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Existing image fusion methods primarily focus on complex network structure

designs while neglecting the limitations of simple fusion strategies in complex

scenarios. To address this issue, this study proposes a new method for infrared

and visible image fusion based on a multimodal large language model. The

method proposed in this paper fully considers the high demand for semantic

information in enhancing image quality as well as the fusion strategies in

complex scenes. We supplement the features in the fusion network with

information from the multimodal large language model and construct a new

fusion strategy. To achieve this goal, we design CLIP-driven Information Injection

(CII) approach and CLIP-guided Feature Fusion (CFF) strategy. CII utilizes

CLIP to extract robust image features rich in semantic information, which

serve to supplement the information of infrared and visible features, thereby

enhancing their representation capabilities for the scene. CFF further utilizes

the robust image features extracted by CLIP to select and fuse the infrared

and visible features after the injection of semantic information, addressing the

challenges of image fusion in complex scenes. Compared to existing methods,

the main advantage of the proposed method lies in leveraging the powerful

semantic understanding capabilities of the multimodal large language model to

supplement information for infrared and visible features, thus avoiding the need

for complex network structure designs. Experimental results on multiple public

datasets validate the e�ectiveness and superiority of the proposed method.

KEYWORDS

infrared and visible image fusion, CLIP, multimodal large language model, semantic

information injection, image fusion

1 Introduction

In recent years, image fusion technology has garnered significant attention in the

field of computer vision. Image fusion encompasses various types, including infrared

and visible image fusion (Li and Wu, 2019), multi-exposure image fusion (Liu et al.,

2022c; Li et al., 2024b; Tang et al., 2023a), multi-focus image fusion (Li et al., 2024a,c),

medical image fusion (Liu et al., 2022e,d; Zhu et al., 2023, 2024), and remote sensing

image fusion (Zhang Y. et al., 2024). Among these applications, infrared and visible image

fusion technology stands out due to its wide range of applications. The infrared and visible

image fusion technology aims to integrate a large amount of complementary information

from both infrared and visible images to generate a single fused image, providing a

more comprehensive description of the scene. Due to the differences in sensor imaging
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mechanisms, visible sensors can capture rich texture and color

information (Zhang Y. et al., 2020; Xie et al., 2021). However, their

performance is severely affected by lighting, weather, and smoke

conditions. In contrast, infrared sensors can effectively capture

thermal radiation information even under low-light and adverse

weather conditions, highlighting targets such as people and vehicles

in the images. By fusing infrared and visible images, it is possible to

obtain information-rich scene images under all weather conditions.

Consequently, this technology has found widespread applications

in industrial control, autonomous driving, and aerospace fields.

In recent years, significant progress has been made in the

research on infrared and visible image fusion to address various

practical application challenges. These challenges primarily include

inconsistencies in source image resolution (Li et al., 2021a;Ma et al.,

2020; Xiao et al., 2022), unregistered source images (Xu et al., 2023;

Li et al., 2023a,c; Wang et al., 2024), low-light environments (Chen

et al., 2024; Tang et al., 2022, 2023b), extreme weather conditions

(Yi et al., 2024; Li X. et al., 2024), and challenges in adapting to

downstream task requirements (Zhang H. et al., 2024; Liu et al.,

2023b; Liu Z. et al., 2023). In the effort to improve the quality

of fused images, existing research primarily employs mainstream

methods, including CNN feature interaction-based fusion methods

(Li and Wu, 2019; Li et al., 2021b; Jian et al., 2021; Liu et al.,

2022b, 2021; Li et al., 2023b; Yue et al., 2023), multiple feature

extraction mechanisms-based fusion methods (Zhao et al., 2023;

Li J. et al., 2021; Dong et al., 2024), and loss function-driven

fusion methods (Liu et al., 2023a, 2022a; Zhou et al., 2023). These

approaches aim to enhance the scene representation capability of

multimodal features, thereby contributing to the overall quality of

the fused images. Initially, researchers commonly designed feature

extraction network structures based on convolutional neural

networks (CNN), injecting more information into multimodal

features through frequent information interactions to enhance

the quality of fused images (Li and Wu, 2019; Li et al., 2023b;

Yue et al., 2023). In these methods, many studies introduced

skip connections (Jian et al., 2021), dense connections (Li and

Wu, 2019), and nest connections (Li et al., 2021b) during feature

extraction to enhance information exchange between features at

different depths, thereby alleviating information loss caused by

deeper networks. Additionally, some studies (Li et al., 2021a;

Huang et al., 2022) employed convolutional kernels with varying

dilation rates and sizes for feature extraction, allowing information

from a larger receptive field to be aggregated into multimodal

features. However, CNN have limitations in extracting rich global

information, leading to constrained representation capability of

the extracted features. Consequently, many studies have integrated

advanced feature extraction methods with CNN to address these

deficiencies. These approaches incorporate Transformers (Ma et al.,

2022; Tang et al., 2023c), Generative Adversarial Networks (GAN;

Ma et al., 2021; Zhang et al., 2021), and Mamba (Dong et al., 2024)

into the feature extraction process to assist CNN in extracting more

global information, thereby enhancing the quality of fused images.

