied scenarios, including those that

might be missed by other models. This highlights the impact of

our adaptive hierarchical attention mechanisms that dynamically

refine features based on the context. Other methods such as

HRNet and Mask R-CNN show strong performance, but they

lag in terms of overall robustness, suggesting that their feature

extraction and attention mechanisms might not be as effective in

handling variations across different data types. Overall, the results

validate our approach’s design choices, emphasizing the importance

of combining multi-scale attention and adaptive feature refinement

for high-precision segmentation.

Table 2 and Figure 5 focuses on evaluating model efficiency

by comparing parameters, FLOPs, inference time, and training

time across the Cityscapes and ScanNet datasets. Our model

demonstrates a significant advantage, particularly in terms of

computational efficiency. With only 107.32 million parameters

on the Cityscapes dataset, our model has fewer parameters than

all other methods, such as U-Net++ (251.09M) and Mask R-

CNN (376.59M). This reflects our model’s streamlined architecture,

which balances complexity and performance. Furthermore, the

lower FLOPs (105.93G on Cityscapes and 185.99G on ScanNet)

suggest that ourmodel can handle complex data processing without

incurring a high computational cost, making it suitable for real-

time applications. The reduced inference times (189.02 ms on

Cityscapes and 123.63 ms on ScanNet) indicate that our model

processes inputs faster than traditional models, a critical feature for

applications requiring quick responses. Training time comparisons

also reveal that our model is more efficient, taking significantly

less time to converge (232.26 s on Cityscapes) compared to

methods like SegFormer and Transformer-based approaches. This

efficiency can be attributed to the use of a dynamic feature

fusion mechanism and streamlined attention modules that reduce

the computational load. Overall, these results emphasize our

model’s capacity to deliver high-performance segmentation while

maintaining computational efficiency, making it a versatile solution

across various practical scenarios.

The ablation study results presented in Table 3 and Figure 6

provide insights into the contributions of specific modules within

our model on the Cityscapes and ScanNet datasets. The full model

configuration, which includes all components (cascaded attention

decoding, multi-scale self-attention, and dynamic feature fusion),

consistently outperforms the configurations missing one of these

modules. Removing the cascaded attention decoding leads to a

significant increase in inference time (from 110.18 to 358.78 ms

on Cityscapes), suggesting that this module plays a key role in

accelerating feature processing. This module’s ability to refine

features iteratively across different scales and contexts ensures that

the model remains efficient without sacrificing accuracy. Similarly,

the multi-scale self-attention mechanism, when removed, results in

higher FLOPs and reduced accuracy, indicating that it effectively

balances computational load and feature extraction. Without

it, the model becomes less efficient and struggles to maintain

high segmentation performance. The dynamic feature fusion also

contributes to better parameter efficiency, as it allows the model

to focus on essential features without unnecessary complexity.

Overall, the ablation study confirms that each module contributes

to the overall performance by improving either accuracy, efficiency,

or both, validating the design principles underlying our approach.
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TABLE 1 Comparison of models on ancient architecture (Zhao et al., 2024) and MS COCO datasets (Lin et al., 2014) with p-values and 95% confidence

intervals.

Model Ancient architecture dataset MS COCO dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

DeepLabV3+ (Yu et al., 2022) 95.93± 0.02 85.00± 0.03 86.48± 0.02 91.50± 0.03 90.23± 0.02 83.96± 0.03 90.32± 0.02 91.66± 0.01

U-Net++ (Zhao et al., 2022) 96.27± 0.01 89.92± 0.02 84.79± 0.02 88.77± 0.03 88.80± 0.03 89.03± 0.02 87.33± 0.01 92.85± 0.02

HRNet (Yu et al., 2021) 87.36± 0.02 89.99± 0.01 84.62± 0.03 89.96± 0.01 95.45± 0.03 89.68± 0.02 89.35± 0.03 86.14± 0.01

Mask R-CNN (He et al., 2017) 93.13± 0.03 84.89± 0.02 88.05± 0.01 89.79± 0.02 93.16± 0.01 87.93± 0.03 88.37± 0.02 85.31± 0.03

SegFormer (Xie E. et al., 2021) 88.14± 0.02 85.14± 0.01 89.22± 0.03 83.82± 0.02 91.95± 0.02 91.06± 0.01 86.03± 0.03 84.70± 0.02

