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Autonomous driving technology has garnered significant attention due to its

potential to revolutionize transportation through advanced robotic systems.

Despite optimistic projections for commercial deployment, the development

of sophisticated autonomous driving systems remains largely experimental,

with the e�ectiveness of neurorobotics-based decision-making and planning

algorithms being crucial for success. This paper delivers a comprehensive review

of decision-making and planning algorithms in autonomous driving, covering

both knowledge-driven and data-driven approaches. For knowledge-driven

methods, this paper explores independent decision-making systems, including

rule based, state transition based, game-theory basedmethods and independent

planing systems including search based, sampling based, and optimization

based methods. For data-driven methods, it provides a detailed analysis of

machine learning paradigms such as imitation learning, reinforcement learning,

and inverse reinforcement learning. Furthermore, the paper discusses hybrid

models that amalgamate the strengths of both data-driven and knowledge-

driven approaches, o�ering insights into their implementation and challenges. By

evaluating experimental platforms, this paper guides the selection of appropriate

testing and validation strategies. Through comparative analysis, this paper

elucidates the advantages and disadvantages of each method, facilitating the

design of more robust autonomous driving systems. Finally, this paper addresses

current challenges and o�ers a perspective on future developments in this rapidly

evolving field.

KEYWORDS

autonomous driving technology, decision-making and planning algorithms, hybrid
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1 Introduction

1.1 Background

Autonomous driving technology exemplifies a crucial application of robotics theories

and techniques, aiming to ensure safe and efficient self-driving in real-world traffic

environments (Zhang et al., 2024). Within autonomous driving systems, decision-making

and planning algorithms are pivotal, tasked with generating driving behaviors and

planning trajectories. Broadly autonomous driving encompasses two phases: behavior

decision-making and motion planning. Behavior decision-making addresses responses to

Frontiers inNeurorobotics 01 frontiersin.org

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2025.1451923
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2025.1451923&domain=pdf&date_stamp=2025-02-18
mailto:cheng.shuai@reachauto.com
https://doi.org/10.3389/fnbot.2025.1451923
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnbot.2025.1451923/full
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Hu et al. 10.3389/fnbot.2025.1451923

temporary events, such as abnormal driving behaviors of other

vehicles, sudden pedestrian crossings, and emergency vehicle

avoidance (Xu et al., 2024; Wang T. et al., 2024). At this

phase, the decision system must exhibit high adaptability and

predictive capability for potential future scenarios, allowing for

quick adjustments like lane changes, acceleration, or deceleration

based on real-time conditions (Yang et al., 2024; Feng et al.,

2024). Motion planning delves into a more granular aspect of

autonomous driving, generating detailed trajectories based on the

current vehicle state and behavior decision outputs (Li Z. et al.,

2023). The motion planning ensures the smoothness and comfort

of the vehicle’s trajectory while adhering to dynamic constraints

such as speed and acceleration. Given the significant challenges

associated with achieving safe and flexible interactions, behavior

decision-making and motion planning have become critical focal

points in autonomous driving research, which is also the primary

subject of this paper.

The decision-making and motion planning algorithms for

autonomous vehicles integrate theories from multiple disciplines,

including machine learning, pattern recognition, intelligent

optimization, and nonlinear control (Lu et al., 2024). Deep

learning techniques effectively improve the ability to encode model

features (Bidwe et al., 2022). These technologies provide the

foundation for safe interactions between autonomous vehicles

and other road users on public roads. Furthermore, decision-

making and planning algorithms must consider ethical and

legal responsibilities, ensuring adherence to socially accepted

moral standards and compliance with traffic regulations during

emergencies (Zheng et al., 2024; Gao et al., 2024). Current

research on decision-making and planning algorithms focuses on

improving robustness, enhancing stability and safety in unforeseen

situations, and increasing predictive accuracy of the surrounding

environment and other traffic participants (Wen et al., 2023; Wang

W. et al., 2023; Zhai et al., 2023). Additionally, efforts are being

made to reduce computational resource consumption and improve

algorithmic efficiency to achieve rapid responses under resource-

constrained conditions.

Aiming at the aforementioned research objectives, the

researchers primarily employ knowledge-driven and data-driven

approaches to construct decision-making and motion planning

systems. The knowledge-driven approach simulates human

decision-making processes through the encoding of expert

knowledge and logical rules. By integrating information such as

road characteristics, traffic regulations, and historical behavior

data, these approaches can search for the optimal driving path

or optimize for a specific objective function, thereby achieving

safe and efficient driving strategies (Jia et al., 2023; Chen L. et al.,

2023; Aoki et al., 2023). Concurrently, data-driven approaches

have emerged prominently propelled by advancements in machine

learning and statistical analysis. Unlike knowledge-drivenmethods,

data-driven approaches do not necessitate pre-defined explicit

rules. They enhance decision accuracy and adaptability by training

and optimizing decision models using vast amounts of real driving

data. Particularly in complex and dynamic traffic environments,

data-driven strategies effectively learn and emulate human driver

behaviors and decision-making processes (Wang T. H. et al., 2023).

The application of data-driven technologies also significantly

enhances their generalizability across different environments.

However, solely relying on data-driven methods has its limitations;

these methods typically require large volumes of labeled data for

training and often have poor interpretability, making it challenging

to ensure consistent and safe decisions.

On the other hand in industry, the deployment of autonomous

vehicles (AVs) is incrementally expanding, particularly within the

commercial sector. The available AVs on the market primarily

employ several key decision-making and planning methodologies.

These include rule-based systems, state transition models such

as Markov Decision Processes (MDPs) and Partially Observable

Markov Decision Processes (POMDPs), as well as game-theoretic

approaches. These vehicles utilize sophisticated algorithms to

process road environments and vehicle states, optimizing state

transitions to make the best possible decisions.