However, the aforementioned methods often require

researchers to have extensive design experience and significant

manual resources. To address this issue, some studies have

introduced carefully designed loss functions without the need

for complex network structures. These loss functions impose

constraints on feature extraction networks, encouraging the

extracted features to contain more information. In representative

works, loss functions based on contrastive learning (Liu et al.,

2023a), loss functions focusing on salient targets (Liu et al., 2022a),

and loss functions guided by semantic information (Zhou et al.,

2023) have been introduced to enhance the quality of fused

images. However, these methods need to consider the balance

among numerous hyperparameters to better utilize the carefully

designed loss functions. For example, the process of balancing

hyperparameters within the new loss functions and between

the new and existing loss functions can be lengthy and tedious.

This parameter tuning often requires a significant amount of

computational resources.To mitigate this, many researchers have

attempted to introduce advanced ideas from other fields into

infrared and visible image fusion, significantly reducing the

workload of network structure design and parameter tuning.

These approaches incorporate advanced concepts such as diffusion

models (Yue et al., 2023) and low-rank sparse decomposition (Li

et al., 2023b, 2020) to better decompose features from different

modalities and accurately capture these features. However,

diffusion models typically involve a large number of parameters

and computational requirements, making them challenging to

deploy on resource-constrained platforms. Additionally, low-rank

sparse decomposition methods may lead to information loss

during the extraction of low-rank and sparse features, thereby

affecting fusion quality.

To address the shortcomings of existing methods, this paper

reconsiders the strategies for enhancing image quality in infrared

and visible image fusion. A careful analysis of the limitations

of current approaches reveals that incorporating robust semantic

information from outside the fusion network to supplement

multimodal features can effectively alleviate unavoidable issues. In

recent years, multimodal large language models have demonstrated

strong semantic understanding and zero-shot learning capabilities

through pre-training on large-scale multimodal datasets. Among

them, CLIP stands out as a powerful model trained on extensive

image-text data, possessing strong multimodal representation

capabilities and excellent generalization performance. It can extract

high-dimensional semantic representations from images, which

are not only rich in semantic information but also exhibit

strong robustness. These attributes make features extracted by

models like CLIP particularly suitable for providing supplementary

information to the features in the fusion network, thereby

enhancing the quality of fused images. Therefore, this paper

innovatively proposes a multimodal large language model-based

framework for infrared and visible image fusion, which can

achieve high-quality fused images without the need for complex

network structures.

To enrich the semantic information of features in the

fusion network, this paper proposes an information injection

method based on CLIP (Radford et al., 2021). This method

uses the multimodal features extracted by CLIP to supplement

the features in the fusion network, significantly enriching the

semantic information of the features to be fused and enhancing

their robustness. Additionally, to address the challenges posed by

simple fusion strategies, such as element-wise addition or channel

concatenation, in complex fusion scenarios, this paper introduces a
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CLIP-guided feature fusion strategy. This strategy leverages CLIP’s

strong semantic understanding capabilities to select and fuse the

features, meeting the need to improve the quality of fusion results in

complex situations. The proposed method deeply integrates CLIP

with the fusion network, providing information supplementation,

feature selection, and feature fusion for the multimodal features

in the original fusion network, thereby significantly improving the

quality of the fused images. The main contributions of this paper

and the advantages of the proposed method are highlighted in the

following aspects:

(1) We propose a framework for infrared and visible

image fusion based on multimodal large language models. This

framework significantly enhances the quality of fused images

while overcoming the shortcomings of existing methods, providing

new insights for improving the quality of infrared and visible

image fusion.

(2) We introduce multimodal large language model to

supplement the features in the fusion network, enriching the

semantic information of the features to be fused and enhancing

their robustness. Additionally, we embed the multimodal large

languagemodel into the feature fusion process and propose a fusion

strategy. This strategy uses the multimodal large language model

for feature selection and fusion, effectively addressing complex

fusion scenarios.

(3) We deploy this method on several publicly available

infrared and visible image fusion datasets and conduct quantitative

and qualitative comparisons to validate its fusion performance.

The experimental results demonstrate that the proposed method

significantly outperforms existing methods in both visual quality

and objective evaluation metrics.

The remaining content of this paper is organized as follows:

Section 2 reviews related work; Section 3 elaborates on the proposed

method in detail; Section 4 presents the experimental results

and their analysis; Section 5 summarizes the paper and draws

some conclusions.

2 Related work

In the research of infrared and visible image fusion focused

on enhancing image quality, existing methods can be broadly

classified into the following categories based on their specific

implementation approaches: CNN feature interaction-based fusion

methods, multiple feature extraction mechanisms-based fusion

methods, and loss function-driven fusion methods.