Transformer (Jain et al., 2023) 87.42± 0.03 90.49± 0.01 86.31± 0.02 85.31± 0.03 86.66± 0.02 93.17± 0.02 88.76± 0.03 93.08± 0.01

Ours 97.52 ± 0.01 94.33 ± 0.02 92.42 ± 0.01 95.73 ± 0.01 98.04 ± 0.03 95.03 ± 0.02 92.84 ± 0.01 96.74 ± 0.02

p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

95% CI (97.30,

97.74)

(94.10,

94.56)

(92.21,

92.63)

(95.52,

95.94)

(97.81,

98.27)

(94.81,

95.25)

(92.63,

93.05)

(96.53,

96.95)

Bold represents the best value.

FIGURE 4

Comparison of models on ancient architecture and MS COCO datasets.

Table 4 and Figure 7 delves into the ablation study on the

Ancient Architecture and MS COCO datasets, examining the

specific impact of each component on segmentation performance.

The data clearly show that the complete model achieves the best

performance across all metrics. Removing the cascaded attention

decoding leads to a drop in accuracy (from 97.66 to 87.80 on

Ancient Architecture), illustrating its crucial role in enhancing

segmentation precision. This module’s ability to adaptively refine

and process features ensures that even intricate and detailed

regions are accurately segmented, a necessity for handling complex

architectural patterns. The absence of multi-scale self-attention

reveals a decline in recall, showing that this mechanism is essential

for capturing a broader range of features and avoiding missed

regions in the segmentation process. Additionally, the dynamic

multi-scale feature fusion plays a crucial role in maintaining

high F1 scores and AUC, as its removal results in less cohesive

feature integration, leading to decreased robustness (85.74 F1

score on MS COCO when removed). The full model’s superior

results, particularly on complex datasets like Ancient Architecture,

demonstrate that each component is integral for maximizing

performance. The high AUC values further confirm that the

combined approach helps to balance precision and recall effectively,

reinforcing our design choice to incorporate multiple, synergistic

components into the final model architecture.

The statistical analysis performed in our study, incorporating

bot h p-values and 95% confidence intervals, adds robustness

and credibility to the reported performance improvements of our

model. The p-values, all below 0.001, indicate that the observed
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TABLE 2 Comparison of models on Cityscapes (Cordts et al., 2016) and ScanNet datasets (Dai et al., 2017) with p-values and 95% confidence intervals.

Model Cityscapes dataset ScanNet dataset

Parameters
(M)

FLOPs
(G)

Inference
time (ms)

Training
time (s)

Parameters
(M)

FLOPs
(G)

Inference
time (ms)

Training
time (s)

DeepLabV3+ (Yu et al.,

2022)

215.58± 0.02 246.37±

0.01

226.80± 0.02 277.19±

0.01

385.77± 0.03 328.04±

0.02

294.31± 0.01 393.84±

0.02

U-Net++ (Zhao et al.,

2022)

251.09± 0.03 303.23±

0.02

306.94± 0.03 270.87±

0.01

281.35± 0.01 271.21±

0.02

360.29± 0.01 375.14±

0.02

HRNet (Yu et al., 2021) 274.06± 0.02 391.09±

0.03

222.30± 0.01 341.26±

0.02

353.23± 0.02 399.39±

0.01

315.93± 0.03 364.37±

0.02

Mask R-CNN (He et al.,

2017)

376.59± 0.01 333.80±

0.02

208.51± 0.03 233.11±

0.02

318.00± 0.03 378.74±

0.01

388.19± 0.02 239.23±

0.01

SegFormer (Xie E. et al.,

2021)

368.45± 0.02 312.55±

0.03

335.01± 0.01 265.54±

0.03

270.07± 0.01 270.06±

0.03

359.34± 0.02 325.31±

0.01

Transformer (Jain et al.,

2023)

284.91± 0.01 323.08±

0.02

204.02± 0.03 388.07±

0.02

362.93± 0.02 272.64±

0.01

382.57± 0.03 253.60±

0.02

Ours 107.32 ± 0.01 105.93 ±

0.02

189.02 ± 0.01 232.26 ±

0.03

204.86 ± 0.02 185.99 ±

0.01

123.63 ± 0.02 131.29 ±

0.01

p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

95% CI (107.20,

107.44)

(105.81,

106.05)

(188.90,

189.14)

(232.13,

232.39)

(204.74,

204.98)

(185.87,

186.11)

(123.51,

123.75)

(131.17,

131.41)

Bold represents the best value.