The deployment of AVs is being tested and operated in

specific geographic areas and under certain traffic conditions.

Waymo and Tesla stand out as prominent examples. Waymo

offers autonomous taxi services in Phoenix, Arizona, and is

expanding its service reach. Reports indicate that Waymo plans

to extend its services to Miami, Florida, in an effort to gain an

edge in the intensifying competitive market. Moreover, Waymo

has established a partnership with the automotive financing

company Moove, which will manage Waymo’s fleet operations

in Phoenix, including maintenance of the autonomous taxis and

management of charging infrastructure. Currently, Waymo has

deployed approximately 200 autonomous vehicles in Phoenix.

Tesla, on the other hand, collects data through its fleet learning

program to improve its autonomous driving systems. While

Tesla’s Autopilot and Full Self-Driving (FSD) systems have made

significant advancements in autonomous technology, there is still

a considerable gap before achieving true Level 4 (L4) autonomous

driving capabilities. Tesla employs an end-to-end (E2E) deep

learning strategy, integrating neural networks and reinforcement

learning in an attempt to enhance the intelligence level of

autonomous driving. Tesla’s Robotaxi technology faces challenges,

including safety and reliability issues, regulatory and licensing

hurdles, and market acceptance and operational challenges. These

deployments demonstrate the applicability and challenges of

autonomous technology under real-world conditions and highlight

how industry leaders are testing and optimizing their technologies

in specific geographic and traffic settings. As technology matures

and regulatory environments adapt, it is anticipated that the

deployment of AVs will become more widespread and in-depth.

Despite the immense potential of AVs, they still face certain

limitations in decision-making and planning. These include

interactions with human drivers under mixed traffic conditions,

responses to unexpected situations, and adaptability within

complex traffic environments. Additionally, AV decision-

making and planning systems must consider ethical and legal

responsibilities, ensuring adherence to socially accepted moral

standards and compliance with traffic regulations during

emergencies.

Neurorobotic approaches, which combine neural networks

and robotics, offer new possibilities for AV decision-making

and planning. These methods can improve the accuracy and

adaptability of decision-making by learning from and optimizing
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decisionmodels with extensive real-world driving data. Particularly

in complex and dynamic traffic environments, data-driven

strategies effectively learn and emulate human driver behaviors and

decision-making processes, significantly enhancing generalizability

across different environments. However, relying solely on data-

driven methods has its limitations; these methods typically require

large volumes of labeled data for training and often have poor

interpretability, making it challenging to ensure consistent and safe

decisions.

Thus, an increasing number of researchers are attempting

to combine knowledge-driven and data-driven methods to

complement each other. In this paper, we refer to these

combined methods as hybrid methods. Hybrid methods harness

the advantages of both approaches: the data-driven component

improves the system’s adaptability to complex environments and

the accuracy of predictions by extracting patterns and behaviors

from extensive driving data; meanwhile, the knowledge-driven

component ensures decisions comply with traffic regulations and

safety standards, providing systematic constraints and guidance

within a well-defined framework. This combination allows for

more flexible, robust, and interpretable decision planning (Singh,

2023). Although hybrid methods aim to integrate the strengths of

knowledge-driven and data-driven approaches, they also present

certain limitations and potential challenges in development. The

design and implementation of hybrid methods are complex,

requiring precise integration of two fundamentally different

techniques. This not only demands strong theoretical knowledge

from algorithm designers but also necessitates continuous tuning

and optimization in practice to achieve optimal performance.

By thoroughly discussing and comparing these algorithms, we

aim to understand their respective advantages and limitations

and explore effective ways to integrate these methods to tackle

complex decision-making and motion planning problems in

autonomous driving.

1.2 Paper structure

This review provides a comprehensive overview of decision-

making and planning technologies in autonomous driving systems.

The following sections detail the research progress in each aspect.

Introduction: The introduction reviews the essential role of

decision-making and planning in autonomous driving systems,

outlining the historical applications and unique advantages and

limitations of knowledge-driven, data-driven, and hybrid methods.

It provides a detailed comparative analysis of these methods,

discusses their effectiveness in various scenarios, and summarizes

the article’s structure to offer a comprehensive understanding of the

advancements in the field.

Knowledge-driven decision and planning methods: This

section explores knowledge-driven decision-making and planning

methods, focusing on the decision process and path planning

process. It covers the framework of rule based systems, state-

transition systems including Markov Decision Processes (MDPs),

game-theory based decision models, and path planning methods

like search-based algorithms (A* and Dijkstra) and optimization-

based techniques.

Data-driven decision and planning methods: This section

explores data-driven decision-making and planning methods,

covering imitation learning, reinforcement learning, inverse

reinforcement learning, and associated challenges. It discusses

training systems via expert behavior observation, environment

interaction for optimal strategy learning, and inferring reward

functions, emphasizing their application and real-world challenges

in autonomous driving.

Hybrid decision and planning methods: This section examines

hybrid decision-making and planning methods that merge

knowledge-driven and data-driven approaches to improve accuracy

and efficiency. It discusses the integration of expert knowledge with

techniques like imitation and reinforcement learning, highlighting

both the benefits of this combination and the technical and practical

challenges in implementation.

Experiment platform: This section explores pivotal resources

for autonomous driving: datasets and simulation platforms,

detailing their sources, composition, applications, and support

for decision-making algorithm development. It also evaluates

simulation platforms, examining their features and role in testing

algorithms and simulating complex traffic environments, crucial

for advancing autonomous driving technology.

Challenges and future perspectives: This section addresses

current challenges in autonomous driving decision-making and

planning, including environmental perception uncertainties,

unpredictability of traffic participants, and limitations of data-

driven algorithms, and examines industry and academic responses.