2.1 CNN feature interaction-based fusion
methods

Fusion methods based on CNN feature interaction typically

utilize convolutional neural networks (CNN) to construct feature

extraction networks. They enrich feature representation through

frequent information exchange between convolutional layers,

thereby enhancing the quality of the fused images. In this category

of methods, DenseFuse (Li and Wu, 2019) introduces dense

connections in the feature encoder, promoting the fusion of multi-

layer features through dense interactions between convolutional

layers at different depths, ensuring that the output features contain

as much rich information as possible from various layers. RFN-

Nest (Li et al., 2021b) further fuses features of different depths

within the encoder and inputs the multiple fused features into

the decoder for deeper interaction and fusion. However, these

methods do not adequately address the potential information loss

that may occur between the encoder and decoder. To tackle this

issue, SEDRFuse (Jian et al., 2021) introduces skip connections

between the feature encoder and decoder, leveraging long-range

information supplementation to reduce information loss during the

forward propagation process.

Although the aforementioned methods enrich feature

representation through frequent information exchange, they

do not address the limitation of receptive fields in CNNs. To

this end, MLFusion (Li et al., 2021a) is inspired by the human

population Receptive Field (pRFs; Liu et al., 2018) and employs

convolutional kernels of varying dilation rates and sizes for feature

extraction, aggregating features from different receptive fields to

obtain information from a larger receptive field. However, these

methods overlook the shortcomings of CNNs in extracting global

information, which limits the representational capacity of the

extracted features.

2.2 Multiple feature extraction
mechanisms-based fusion methods

Multiple feature extraction mechanisms-based fusion methods

extract more comprehensive features by combining advanced

feature extraction mechanisms with CNNs, thereby enhancing the

quality of fused images. For example, SwinFusion (Ma et al., 2022)

utilizes CNNs to extract basic features and further processes these

features through Transformers to inject more global information.

However, the extraction of global information in this method relies

on the basic features extracted by CNNs, inevitably leading to the

loss of some global information. To address this issue, CDDFuse

(Zhao et al., 2023) employs Transformers and CNNs in parallel for

feature extraction, merging the two to create features that contain

both rich local and global information. In recent years, the Mamba

model has gained widespread attention in the field of deep learning

due to its advantages in efficiency, speed, scalability, and complexity

management compared to Transformers. Consequently, Fusion-

Mamba (Dong et al., 2024) introduces the Mamba model into the

fusion framework, combining it with CNNs for feature extraction

and fusion to further enhance the quality of fused images.

Moreover, many studies have incorporated adversarial learning

mechanisms between the fusion results and source images

into fusion methods, encouraging extracted features to contain

richer information. For example, FusionGAN (Ma et al., 2019b)

supervises the fusion results using a visible image’s discriminator,

prompting the fusion network to inject more edge detail

information into the fused image. However, single-discriminator

methods can lead to an imbalance in modal information,

weakening the scene representation capability of the fusion results.

To address this issue, DDcGAN (Ma et al., 2020) introduces a

dual-modal discriminator into the fusion process, encouraging a

more balanced injection of information from both infrared and
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visible images into the fusion results. Nevertheless, these methods

often require researchers to possess extensive design experience and

invest significant human resources.

Additionally, LRRNet (Li et al., 2023b) employs the concept of

low-rank sparse decomposition, separating image features into low-

rank and sparse components, and fuses these two parts separately

to improve the quality of the reconstructed image. However,

fusion methods based on low-rank sparse decomposition may lead

to information loss during feature decomposition. resulting in

suboptimal fusion outcomes. In recent years, diffusion models have

achieved significant success in the field of image generation. Dif-

Fusion (Yue et al., 2023) utilizes diffusion models for the fusion of

infrared and visible images to achieve high-quality fusion results.

However, the large number of parameters and computational

demands of diffusion models limit their application on platforms

with constrained storage and computational resources. In contrast

to these methods, this paper introduces a multimodal large

language model to inject robust semantic information into the

features of the fusion network, enriching feature representation. To

address the challenges of image fusion in complex scenarios, we

have developed a novel fusion module based on the multimodal

large language model, aiming to achieve high-fidelity fused images.

2.3 Loss function-driven fusion methods

Loss function-driven fusion methods constrain feature

extraction networks through carefully designed loss functions,

encouraging the extraction of more easily overlooked information

to enhance the quality of fused images. For example, SDDGAN

(Zhou et al., 2023) constructs a semantic-related loss function

using semantic segmentation results, promoting the injection

of more semantic information into the fused image. However,

this method has limitations in enhancing information in the

regions of salient objects. To address this issue, TarDAL (Liu

et al., 2022a) introduces a loss function based on Saliency Degree

Weight (SDW), focusing on enhancing the information of salient

objects in the fused image. However, this method overly focuses

on enhancing the information of the target objects, while the

processing of background information is relatively weak. To

counter this, CoCoNet (Liu et al., 2023a) incorporates contrastive

learning into the fusion process, balancing the enhancement

of both target and background information. In the regions of

salient objects, the distance between the fused image and the

infrared image is reduced, while the distance to the visible image

is increased; conversely, in the background regions, the fused

image is brought closer to the visible image, while the distance to

the infrared image is increased. Nevertheless, such methods often

require tedious and time-consuming parameter tuning to balance

various hyperparameters, thereby fully leveraging the effectiveness

of the loss function. In contrast to these methods, this paper

introduces a multimodal large language model to inject robust

semantic information into the features of the fusion network,

enriching feature representation. To address the challenges of

image fusion in complex scenarios, we have developed a novel

fusion strategy based on the multimodal large language model,

aiming to achieve high-fidelity fused images.