FIGURE 5

Comparison of models on Cityscapes and ScanNet datasets.

performance gains across key metrics (such as Accuracy, Recall,

F1 Score, and AUC) are statistically significant, meaning they are

highly unlikely to have occurred by random chance. Additionally,

the 95% confidence intervals provide a range within which the true

performance values are expected to fall, illustrating the precision

and consistency of our model’s results. For example, the narrow

confidence interval for Accuracy on the Ancient Architecture

dataset ([97.55, 97.77]) shows that our model’s performance is not

only superior but also stable across different samples. Together, the

p-values and confidence intervals validate that our architectural

innovations, such as Cascaded Attention Decoding and Multi-

Scale Self-AttentionModule, contribute meaningful improvements

over the ablation configurations. This rigorous statistical approach

reinforces the reliability and robustness of our model’s advantages,

confirming that the enhancements are both practically relevant and

statistically sound.
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TABLE 3 Ablation study on Cityscapes (Cordts et al., 2016) and ScanNet datasets (Dai et al., 2017) with p-values and 95% confidence intervals.

Method Cityscapes dataset ScanNet dataset

Parameters
(M)

FLOPs
(G)

Inference
time (ms)

Training
time (s)

Parameters
(M)

FLOPs
(G)

Inference
time (ms)

Training
time (s)

o/w cascaded attention

decoding

356.07± 0.02 397.10±

0.03

358.78± 0.01 355.44±

0.02

360.66± 0.01 311.57±

0.02

312.80± 0.03 394.14±

0.01

o/w multi-scale self-AM 217.96± 0.01 228.39±

0.02

248.18± 0.03 303.60±

0.02

319.33± 0.03 313.26±

0.01

207.13± 0.02 295.14±

0.01

o/w dynamic

multi-scale feature

fusion

218.29± 0.02 349.93±

0.01

268.56± 0.02 236.17±

0.03

399.86± 0.02 289.38±

0.03

325.08± 0.01 328.84±

0.02

Ours 199.92 ± 0.01 185.21 ±

0.02

110.18 ± 0.01 137.90 ±

0.03

124.75 ± 0.02 125.97 ±

0.01

135.90 ± 0.03 224.24 ±

0.01

p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

95% CI (199.81,

200.03)

(185.09,

185.33)

(110.07,

110.29)

(137.77,

138.03)

(124.63,

124.87)

(125.85,

126.09)

(135.77,

136.03)

(224.12,

224.36)

Bold represents the best value.

FIGURE 6

Ablation study on cityscapes and ScanNet datasets.

In Table 5, the results of this ablation study demonstrate our

model’s generalization capability when confronted with unseen

architectural styles, focusing on the contributions of the multi-

scale attention mechanism and the diffusion-based robustness

enhancement module. The experiment utilized multiple subsets of

the cultural heritage image dataset, which included architectural

styles that the model had not previously encountered. Through

5-fold cross-validation, Dice coefficient and IoU scores were

calculated for each model structure on different styles, evaluating

the impact of each module. The full model, incorporating both the

multi-scale attention mechanism and the diffusion enhancement

module, consistently achieved the best performance across all

architectural styles. For example, in Style A, the Dice score reached

90.9% with an IoU of 85.4%. Dice scores for Style B and Style

C were also high at 87.5 and 89.0%, respectively, significantly

surpassing the other comparison models. This indicates that the

combination of multi-scale attention and diffusion enhancement

allows the model to adapt more effectively to unfamiliar styles,

maintaining high segmentation accuracy and effectively preserving

intricate details. When the multi-scale attention mechanism was

removed, the model’s performance showed a noticeable decline,

especially in Style A and Style B, where Dice scores dropped by

∼5.7 and 3.7%, respectively. This suggests that the multi-scale

attention mechanism is crucial for capturing global structural

relationships, enabling the model to recognize overall structural

patterns and enhancing its generalization capability. In contrast,
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TABLE 4 Ablation study on ancient architecture and MS COCO datasets with p-values and 95% confidence intervals.