It also looks to future trends, such as multi-sensor fusion,

deep learning, behavior prediction models, scenario simulation,

reinforcement learning, synthetic data, continuous learning, and

explainable AI.

1.3 Significance and contributions

The autonomous driving industry has been progressing at a

rapid pace, yet there exists a notable gap in the systematic analysis

and synthesis of decision-making and planning methods. Our

review aims to bridge this gap by providing a comprehensive and

systematic categorization, comparison, and analysis of the current

state of the art in autonomous driving. Through this rigorous

examination, we have identified a clear trend and a compelling

direction for future research: the integration of knowledge-driven

and data-driven approaches into hybrid methods.

The lack of systematic analysis in the field has led to

fragmented development and a lack of clarity on the most

effective strategies for advancing autonomous driving systems.

Our review stands as a testament to the need for a structured

evaluation of the various methodologies, encompassing rule-based,

state transition-based, game-theory based, search-based, sampling-

based, and optimization-based methods. By conducting a thorough

comparative analysis, we have been able to elucidate the strengths

and limitations of each approach and how they complement

one another.

Our systematic summary and synthesis have led us to

conclude that the future of autonomous driving decision-making

and planning lies in hybrid methods. This conclusion is not
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merely a promotion of a particular approach but is grounded

in the recognition that no single methodology can address the

multifaceted challenges of autonomous driving. Hybrid methods

offer a balanced and comprehensive framework that leverages the

strengths of both knowledge-driven and data-driven strategies,

thereby enhancing the adaptability, safety, and interpretability of

autonomous vehicles.

We advocate for hybrid methods as the future research

direction because they hold the potential to: Improve Adaptability:

By incorporating data-driven learning, hybrid methods can

adapt to dynamic and complex traffic scenarios that exceed the

capabilities of traditional rule-based systems.

Enhance Safety and Reliability: Knowledge-driven components

provide a safety net, ensuring that decisions comply with

predefined rules and ethical standards, which is critical for public

trust and regulatory compliance.

Ensure Interpretability: The combination of data-driven

flexibility with knowledge-driven structure allows for greater

transparency in decision-making processes, which is essential for

debugging, optimization, and building user trust.

In conclusion, our systematic analysis and synthesis of

autonomous driving decision-making and planning methods

provide a clear premise and direction for the field. We believe

that the hybrid approach, informed by our comprehensive review,

is not only a promising direction but also a necessary evolution

in the development of autonomous driving systems. Our review

serves as a roadmap for researchers and practitioners, guiding the

industry toward a future where autonomous vehicles can operate

with enhanced safety, efficiency, and reliability. The contributions

of this paper can be summarized as follows:

This paper provides a comprehensive overview of automated

decision-making and planning methods, and innovatively classifies

these methods into three categories: knowledge-driven methods,

data-driven methods, and hybrid methods. Regarding knowledge-

driven methods, we highlight the efficiency and accuracy of expert

systems in handling specific decision problems through rule system

design and state management, and we explore the role of game

theory in strategy formation. Additionally, we also discuss how

search and optimization algorithms plan paths. For data-driven

methods, we analyze decision-making and planning methods

based on reinforcement learning, imitation learning, and inverse

reinforcement learning. We explore the theoretical foundations,

current applications, and challenges of these algorithms. This

comprehensive analysis highlights the strengths and limitations

of various methods and provides direction for future research

and technological improvements. Moreover, we delve into hybrid

methods, emphasizing their potential to integrate the advantages

of data-driven and knowledge-driven approaches in autonomous

driving decision systems.

Furthermore, we detail various virtual simulation platforms

and physical experimental facilities necessary for testing

and validating algorithms, emphasizing their crucial role in

transitioning algorithms from theory to real-world applications.

Finally, we discuss industry challenges and prospects, clarifying

future research directions and the integration potential of

emerging technologies in the field of automated decision-making

and planning.

Overall, this paper enriches academic research in automated

decision-making and planning and guides practitioners in the

field, contributing positively to technological advancements in

this domain.

2 Knowledge-driven decision and
planning methods

The knowledge-driven method typically separates the decision-

making phase from the path planning phase to enhancemodularity,

manageability, and efficiency. This distinction allows the decision

module to focus on high-level strategies, such as overtaking or

following other vehicles, while the path planning module translates

these strategies into specific driving paths. The overall classification

structure of knowledge driven methods is shown in Figure 1.

The advantage of the knowledge-driven planning method

is that it ensures the vehicle remains in a safe state within

the predefined range of rules. However, this approach also has

several drawbacks, such as overly conservative decision-making

and increased time complexity due to the accumulation of rules.

While the introduction of trajectory post-processing helps ensure

the smoothness and safety of the vehicle’s trajectory, the issue

of planning delays persists. In the following sections, we will

discuss the knowledge-driven planning method in detail, including

rule-based and learning-based approaches, examining its benefits,

limitations, and potential improvements.

2.1 Decision making processes

The decision module provides initial coarse-grained decision

results for the knowledge driven decision and planning model, as

shown in Figure 2. Decision-making methods can be categorized

into rule based, state-transition based, and game-theory based

approaches. Rule based methods use predefined traffic rules and

driving strategies, making decisions with conditional logic and

reasoning. State-transition methods, such as Markov Decision

Processes (MDP) and Partially Observable Markov Decision

Processes (POMDP), represent the driving environment and

vehicle states as a state space, optimizing state transitions

for optimal decisions. Game-theory based approaches treat

autonomous driving as a multi-agent system, using game theory

to analyze and predict other traffic participants’ behaviors

to form cooperative or competitive driving strategies. The

following sections provide a detailed overview of these decision-

making methods.