3 Proposed method

3.1 Overview

As shown in Figure 1, the proposed method consists of

five core components: the Infrared Feature Encoder (IRE), the

Visible Feature Encoder (VIE), the CLIP-driven Information

Injection (CII) block, the CLIP-guided Feature Fusion (CFF)

block, and the Fusion Feature Decoder (FD). The IRE and VIE

are designed to extract features from infrared images Ii and

visible images Iv, respectively. The CII block leverages CLIP

to extract image features enriched with semantic information

and injects this semantic content into the infrared and visible

features, enhancing their ability to represent the scene. The

CFF block further employs the robust features extracted by

CLIP to select and fuse the features with injected semantic

information, producing fused features. Finally, the FD decodes

the fused features to reconstruct the fused image If . In the

following sections, we will provide a detailed explanation of each

core component.

3.2 Feature extract and information
injection

The network architectures of the IRE and VIE are identical,

consisting primarily of two feature extraction layers followed by N

Restormer Blocks (Zamir et al., 2022). Each feature extraction layer

is composed of a convolutional layer with a kernel size of 3 × 3

and a stride of 1, stacked with a Batch Normalization layer and

a LeakyReLU activation function layer. The infrared images Ii ∈

R
H×W×1 and visible images Iv ∈ R

H×W×3 are input into the IRE

andVIE, respectively, to extract the infrared features Fi ∈ R
H×W×C

and visible features Fv ∈ R
H×W×C, where H and W represent the

height and width of the source image, and C represents the number

of feature channels.

The infrared and visible features obtained through simple

feature extraction often lack rich semantic information, making it

challenging to achieve high-quality fusion results. Therefore, we

directly utilize the pre-trained weights provided by the authors of

CLIP, without any additional retraining, to leverage its powerful

feature extraction capabilities. By injecting the rich semantic

information extracted by CLIP into the infrared and visible

features, we effectively enhance the quality of the fusion output.

As illustrated in Figure 2, the CII block primarily consists of a

frozen parameter pre-trained CLIP, an Adapter, and a Spatial

Expansion Weight Prediction (SEP) block. The frozen pre-trained

CLIP is utilized to extract image features rich in semantic content.

The Adapter maps the integrated CLIP features into the same

space as the infrared or visible features, unifying the number of

channels across features to ensure that the features extracted by

CLIP can be effectively utilized to enhance the quality of fused

images. The SEP generates a weight based on the input features,

which is used to expand the CLIP features to match the spatial

dimensions of the input features. In terms of network architecture,

the Adapter comprises two linear mapping layers, while the SEP

consists of two convolutional layers with a kernel size of 3 × 3
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FIGURE 1

Overview of the proposed method. The IRE and VIE are employed to extract features from infrared and visible images, respectively. To enhance the

features’ ability to represent the scene, the extracted infrared and visible features are fed into the CII block, where CLIP is employed to inject rich

semantic information into them. Following the semantic injection, the features are passed into the CFF block, which leverages CLIP to perform

selection and fusion of the multimodal features. Finally, the fused features are input into the FD to reconstruct the fused image. Where, Restormer

Block refers to a module proposed in Zamir et al. (2022).

FIGURE 2

CLIP-driven information injection.

and a stride of 1, and a single ReLU activation function layer.

Taking the information injection process of the visible feature Fv

as an example, we input the infrared image Ii and the visible

image Iv into the frozen parameter image encoder of CLIP to

obtain the CLIP features F
c
i ∈ R

1×1×E and F
c
v ∈ R

1×1×E for

the infrared and visible images, respectively, where E represents

the embedding dimension of the CLIP features. Considering that

the features from different modalities contain a significant amount

of complementary semantic information, we introduce a learnable

weightW i ∈ R
1×1×E to integrate the semantic information from F

c
i

and F
c
v. The resulting output is then fed into the Adapter to ensure

that the CLIP features are aligned in the same space as the visible
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feature Fv:

F
c
f = A(Fci ⊙W i + F

c
v ⊙Wv), (1)

where, Fc
f
∈ R

1×1×C represents the integrated CLIP features, ⊙

denotes the Hadamard product,Wv = 1−W i, and A( · ) indicates

the Adapter block. Simultaneously, the visible feature Fv is fed

into the SEP, and the resulting output is passed through a Sigmoid

activation function to obtain the weightWs for expanding the CLIP

feature space. To align F
c
f

∈ R
1×1×C with Ws ∈ R

H×W×C in

spatial dimensions, we utilize a broadcasting mechanism to achieve

the spatial alignment. The broadcasting mechanism is a commonly

used operation in the field of deep learning, which implicitly

replicates the shape of smaller tensors to match that of larger

tensors. The resulting output is then element-wise multiplied with

Ws to obtain the semantic-rich feature Fcs ∈ R
H×W×C. Finally, we

inject the semantic information into the visible feature Fv through

an element-wise addition:

F̃v = Fv + F
c
s , (2)

where, F̃v represents the visible feature enriched with semantic

information. Similarly, we input the infrared image Ii, the visible

image Iv, and the infrared feature Fi into the CII block to obtain the

infrared feature F̃i, which is enriched with semantic information.