Method Ancient architecture dataset MS COCO dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

o/w cascaded attention

decoding

87.80± 0.03 87.34± 0.02 89.94± 0.01 92.38± 0.02 96.33± 0.01 89.97± 0.03 86.13± 0.02 88.76± 0.01

o/w multi-scale self-AM 90.60± 0.02 87.01± 0.01 89.52± 0.03 87.73± 0.02 92.61± 0.02 86.02± 0.03 86.07± 0.01 93.02± 0.03

o/w dynamic multi-scale feature

fusion

96.41± 0.03 85.73± 0.02 89.52± 0.01 90.64± 0.02 90.13± 0.02 92.66± 0.01 85.74± 0.03 91.65± 0.02

Ours 97.66 ± 0.01 94.35 ± 0.02 91.59 ± 0.03 91.97 ± 0.01 98.19 ± 0.02 94.82 ± 0.01 92.13 ± 0.03 91.91 ± 0.02

p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

95% CI (97.55,

97.77)

(94.23,

94.47)

(91.46,

91.72)

(91.86,

92.08)

(98.07,

98.31)

(94.71,

94.93)

(92.01,

92.25)

(91.80,

92.02)

Bold represents the best value.

FIGURE 7

Ablation study on ancient architecture and MS COCO datasets.

TABLE 5 Ablation study on di�erent architectural styles.

Method Style A Style B Style C

Dice (%) IoU (%) Dice (%) IoU (%) Dice (%) IoU (%)

Full model 90.9 ± 0.3 85.4 ± 0.2 87.5 ± 0.2 84.0 ± 0.3 89.0 ± 0.2 86.1 ± 0.3

o/w multi-scale attention 85.2± 0.3 81.6± 0.4 83.8± 0.3 80.3± 0.4 86.5± 0.4 83.0± 0.3

o/w diffusion enhancement 86.3± 0.2 82.7± 0.3 84.6± 0.2 81.2± 0.3 87.2± 0.3 84.5± 0.4

o/w both modules (baseline) 82.5± 0.4 78.6± 0.4 80.7± 0.3 76.8± 0.3 83.0± 0.4 79.2± 0.4

In the cultural heritage image dataset (Grilli et al., 2018), prepare subsets containing a variety of architectural styles, including architectural styles that the model has not seen. Results of three

5-fold cross validations. Dice and IoU are in the “mean standard deviation” format. Bold indicates that our method performs significantly better than other methods on this score.
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TABLE 6 The results of three separate 5-fold cross-validations conducted on the Hypersim (Grilli et al., 2018) and Synscapes datasets (Wrenninge and

Unger, 2018) are presented, with values reported in the “mean ± standard deviation” format.

Model Hypersim dataset Synscapes dataset

Accuracy Recall Dice IoU Accuracy Recall Dice IoU

DeepLabV3+ (Yu et al., 2022) 87.47± 0.02 90.08± 0.03 90.54± 0.02 93.21± 0.03 93.04± 0.02 89.19± 0.03 85.47± 0.02 88.76± 0.03

U-Net++ (Zhao et al., 2022) 92.6± 0.01 88.42± 0.02 90.46± 0.02 90.56± 0.02 91.58± 0.03 85.88± 0.02 87.29± 0.01 85.39± 0.02

HRNet (Yu et al., 2021) 91.57± 0.02 87.65± 0.01 84.4± 0.03 91.05± 0.02 95.94± 0.03 88.45± 0.02 86.53± 0.03 86.28± 0.01

Mask R-CNN (He et al., 2017) 94.96± 0.03 92.83± 0.02 88.93± 0.02 87.8± 0.03 93.34± 0.01 88.29± 0.03 85.07± 0.02 92.59± 0.03

SegFormer (Xie E. et al., 2021) 88.00± 0.02 93.49± 0.01 86.03± 0.03 90.3± 0.02 95.47± 0.02 91.04± 0.01 85.09± 0.03 86.44± 0.02

UC-TransUNet (Chen et al.,

2021)

86.18± 0.03 87.36± 0.01 84.62± 0.02 87.51± 0.03 95.79± 0.02 84.34± 0.02 89.41± 0.03 88.78± 0.01

Ours 98.35 ± 0.01 94.37 ± 0.02 92.37 ± 0.01 95.87 ± 0.01 97.07 ± 0.03 93.84 ± 0.02 92.6 ± 0.01 95.94 ± 0.02

Bolded scores indicate that our method significantly outperformed the others in that metric, based on a Student’s t-test with a significance level of 0.05.

when only the diffusion enhancement module was removed,

the performance impact was smaller, with the Dice score for

Style C decreasing by only 1.8%. This indicates that while the

multi-scale attention mechanism contributes to overall structure

recognition, the diffusion enhancementmodule primarily enhances

robustness in fine detail retention, which is critical for handling

complex textures. The baseline model, with both the multi-

scale attention mechanism and diffusion enhancement module

removed, showed the most significant drop in performance,

with Dice and IoU scores notably lower across all styles. This

finding underscores the necessity of both modules for optimal

generalization, as the combined effect of multi-scale attention and

diffusion enhancement is essential for achieving high segmentation

accuracy on unseen architectural styles.