2.1.1 Rule based decision systems
Rule based systems make decisions with predefined rules and

logic. These systems rely on expert knowledge and experience to

build decision logic and rules. Zhao et al. (2021) propose a rule

based system using if-then rules to process perception information

from the traffic environment, generating corresponding driving

behaviors. The decision logic of this system is to select the optimal

driving strategy based on the surrounding traffic conditions and
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FIGURE 1

Classification structure of knowledge driven methods. This figure carefully classifies the knowledge-driven decision-making planning methods and

introduces the decision-making planning methods in stages. It is mainly divided into two stages, including the decision-making process and the

planning process. The second section will discuss each method in the two-stage process in detail.

FIGURE 2

Schematic diagram of knowledge driven decision-making. The figure describes the possible decisions that the vehicle may make when encountering

an obstacle vehicle, including going straight, turning left, and turning right. The vehicle plans the optimal trajectory based on the decision-planning

model.

potential risk assessment. Additionally, the design of the rule

database is a crucial component of rule based systems. Pellkofer

and Dickmanns (2002) propose a behavior decision module,

which execute task plans generated by task planning experts

rule database. Hillenbrand et al. (2006) introduce a multi-level

collision mitigation system that decides whether to intervene by

evaluating the remaining reaction time (TTR). The system employs

a time-based decision-making approach, and provides a flexible

trade-off between potential benefits and risks while maintaining

product liability protection and driver acceptance. Dam et al. (2022)

propose an advanced predictive mechanism that comprehensively

analyzes the current state of traffic flow and vehicle behavior
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patterns. This system can anticipate potential upcoming situations

by utilizing probabilistic models and machine learning techniques.

In highly complex traffic environments, maintaining system

reliability and effectiveness is a critical issue. Zhang T. et al. (2023)

address this problem by proposing several solutions, including

enhanced perception capabilities, real-time traffic data analysis,

adaptive rule adjustment, multimodal decision fusion, safety

strategies, redundancy design, and human-machine interaction

optimization. Koo et al. (2015) discuss how to enhance the

transparency of rule based systems, making their decision-making

processes easier to understand and verify. Noh and An (2017)

define a decision-making framework for highway environments,

capable of reliably and robustly assessing collision probabilities

under current traffic conditions and automatically determining

appropriate driving strategies. This framework consists of twomain

components: situation assessment and strategy decision-making.

The situation assessment component uses multiple complementary

“threat metrics” and Bayesian networks to calculate “threat levels”

at both vehicle and lane levels, assessing collision probabilities in

specific highway traffic conditions. The strategy decision-making

component automatically determines suitable driving strategies

for given highway scenarios, aiming for collision-free, goal-

oriented behavior.

Trajectory prediction and multi-angle trajectory quality

evaluation must be introduced into the rule-based decision-

making system. This will allow the drivable trajectory to be planned

at future moments more quickly and accurately while ensuring

driving safety. The most important thing is to ensure the absolute

safety of all agents in a complex environment.

2.1.2 State transition and management models
State transition andmanagementmodels describe how a vehicle

moves between different states. State management involves making

decisions based on current state and environmental information.

The application of Markov Decision Processes (MDPs) is

particularly significant, providing an effective mathematical

framework for state management. Galesloot et al. (2024) introduce

a novel online planning algorithm to address challenges in multi-

agent partially observableMarkov decision processes (MPOMDPs).

They integrate weighted particle filtering into sample-based online

planners, and leverage the locality of agent interactions to develop

new online planning algorithms operating on a Sparse Particle

Filter Tree. Sheng et al. (2023) introduce a safe online POMDP

planning approach that computes shields to restrict unsafe actions

violating reach-avoid specifications. These shields are integrated

into the POMDP algorithm, presenting four different methods

for shield computation and integration, including a decomposed

variant aimed at enhancing scalability. Furthermore, Barenboim

and Indelman (2024) propose an online POMDP planning

method that provides deterministic guarantees by simplifying

the relationship between the actual solution and the theoretical

optimum. They derived tight deterministic upper and lower

bounds for selecting observation subsets at each posterior node

of the tree. The method simultaneously constrains subsets of state

and observation spaces to support comprehensive belief updates.

Ulfsjöö and Axehill (2022) combine POMDP and scenario model

predictive control (SCMPC) in a two-step planning method to

address uncertainty in highway planning for autonomous vehicles.

Huang Z. et al. (2024) propose an online learning-based behavior

prediction model and an efficient planner for autonomous driving,

utilizing a transformer-based model integrated with recurrent

neural memory to dynamically update latent belief states and infer

the intentions of other traffic participants. They also employed

an option-based Monte Carlo Tree Search (MCTS) planner to

reduce computational complexity by searching action sequences.

Schörner et al. (2019) develop a hierarchical framework for

autonomous vehicles in multi-interaction environments. This

framework addresses decision-making under occluded conditions

by computing the vehicle’s observation range. Additionally, it

considers current and predicted environments to foresee potential

hidden traffic participants. Lev-Yehudi et al. (2024) introduce

a novel POMDP planning approach for target object search in

partially unknown environments. Liu et al. (2015) present a

trajectory planningmethod using POMDP to handle scenarios with

hidden road users. Chen and Kurniawati (2024) propose a context-

aware decision-making algorithm for urban autonomous driving,

modeling the decision problem as a POMDP and solving it online.