3.3 Feature fusion and reconstruction

In existing fusion methods, fusion strategies typically involve

element-wise addition or channel dimension concatenation, which

often struggle to address image fusion in complex scenes, resulting

in suboptimal fusion quality. To overcome these challenges, we

leverage the robust feature representations extracted by the pre-

trained CLIP to guide the fusion of infrared and visible features.

As illustrated in Figure 3, the CFF block primarily comprises a

frozen parameter pre-trained CLIP, an Infrared Adapter (IRA), a

Visible Adapter (VIA), and a Spatial Attention Weight Prediction

(SAWP) block. The IRA and VIA are responsible for generating

attention weights that guide the fusion of infrared and visible

features, respectively. The SAWP aggregates gradient information

from the feature maps at the spatial level and generates weights to

enhance texture details. In terms of network architecture, both the

IRA and VIA are structured identically, consisting of two linear

mapping layers. The SAWP is composed of two convolutional

layers with a kernel size of 3×3 and a stride of 1, and a single ReLU

activation function layer. In the CFF block, we input the infrared

image Ii and the visible image Iv into the pre-trained CLIP image

encoder, with the resulting features being fed into the IRA and VIA

to obtain features W
f
i ∈ R

1×1×C and W
f
v ∈ R

1×1×C, respectively.

To guide the fusion of the infrared and visible features, we utilize

a broadcasting mechanism to perform element-wise multiplication

of W
f
i and W

f
v with F̃i and F̃v, respectively, and concatenate the

resulting outputs along the channel dimension:

Ff =

[

W
f
i ⊙ F̃i,W

f
v ⊙ F̃v

]

, (3)

where, Ff ∈ R
H×W×C represents the fused features, and [·] denotes

the concatenation operation along the channel dimension.

To enhance the texture detail information within the fused

features, we apply the Sobel operator for gradient extraction on

Ff , and the resulting gradient map is subsequently input into the

SAWP and a Sigmoid activation function:

Wg = Sigmoid(S(∇Ff )), (4)

where, Wg represents the spatial weights used to enhance texture

details, while S(·) denotes the SAWP block, ∇ denotes the Sobel

operator. We perform an element-wise multiplication of Wg and

Ff , and the resulting output is reinjected into Ff to enhance the

texture detail information within Ff :

F̃f = Ff +Wg ⊙ Ff , (5)

where, F̃f represents the enhanced fused features. Finally, we

input F̃f into the FD to reconstruct the fused image If . The FD

consists of N Restormer Blocks (Zamir et al., 2022), one feature

extraction layer, and one image reconstruction layer. The image

reconstruction layer is composed of a convolutional layer with a

kernel size of 3× 3 and a stride of 1, followed by a Tanh activation

function layer.

To maximize the transfer of gradient information and pixel

intensity information from the infrared and visible images to the

fused image, we introduce a gradient loss ℓg and a pixel intensity

loss ℓi to jointly construct the total fusion loss ℓf :

ℓf = ℓg + λℓi, (6)

where, λ represents the parameters used to balance the individual

loss components. The gradient loss ℓg :

ℓg =
1

HW

∥

∥∇If −max (∇Ii,∇Iv)
∥

∥

1
. (7)

And the pixel intensity loss ℓi:

ℓi =
1

HW

∥

∥If −max (Ii, Iv)
∥

∥

1
, (8)

where,H andW represent the height and width of the fused image,

respectively, ‖·‖1 denotes the l1-norm, and max(·) represents the

element-wise maximum value.

4 Experiments

4.1 Datasets

We combined the RoadScene (Xu et al., 2022), M3FD (Liu

et al., 2022a), MSRS (Tang et al., 2022), and LLVIP (Jia et al.,

2021) datasets into a unified dataset and performed end-to-end

training of the fusion network on this unified dataset. This unified

dataset includes diverse scenes from both daytime and nighttime

as well as infrared images from different spectral bands. Training

the fusion network on this unified dataset significantly enhances its

generalization ability when processing source images from varying

scenes and spectral bands. Additionally, we validated the fusion

performance of our method on five datasets: RoadScene, LLVIP,

MSRS, M3FD, and TNO (Toet, 2017). Our experimental setup
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FIGURE 3

CLIP-guided feature fusion.

strictly follows the standard protocols in the domain. Specifically,

we randomly selected 200, 201, 217, and 230 pairs of infrared

and visible images from RoadScene, LLVIP, MSRS, and M3FD,

respectively, as the training set. To enhance the diversity of the

training samples, we applied various data augmentation techniques,

including random flipping, random rotation, and random cropping

(with a cropping size of 256 × 256). Furthermore, we randomly

selected 20 pairs of infrared and visible images from each of the four

datasets as the test set to evaluate the performance of the proposed

method under supervised learning. To verify the generalization

capability of the proposed method, we randomly selected 55 pairs

of infrared and visible images from TNO as the test set and assessed

the model’s generalization performance on this dataset.