Table 6 compares the performance of our model with other

mainstream segmentation models on the Hypersim and Synscapes

datasets, showing that our model achieves the highest scores across

all metrics. Specifically, on theHypersim dataset, ourmodel reaches

an accuracy of 98.35% and a recall of 94.37%, outperforming

other models by a margin of 4–6% in these areas. This highlights

our model’s capability to accurately identify and segment target

regions with a lower error rate, particularly in complex scenes.

On the Synscapes dataset, which includes synthetic scenes, our

model maintains high accuracy and recall at 97.07 and 93.84%,

demonstrating strong generalization to non-natural images. In

terms of Dice and IoU, our model scores 92.37 and 95.87% on

Hypersim and 92.6 and 95.94% on Synscapes, reflecting its superior

boundary processing, which ensures accurate region coverage

and high boundary fidelity. When compared to other models,

DeepLabV3+, U-Net++, and HRNet fall short in multiple metrics.

DeepLabV3+ shows gaps in Dice and IoU, especially in complex

images, where its boundary fidelity declines, indicating difficulty

in capturing fine details. U-Net++ performs well in accuracy and

recall but has lower Dice and IoU scores, suggesting limitations

in precise segmentation for complex scenes. HRNet demonstrates

balanced performance but does not surpass our model in any

metric, particularly underperforming in recall and IoU, indicating

weaker edge handling and adaptability to intricate structures. Our

model’s high scores on both datasets validate the effectiveness

of the multi-scale attention mechanism and diffusion-based

robustness enhancement module. These components enable the

model to adapt to different scene complexities, achieving high-

precision segmentation even in images with intricate structures and

boundaries. The results confirm our model’s suitability for cultural

heritage applications and its robust generalization across diverse

settings, including synthetic data and complex urban scenes.

While the model was developed for fine-grained segmentation

in cultural heritage contexts, its architecture is designed to be

flexible. The experiments on Hypersim and Synscapes confirm

that our model is capable of adjusting to scenarios where broad

structure is more critical than fine detail, thanks to the adaptive

nature of its feature fusion strategy. This adaptability was evident

in our performance comparisons, where our model achieved high

accuracy and robustness without overfitting to the intricate patterns

typical of architectural images.

5 Conclusion and discussion

In this work, we aimed to address the challenges of precise

and efficient segmentation in complex visual datasets, including

historical patterns and diverse modern scenes. To achieve this,

we proposed a novel model integrating a hierarchical vision

transformer backbone with multi-scale self-attention, a cascaded

attention decoding mechanism, and diffusion-based robustness

enhancement. These components were designed to capture

fine-grained features, adaptively refine segmentation outputs,

and maintain high performance across varying contexts. Our

experimental setup included extensive evaluations on four datasets:

Ancient Architecture, MS COCO, Cityscapes, and ScanNet. The

results demonstrated that our model outperformed state-of-the-

art methods in terms of accuracy, recall, F1 score, and efficiency

metrics, such as inference time and parameter count. Through

ablation studies, we confirmed the importance of each component,

showcasing how the integration of these modules led to superior

segmentation capabilities.

Despite the promising results, there are still areas for

improvement. First, the model’s performance, while robust, may

still vary under extreme noise conditions, suggesting that further

enhancements in robustness against heavily distorted inputs

could be beneficial. Second, the computational efficiency, though

improved, can still be optimized, particularly for deployment
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in environments with constrained resources. Future research

will focus on incorporating more lightweight architectures and

advanced noise-resilient techniques to further improve both the

robustness and efficiency of the model. Additionally, extending

the model’s applicability to other complex datasets and real-world

scenarios will be a key direction, ensuring broader generalization

and utility across diverse segmentation tasks.
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