The utilization of Markov Decision Processes (MDP) and

their various extensions in the field of autonomous driving has

greatly enhanced the capacity for effective decision-making and

strategic planning, particularly in environments that are partially

observable or involve multiple interacting agents. In real-world

driving scenarios, vehicles often encounter situations where not

all variables or conditions are fully visible or predictable, such as

obstacles obscured from sensors or dynamic traffic patterns. MDPs

provide a structured framework to address these uncertainties

by allowing autonomous systems to evaluate potential actions

based on probabilistic models of outcomes, thereby optimizing

decision-making under uncertainty. Furthermore, in multi-agent

environments where interaction with other vehicles, pedestrians,

and traffic systems is required, extensions of MDPs, such as

Multi-agent MDPs (MMDPs), facilitate coordinated strategies that

ensure safe and efficient navigation. These advanced models enable

autonomous vehicles to anticipate and respond to the actions

of other agents, leading to more reliable and intelligent driving

solutions. Overall, the applications of MDP and its variants in

autonomous driving enable effective decision-making and planning

in partially observable and multi-agent environments.

2.1.3 Game-theoretic models
Game theory plays a critical role in decision-making by

analyzing the strategies and potential actions of different

participants, enabling autonomous driving systems to optimize

their behavior in competitive environments. Fisac et al. (2019)

propose a hierarchical dynamic game theory planning algorithm,

effectively handling the complex interactions between autonomous

vehicles and human drivers by decomposing dynamic games into

long-term strategic games and short-term tactical games. Sankar

and Han (2020) employ adaptive robust game theory decision

strategies within a hierarchical game theory framework to manage

vehicle interactions on highways. This strategy allows autonomous

vehicles to adjust their behavior based on other drivers’ actions,

reducing collision rates and increasing lane-changing success.

Li et al. (2020), Cheng et al. (2019), and Li et al. (2018) utilize

non-cooperative game theory methods to address traffic decision-

making at unsignalized intersections. In these methods, each
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FIGURE 3

The knowledge-driven algorithm framework is mainly divided into three parts: search-based methods, sampling-based methods, and

optimization-based methods. From the figure, the hybrid search e�ect is more prominent in the search-based methods, and the trajectory planned

by the optimization-based method is smoother.

vehicle is viewed as an independent decision-maker to minimize

its travel time or enhance its safety without necessarily cooperating

with other vehicles. Martin et al. (2023), Tian et al. (2022), and

Fang et al. (2024) explore cooperative game theory to enhance the

efficiency and safety of interactions among autonomous vehicles.

In cooperative game theory, multiple participants form coalitions

and share information or resources to achieve common goals,

such as reducing overall travel time or increasing overall system

safety. The cooperative driving framework allows vehicles to share

their location and speed information and predict the intentions

and behaviors of others, leading to more coordinated and safer

decisions in complex road environments. For autonomous vehicle

control at roundabouts, Tian et al. (2018) demonstrate the

effectiveness of adaptive game theory decision algorithms by online

estimating the opponent driver types and adjusting strategies

accordingly, thus managing multi-vehicle interactions in complex

traffic environments.

2.2 Planning algorithms

Path planning methods are typically divided into two

stages. The first stage includes search-based methods, such

as A* and Dijkstra, which systematically search all possible

paths to find the optimal solution for well-defined and

relative problems. Additionally, it also includes sampling-

based methods, such as Rapidly-Exploring Random Trees

(RRT) and Probabilistic Roadmaps (PRM), which generate

candidate paths through random sampling and are suitable

for high-dimensional and complex planning spaces. The

second stage primarily employs optimization techniques by

designing objective functions and constraints to model the

path optimization goals. Ultimately, this process results in a

planned path that meets requirements for smoothness, safety, and

efficiency. Figure 3 depicts the architectural forms of different

planning algorithms.

2.2.1 Search algorithms for path finding
Traditional search algorithms such as A* and Dijkstra

systematically explore the path space to find the optimal route

from a start to an end point. However, the environments

for path planning have become increasingly complex. Diverse

heuristic and meta-heuristic search methods have emerged to

enhance computational efficiency and path quality. Ferguson and

Stentz (2006) explore the field D* algorithm, which calculates

path cost estimates during linear interpolation to generate paths

with continuous headings. Daniel et al. (2010) find shorter

paths on grids without restricting path direction. Wang J.

et al. (2019) combine A* with neural networks to incorporate

rich contextual information and learn user movement patterns.

Meanwhile, Melab et al. (2013) demonstrate the efficiency and

practicality of the ParadisEO-MO-GPU framework, a GPU-based

parallel local search meta-heuristic algorithm, which implements

parallel iterative search models on graphical processing units.

Stochastic search algorithms and their variants are also applied in

autonomous vehicle path planning to handle dynamic obstacles

and complex scenarios. Kuffner and LaValle (2000) solve single-

query path planning problems by constructing trees from both

the start and end points. Yu et al. (2024a) improve planning

efficiency in dynamic environments, which combines dual-tree

search with efficient collision detection mechanisms. Huang and

Lee (2024) achieve asymptotically optimal path planning in

narrow corridors by adaptive information sampling and tree

growth strategies.

2.2.2 Sample algorithms for path finding
Sampling-based methods address path planning problems in

complex and dynamic environments by generating candidate paths

with random sampling in the planning space. Rapidly-exploring

Random Trees (RRT) and their variants are representative of these

methods. Specifically, Wang Z. et al. (2024) demonstrate that

by introducing guided paths and dynamically adjusting weights,
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which effectively reduces planning time and path curvature.

Similarly, Dong et al. (2020) propose a knowledge-biased sampling-

based path planning method for Automatic Parking (AP). This

approach improves the algorithm’s integrity and feasibility by

introducing reverse RRT tree growth, using Reeds-Shepp curves

to directly connect tree branches, and employing standardized

parking space/vehicle knowledge-biased RRT seeds. Chen et al.