4.2 Implementation details

The method proposed in this paper use the Adam Optimizer

(Kingma and Ba, 2015) to update the network parameters, with a

batch size of 16 and a total of 100 training epochs. During training,

a dynamic learning rate adjustment strategy is utilized: the learning

rate gradually increases from an initial value of 1×10−4 to 1×10−3

over the first 20 epochs, and then decreases from 1 × 10−3 to 1 ×

10−4 after the 20th epoch. Additionally, we set the hyperparameter

λ to 0.2. Thismethod is implemented using the PyTorch framework

and trained on a single NVIDIA GeForce RTX 4090 GPU.

4.3 Evaluation metrics

To quantitatively compare the method proposed in this paper

with existing methods, we adopted six widely used objective

evaluation metrics in the field of image fusion: Gradient-based

fusion performance (QAB/F ; Xydeas and Petrovic, 2000), Chen-

Varshney metric (QCV ; Chen and Varshney, 2007; Liu Y. et al.,

2024), Structural similarity index measure (QSSIM ; Wang et al.,

2004), Average gradient (QAG; Zhang X. et al., 2020), Visual

information fidelity (QVIF ; Ma et al., 2019a), and Sum of correlation

differences (QSCD; Aslantas and Bendes, 2015). Among these

metrics,QAB/F measures the retention of edge information from the

source images in the fused image. A higher value indicates that the

fused image contains richer edge information. QCV evaluates the

quality of the fused image based on human visual perception, with

smaller values indicating better perceptual quality. QSSIM assesses

the similarity between the fused image and the source images in

terms of brightness, contrast, and structure. A larger value suggests

less information loss and lower distortion in the fused image.

QAG quantifies the texture detail information in the fused image,

with larger values indicating richer texture details. QVIF evaluates

the shared information between the fused image and the source

images based on human visual systems. A higher value indicates

better visual fidelity of the fused image. QSCD uses the differential

image between the source and fused images to assess the amount

of information transfer. Larger values suggest smaller information

differences between the fused and source images. Among these

metrics,QAB/F ,QSSIM ,QAG,QVIF , andQSCD are positive indicators,

meaning that larger values indicate better fusion performance of

the compared methods. In contrast, QCV is a negative indicator,

where smaller values represent better fusion performance of the

compared methods.

4.4 Comparison experiments

To validate the superiority of the method proposed in this

paper compared to existing SOTA fusion methods, we designed

two experimental setups. In the first experiment, we compared

our method with advanced fusion methods to highlight its

advantages in visual quality and objective evaluation. The second

experiment aimed to assess the generalization capability of our

proposedmethod, where we conducted qualitative and quantitative

comparisons on the untrained dataset TNO. Through these
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FIGURE 4

Compares the visual quality of the proposed method with SOTA fusion methods. The first and second columns show the infrared and visible images

to be fused, respectively. The images in columns three through nine represent the fused results from various comparison methods. The first two

rows of images are from the LLVIP dataset, while the last two rows are from the MSRS dataset.

FIGURE 5

Compares the visual quality of the proposed method with SOTA fusion methods. The first and second columns show the infrared and visible images

to be fused, respectively. The images in columns three through nine represent the fused results from various comparison methods. The first two

rows of images are from the RoadScene dataset, while the last two rows are from the M3FD dataset.

two experimental setups, we aim to provide a comprehensive

and precise evaluation of the fusion performance of our

proposed method.

4.4.1 Comparison with state-of-the-art methods
We compared the method proposed in this paper with six

advanced fusion methods: MLFusion (Li et al., 2021a), DATFuse

(Tang et al., 2023d), LRRNet (Li et al., 2023b), CHITNet (Du, 2023),

IVFWSR (Li et al., 2023a), and TIMFusion (Liu R. et al., 2024).

The fusion results are shown in Figures 4, 5. The first two columns

of Figures 4, 5 illustrate that there is substantial complementary

information between infrared and visible images. Analysis of the

overall brightness and contrast of the fused images indicates that

our proposed method achieves higher contrast and brightness in

both nighttime and daytime scenes, aligning better with human

visual perception. This phenomenon is particularly evident in the

second and third columns of Figure 4 and the second column

of Figure 5. Compared to the other methods, the fused images

generated by our proposed approach exhibit higher brightness

and contrast for features such as sidewalks, distant vehicles, and

clouds. To further emphasize the visual advantages of our method,

we conducted zoom-in analysis on local regions. From these

enlarged regions, it is evident that our proposed method achieves

a better balance in preserving thermal radiation information

and texture details for objects like pedestrians and vehicles.

While significantly retaining thermal radiation information, the

texture details of these objects remain clear. For example, in

the zoomed-in region of the first column in Figure 5, some

comparison methods show similar brightness for vehicles, but

Frontiers inNeurorobotics 08 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1521603
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Yang et al. 10.3389/fnbot.2024.1521603

TABLE 1 Quantitative evaluation results on the LLVIP dataset and the M3FD dataset.