(2022) propose a strategy combining RRT and Dijkstra algorithms

to adapt to semi-structured roads. The method first narrows

the planning area using an RRT-based guideline planner, then

translates the path planning problem into a discrete multi-source

cost optimization problem. The final output path is obtained

by applying an optimizer to a discrete cost evaluation function

designed to consider obstacles, lanes, vehicle kinematics, and

collision avoidance performance. Huang H. et al. (2024) adopt

the least action principle to general optimal trajectory planning

for autonomous vehicles, offering a method to simulate driver

behavior for safer and more efficient trajectory planning. Beyond

RRT algorithms, the Probabilistic Roadmap (PRM) algorithm and

its improved versions have shown superiority in narrow path

planning. Huang Y. et al. (2024) enhance the PRM method by

combining uniform sampling with Gaussian sampling, increasing

the success rate and efficiency of path planning in narrow passages.

Zhang Z. et al. (2023) transform a grid map into a formal context

of concepts, mapping the relative positional relationships between

rectangular areas. They then convert these relationships into partial

order relationships within a rectangular region graph based on

concept lattices.

2.2.3 Optimization techniques in planning
Optimization techniques in planning are broadly applied

and critical, By appropriately selecting and applying suitable

optimization methods, the performance and efficiency of planning

systems can be significantly improved. Xu et al. (2012) introduce

a real-time motion planner that achieves efficient path planning

through trajectory optimization. Similarly, Zhang et al. (2020)

decompose the path planning process into two stages: generating

smooth driving guidance lines and then optimizing the path

within the Frenet frame. Additionally, Werling et al. (2010)

combine long-term goals (such as speed maintenance, merging,

following, stopping) with reactive collision avoidance. The

method demonstrates its capability in typical highway scenarios,

generating trajectories that adapt to traffic flow and validating.

Zhang Y. et al. (2023) and Gulati et al. (2013) employ nonlinear

constrained optimization methods to compute trajectories

that comply with kinematic constraints. The method focuses

on dynamic factors such as continuous acceleration, obstacle

avoidance, and boundary conditions to achieve human-acceptable

comfortable motion.

In practical applications, the efficiency and feasibility of

implementing optimization algorithms are critical. Stellato et al.

(2020) propose the OSQP solver, which effectively addresses

convex quadratic programming problems using the Alternating

Direction Method of Multipliers (ADMM), making it suitable for

real-time applications. High-performance nonlinear optimization

has been realized through domain-specific languages (DSL),

where GPU acceleration is used to enhance solving efficiency

(Yu et al., 2024b). Furthermore, Huang X. et al. (2023) adopt

the Levenberg-Marquardt optimization algorithm for nonlinear

systems to the control of continuous stirred-tank reactors, showing

faster convergence rates and stronger disturbance resistance.

In summary, optimization techniques play a pivotal role in

enhancing the efficiency and effectiveness of planning systems,

particularly in the context of autonomous driving and real-time

applications. By strategically selecting and applying appropriate

optimization methods, such as trajectory optimization and

nonlinear constrained optimization, these systems can achieve

significant improvements in path planning and dynamic response

to environmental factors. The integration of advanced solvers like

the OSQP for convex quadratic programming and the utilization

of domain-specific languages for leveraging GPU acceleration

further highlight the importance of optimization in achieving

high-performance planning. These approaches demonstrate the

capability to address complex scenarios, maintain compliance with

kinematic constraints, and ensure comfort and safety in motion,

thereby validating their critical role in theoretical and practical

applications across various domains.

3 Data-driven decision and planning
methods

3.1 Imitation learning algorithms

Imitation Learning (IL) has become a pivotal methodology

in the advancement of Autonomous Vehicles (AVs), leveraging

expert demonstrations to navigate around the complexities and

hazards intrinsic. Imitation Learning for autonomous vehicles is

categorized into three main approaches: Behavioral Cloning (BC),

Inverse Reinforcement Learning (IRL), and Generative Adversarial

Imitation Learning (GAIL).

Behavioral Cloning (BC) is a straightforward approach that

directly mimics human driving behavior. The approach offers

several advantages, including simplicity, ease of training, and

effective performance when there is a substantial amount of high-

quality human driving data available. However, BC encounters

difficulties when confronted with unfamiliar road scenarios, is

susceptible to noise in the training data, and does not consider the

long-term implications of decisions. BC is typically employed in

relatively simple and structured environments, such as highways

or known routes. Inverse reinforcement learning (IRL) offers the

advantage of understanding the underlying intent of human drivers

by inferring a reward function, thereby capturing complex driving

strategies. This makes it an advantageous approach in diverse

and complex scenarios. It demonstrates effective adaptation to

novel environments; however, it is associated with considerable

computational complexity, necessitating substantial resources and

well-designed features and models. IRL is frequently utilized

in scenarios that necessitate the comprehension of intricate

decision-making processes, such as urban driving. Generative

Adversarial Imitation Learning (GAIL) integrates the strengths

of generative adversarial networks to enhance model robustness

and generalization through adversarial training. GAIL can imitate

complex behaviors without explicit reward functions, thereby

providing better adaptability to unknown situations. However, its
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training process can be unstable, involves complex tuning, and

demands high-quality and diverse training data. GAIL is suitable

for uncertain driving environments that require high robustness

and adaptability, such as dynamic urban traffic. An overview of

these approaches will be presented in this section.

3.1.1 Imitation learning problem formulation
Imitation Learning approach exploits the vast repository of

human driving data to train policies that emulate expert behavior.

The fundamental problem definition for IL in the context of

AVs revolves around deriving a policy π∗ that closely matches

the expert’s policy πE by minimizing the discrepancy between

their state-action distributions across a dataset D of demonstrated

trajectories. Each trajectory t within D consists of sequential state-

action pairs (sit ,ait), where ait is the action executed by the expert in

state sit according to πE. The optimization framework for achieving

this can be mathematically formalized as:

π∗ = arg min
π

L(πE,π) (1)

where L is a divergence measure that quantifies the dissimilarity

between the expert’s policy and the learned policy.