Methods LLVIP M3FD

QAB/F ↑ QCV ↓ QSSIM ↑ QAG ↑ QVIF ↑ QSCD ↑ QAB/F ↑ QCV ↓ QSSIM ↑ QAG ↑ QVIF ↑ QSCD ↑

MLFusion 0.3275 553.87 1.2779 2.7637 0.2800 0.9936 0.4275 675.23 1.2943 4.5659 0.3719 1.2975

DATFuse 0.4691 413.56 1.2972 3.0195 0.3883 1.3473 0.4736 555.48 1.3046 4.1460 0.3314 1.3393

LRRNet 0.4206 572.32 1.3097 2.7998 0.2976 0.9901 0.5156 578.66 1.3634 4.5106 0.3166 1.3407

CHITNet 0.5252 775.84 1.3158 3.5493 0.3881 1.4497 0.4735 804.87 1.3692 4.9710 0.3294 1.4884

IVFWSR 0.2605 584.51 1.2757 2.3347 0.2070 1.2469 0.4472 718.98 1.2678 3.8479 0.2847 1.2975

TIMFusion 0.2895 886.35 1.1581 2.4373 0.3000 0.5524 0.5153 627.03 1.2875 4.3536 0.3190 1.1215

Ours 0.6950 272.64 1.3401 4.4622 0.4693 1.6128 0.6802 400.56 1.3089 6.0424 0.4180 1.5183

The top three results are highlighted using red, blue, and green.

TABLE 2 Quantitative evaluation results on the MSRS dataset and the RoadScene dataset.

Methods MSRS RoadScene

QAB/F ↑ QCV ↓ QSSIM ↑ QAG ↑ QVIF ↑ QSCD ↑ QAB/F ↑ QCV ↓ QSSIM ↑ QAG ↑ QVIF ↑ QSCD ↑

MLFusion 0.2825 798.82 1.3674 2.4207 0.2111 1.1943 0.4581 542.13 1.3629 4.0150 0.3936 1.3728

DATFuse 0.6299 404.84 1.2680 3.4412 0.4124 1.5900 0.4920 489.05 1.3506 4.2706 0.3523 1.3485

LRRNet 0.4241 677.40 1.2601 2.5557 0.2849 1.0710 0.3872 655.44 1.1970 5.1535 0.3458 0.9411

CHITNet 0.4748 783.83 1.2482 3.3012 0.3569 1.5300 0.4906 881.26 1.4049 5.1939 0.3452 1.5075

IVFWSR 0.3527 748.67 1.3172 2.1713 0.2462 1.2424 0.3219 1088.85 1.0306 4.0258 0.2242 1.0511

TIMFusion 0.3914 1132.22 1.1094 2.5886 0.3085 1.1499 0.3730 734.92 1.1951 4.4605 0.3914 1.0018

Ours 0.6666 327.47 1.3823 3.5313 0.4601 1.7657 0.5911 465.75 1.3325 5.8211 0.3731 1.5180

The top three results are highlighted using red, blue, and green.

our proposed method displays more prominent and clearer

texture details.

To further validate the superiority of the proposed method, we

conducted a quantitative comparison of the fusion results using

six commonly used objective evaluation metrics. The quantitative

evaluation results are presented in Tables 1, 2. Analysis of Tables 1,

2 reveals that our proposed method outperforms most other

methods in the average values of the six evaluation metrics.

This advantage in fusion performance is particularly evident in

metrics QAB/F and QCV . In these two metrics, our method ranks

first across the RoadScene, LLVIP, MSRS, and M3FD datasets

and demonstrates significant superiority over other methods. In

summary, our proposed method exhibits clear advantages in both

visual quality and objective evaluationmetrics compared to existing

advanced methods.

4.4.2 Verification of generalization ability
We conducted qualitative and quantitative experiments on the

untrained dataset TNO to verify the generalization capability of the

proposed method. Specifically, we compared our proposed method

with MLFusion, DATFuse, LRRNet, CHITNet, IVFWSR, and

TIMFusion on the TNO dataset. The fusion results are presented

in Figure 6. On the TNO dataset, the fused images generated by our

proposed method maintain good brightness and contrast overall.

As shown in the first row of Figure 6, the brightness and contrast

of the building window areas surpass those of the other methods,

allowing observers to quickly locate the position of the windows.

Another advantage in visual quality lies in the preservation of

texture details in local regions. For example, in the zoomed-in

area of the second row in Figure 6, our proposed method retains

better detail of the vehicle contours, providing a more accurate

reflection of the vehicle’s condition. In contrast, the fused images

generated by other methods fail to comprehensively display the

details of the vehicle wheels, lacking a good balance between

brightness and texture, which hinders observers from quickly and

accurately assessing the vehicle’s status. As shown in Table 3, we

conducted a quantitative assessment of the generalization capability

of our proposed method. The results indicate that our proposed

method achieves optimal or near-optimal levels across all metrics,

demonstrating its superiority over other comparison methods.

In summary, the results of both qualitative and quantitative

comparisons indicate that our proposed method exhibits strong

generalization capability.

4.5 Ablation study

The method proposed in this paper mainly consists of two core

components: CLIP-driven Information Injection (CII) and CLIP-

guided Feature Fusion (CFF). To validate the effectiveness of these

two components, we conducted a series of ablation experiments

on the MSRS dataset and performed qualitative and quantitative

analyzes on the test set.
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FIGURE 6

Compares the visual quality on the TNO dataset. The first and second columns show the infrared and visible images to be fused, respectively. The

images in columns three through nine represent the fused results from various comparison methods.

TABLE 3 Quantitative evaluation results on the TNO dataset.

Methods TNO

QAB/F ↑ QCV ↓ QSSIM ↑ QAG ↑ QVIF ↑ QSCD ↑

MLFusion 0.3909 379.92 1.3559 3.5907 0.4040 1.3990

DATFuse 0.4946 437.10 1.3693 3.7790 0.3769 1.3508

LRRNet 0.3588 834.27 1.3107 4.2212 0.4083 1.3431

CHITNet 0.4393 387.36 1.3804 5.0692 0.4192 1.6149

IVFWSR 0.3299 1381.49 1.2305 3.1430 0.2946 1.3100

TIMFusion 0.3915 695.57 1.2797 3.4787 0.4553 1.0899

Ours 0.5654 268.83 1.3921 4.4210 0.4352 1.5644

The top three results are highlighted using red, blue, and green.

4.5.1 E�ectiveness of CII
In the method we propose, CII is a key component. It utilizes

image features extracted by CLIP to inject semantic information

into infrared and visible features, thereby enhancing the features’

representation capability for the scene. To evaluate the effectiveness

of CII, we conducted experiments by removing CII from the fusion

framework and directly inputting the infrared and visible features

obtained from IRE/VIE into CFF for subsequent processing. The

results of the ablation experiments, shown in Figure 7, indicate

that the model lacking CII exhibits a significant deficiency in

detail information when fusing features of streetlights and distant

buildings. This suggests that the absence of additional semantic

information injection leads to a decline in the quality of the

fused images. In contrast, our method, with semantic information

injection, demonstrates richer texture details and better image

quality. To further assess the impact of CII on image quality

enhancement, we conducted quantitative comparisons across six

evaluation metrics, as shown in Table 4. Analysis of Table 4 reveals

that our method outperforms the model lacking CII on most

evaluation metrics, further validating the effectiveness of CII.

4.5.2 E�ectiveness of CFF
In the method we propose, CFF is a key component. It

constructs a fusion strategy based on CLIP and a multimodal

large language model for feature selection and fusion, addressing

image fusion in complex scenes. To evaluate the effectiveness

of CFF, we removed it from the fusion framework and directly

concatenated the infrared and visible light features output by

CII along the channel dimension before inputting them into FD

for image reconstruction. From the zoomed-in areas in Figure 7,

it can be observed that the model lacking CFF experiences

significant information loss when fusing features of illuminated

streetlights and overexposed buildings, making it difficult to retain

information from the source images. In contrast, our method

effectively aggregates information from source images in such

complex scenes, producing higher-quality fusion results. According

to the quantitative comparison results in Table 4, themodel without

CFF is inferior to the complete model in the average values of all

evaluation metrics. Combining both quantitative and qualitative

comparisons, CFF plays an important role in image fusion for

complex scenes.

5 Conclusion

This paper investigates the enhancement of image quality in

infrared and visible image fusion and proposes a novel fusion

method. To address the limitations of existing methods that rely

on complex network architectures for improving image quality

and to tackle the challenges of image fusion in complex scenarios,

we introduce a multimodal large language model-driven approach

for infrared and visible light image fusion. This method utilizes

robust image features rich in semantic information extracted by

CLIP to supplement the infrared and visible features, thereby

meeting the high demand for semantic information in enhancing

image quality. Furthermore, to address the complexities of fusion

scenarios, we leverage CLIP’s powerful semantic understanding

capabilities to select and fuse infrared and visible features. Extensive

qualitative and quantitative experiments demonstrate a significant

improvement in the effectiveness and superiority of our proposed
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FIGURE 7

Qualitative results of the ablation study. The scene on the left half of the image is derived from the “00927N” image in the MSRS dataset, while the

scene on the right half comes from the “00427D” image in the MSRS dataset.

TABLE 4 Quantitative evaluation results of the ablation experiments on MSRS dataset.

Methods QAB/F ↑ QCV ↓ QSSIM ↑ QAG ↑ QVIF ↑ QSCD ↑

w/o CII 0.6503 343.19 1.3730 3.5350 0.4456 1.7805

w/o CFF 0.6260 351.21 1.3659 3.5073 0.4389 1.7624

w/o CII and CFF 0.6228 339.40 1.3806 3.4875 0.4462 1.7938

Ours 0.6666 327.47 1.3823 3.5313 0.4601 1.7657

The top result is highlighted in red.

method compared to existing approaches. Our method is primarily

designed for the fusion of infrared and visible images. When

directly applied to other image fusion tasks, such as multi-focus

image fusion, multi-exposure image fusion, or medical image

fusion, its performance may decline. To address this issue, task-

specific loss functions need to be introduced, and the network needs

to be retrained tomaintain satisfactory fusion performance. In light

of the limitations of the proposed method, future research will

focus on expanding the application of multimodal large language

models to other image fusion tasks. Additionally, we will conduct

an in-depth exploration of the commonalities among multimodal

large language models and incorporate more diverse types of these

models to further enhance the quality of fused images.
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