BC simplifies the IL challenge by transforming it into a

supervised learning problem, with the aim of learning a policy. πθ

that minimizes the loss functionL over the datasetD of state-action

tuples, thereby replicating the expert’s behavior:

π∗
θ = arg min

θ
E(s,aE)∼PE(s|πE)L(a

E − πθ (s)) (2)

Where the PE(s | πE) is the state distribution of the expert

policy, and the L can be a loss function that measures the imitation

quality of the expert’s actions. Commonly, L can be the L1 loss

(mean absolute error) or the L2 loss (mean squared error). Taking

L2 loss as an example, the loss function can be:

Loss =
1

T

∑T
j=1

∥

∥a − aE
∥

∥

2
(3)

The problem of IRL in autonomous driving revolves around

inferring a reward function r∗ from expert demonstrations. Given

a set of state-action pairs sampled under the expert policy π∗, IRL

attempts to learn a reward function r∗ such that:

π∗ = arg maxEπ [r
∗(s, a)] (4)

Generative Adversarial Imitation Learning (GAIL) is a

framework that extracts expert-driving policies without explicitly

defining reward functions or employing laborious reinforcement

learning cycles. It synergistically combines imitation learning with

Generative Adversarial Networks (GANs), creating a duel between

a generator and a discriminator. The generator, parameterized

by θ , emulates expert maneuvers by matching the distribution

of state-action pairs observed in demonstrations. Meanwhile, the

discriminator represented by Dω within the interval (0, 1) serves as

a stand-in reward evaluator, quantifying the likeness between the

generated and actual expert behaviors. The GAIL lies in a min-max

optimization objective, succinctly expressed as:

min
πθ

max
Dω

Eπθ
[logDω(s, a)]+ EπE [log(1− Dω(s, a))]− λH(πθ ) (5)

This formula pits the generator against the discriminator, where

Eπθ
[logDω(s, a)] encourages the generator to produce actions

indistinguishable, and ensures the discriminator’s sharpness in

distinguishing real from fake samples. The term EπE [log(1 −

Dω(s, a))] introduces entropy regularization to promote policy

exploration. Here, H(πθ ) denotes the entropy of policy π , a

measure of randomness in action selection that fosters learning

flexibility. Gradients guiding updates for both components are

defined as:

∇θ J(θ) = Eπ [∇θ logπθ (a|s)Q(s, a)]− λ∇θH(πθ ) (6)

∇ωJ(ω) = Eπ [∇ω logDω(s, a)]+ EπE [∇ω log(1− Dω(s, a))] (7)

3.1.2 Behavior clone methods
We refine the taxonomy of Behavioral Cloning into two

unique categories, as shown in Figure 4: End-to-End and Modular

Planning.

3.1.2.1 End-to-End methods

End-to-End methodologies involve models that are optimized

to infer precise steering and acceleration commands directly

from raw sensor data. ALVINN (Pomerleau, 1988) was the first

implementation of end-to-end Imitation Learning for autonomous

driving in 1989. There is a front-facing camera installed on

ALVINN as visual input, and it uses a 3-layer MLP as the

policy function approximator. ALVINN learns in real time using

data from the human driver to train for lane-keeping steering

commands. The AVLINN is extended with obstacle avoidance by

Muller et al. (2005). It presents an obstacle avoidance system for

small off-road vehicles equipped with twin forward-facing cameras

named DAVE. Using end-to-end learning, the system is trained on

raw image data coupled with human driver input in a variety of

environments. The work from NVIDIA (Bojarski et al., 2016) has

taken the concept of end-to-end imitation learning a step further

with its DAVE-2, which uses inputs from three onboard cameras.

The dual perspective provided by the offset left and right cameras

enables the system to correct for vehicle drift. A further work from

NVIDIA (Bojarski et al., 2017) provides an exhaustive analysis of

the interpretability of the neural network for autonomous driving

proposed by Bojarski et al. (2016). The core of this research

is to reveal how the deep neural network decides the driving

direction based on the input road images, particularly in the context

of an end-to-end learning framework. Another work (Cultrera

et al., 2020) proposes an explainable autonomous driving system

using imitation learning with visual attention. By integrating

an attention mechanism, the system highlights important image

sections to enhance decision transparency. Hecker et al. (2018)

present an end-to-end driving model utilizing eight surround-view

cameras strategically mounted for a 360-degree perspective. The
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FIGURE 4

The taxonomy of Behavioral Cloning. Autonomous driving tasks are composed of three key components: perception, planning, and control.

Perception generates environmental perception outcomes based on sensor inputs. Planning creates the future trajectory of the vehicle by

considering perception results and historical state information. Control implements vehicle control actions according to the planning outcomes.

Regarding the taxonomy of Behavioral Cloning methods within the context of planning task, it can be categorized into three types. Modular Planning

links the perception, planning, and control modules in a pipeline fashion. Integrated Perception-to-planning integrates the perception and planning

tasks into a single module. End-to-End indicates that the entire perception, planning, and control tasks are accomplished by a unified module.

model integrates CNNs for feature extraction and LSTM layers

for temporal encoding. Codevilla et al. (2018) propose Conditional

Imitation Learning (CIL), a framework that enriches the learning

process by incorporating explicit intent information alongside

visual observations. The CIL model is designed to receive not

only visual data from a three-camera configuration–inspired by

the DAVE-2 system (Bojarski et al., 2016), but also a high-level

command indicating the intended action (e.g., turn left, turn right,

go straight). Their network comprises convolutional layers for

feature extraction, followed by Long Short-Term Memory (LSTM)

units to handle temporal sequences.

The efficacy of the CIL framework is assessed through a dual-

pronged evaluation approach. Hawke et al. (2020) advance the

application of Conditional Imitation Learning (CIL) by presenting

an end-to-end autonomous driving system proficient in executing

both steering and speed adjustments amidst intricate urban

landscapes. To infuse temporal awareness, an optical flow model

is incorporated by Sun D. et al. (2018), enhancing the system’s

understanding of motion dynamics. Xiao et al. (2020) develop an

end-to-end autonomous vehicle framework that integrates both

RGB imagery and depth data from onboard LiDAR sensors.

Wang Q. et al. (2019) employ the vehicle’s current location and

intended trajectory to compute a “subgoal angle,” which serves

as an input to the neural network. The network takes sequential

images, vehicle speed, and the computed subgoal angle as inputs.

Its initial seven layers are pre-trained on ImageNet to facilitate

feature extraction. Separate feature extractor modules process the

input images, speed, and subgoal angle independently. These

extracted features are subsequently combined to forecast steering

commands and throttle inputs. Haavaldsen et al. (2019) delve into

the integration of recurrent layers within end-to-end autonomous

vehicle architectures. It involves the training of two distinct models:

a standard Convolutional Neural Network (CNN) operating in

an end-to-end framework and a CNN with recurrent layers. The

training data contains 3 camera images, traffic signals, a high-level

command, output steers, and speed control signals. Chi and Mu

(2017) introduce a model that incorporates LSTM architecture to

enhance its capacity for temporal reasoning. This model treats the

steering angle as a dynamically evolving variable, reflecting the

continuity inherent in driving actions. The integration of LSTM

within a dual-subnetwork framework ensures a comprehensive

understanding of the driving environment and historical vehicle

dynamics. Kebria et al. (2019) uncover that models with increased

depth surpass their less deep counterparts, with a substantial

improvement particularly evident when transitioning from 9 to

12 layers. Furthermore, models incorporating a varied assortment

of filter sizes emerged as the top performers, highlighting the

advantage of filter size diversity. Barnes et al. (2017) integrate video

odometry for tracking vehicle movement and employs LiDAR

for detecting impediments. By merging visual cues from the

camera with spatial data from LiDAR, the system can partition

the incoming visuals into three classifications at the pixel level:
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traversable paths, non-traversable areas, and unclassified zones. Cai

et al. (2019) propose a model that integrates camera visuals, high-

level navigational commands, and past trajectories of autonomous

vehicles. This model is structured with three distinct sub-networks,

each dedicated to executing a fundamental maneuver: maintaining

a straight course, turning left, or turning right. These sub-networks

are concatenated with Long Short-Term Memory (LSTM) and

Fully Connected (FC) layers to formulate trajectories. Bansal

et al. (2018) transform bird’s-eye view environmental inputs into

driving commands. To overcome the limitations of standard

behavior cloning, the model integrates synthesized data simulating

challenging scenarios such as collisions and off-road incidents.

By augmenting the loss function to penalize unwanted events

and encourage progression, the system learns from both ideal

and adverse behaviors, achieving higher robustness. Caltagirone

et al. (2017) propose a LiDAR-based driving path generation

approach using a fully convolutional neural network (FCN)

that integrates LiDAR point clouds, GPS-IMU data, and Google

navigation instructions. The system learns to perform perception

and path planning directly from real-world driving sequences.

This learning-based method bridges low-level scene understanding

with behavioral reflexes, enhancing autonomous vehicle technology

by producing human-interpretable outputs for vehicle control.

Xu et al. (2017) present an end-to-end learning framework

for autonomous vehicles with a large, uncalibrated, crowd-

sourced video dataset to mitigate the Cascading Error Problem.

Their model integrates spatial and temporal cues for continuous

steering angle prediction. Model assessment entails contrasting

the highest probability predicted action against the actual action

for validation. Unlike approaches that directly use a single

network to fit autonomous driving tasks, some researchers have

introduced more complex multi-stage architectures to enhance

network performance. Chen et al. (2020) outline a novel two-

stage training method for autonomous driving systems named

“Learning by Cheating.” Initially, a “privileged” agent is trained

with access to ground-truth environmental data, providing an

unrealistic advantage akin to “cheating.” This agent then teaches

a “sensorimotor” agent, which operates solely on visual input,

mimicking expert behavior without direct access to the privileged

information. This strategy breaks new ground by separating

perception from decision-making, enabling the vision-based agent

to excel without needing explicit environmental cues. Chen and

Krähenbühl (2022) present a pioneering system that leverages

the experiences of not just the ego-vehicle but also surrounding

vehicles for autonomous driving policy training. This innovative

approach enriches the diversity of driving scenarios without

requiring additional data collection. Wu et al. (2022) propose an

integrated solution for autonomous vehicles, merging trajectory

planning and control prediction into one system. Shao et al. (2023b)

process intricate urban traffic scenarios by incorporating both

temporal and global reasoning mechanisms. This system uniquely

addresses the challenges of predicting future object movements

andmanaging obscured entities, enhancing safety through superior

anticipation of potential hazards in complex situations. Hu et al.

(2023b) propose a novel framework that departs from conventional

autonomous driving architectures by focusing on planning as the

objective. UniAD integrates perception, prediction, and planning

tasks into one unified network. The network’s unique design

revolves around transformer decoder-based modules that facilitate

multi-task cooperation and emphasize a planning-first mindset.

3.1.2.2 Modular planning

In contrast to the aforementioned end-to-end architectures that

use data-driven methods to model the entire autonomous driving

system, Modular Planning focuses on the data-driven aspects,

specifically within the decision-making and planning components.

Chen et al. (2019) address the challenges associated with

conventional model-based decision-making systems. By learning

from offline expert driving datasets, the proposed method bypasses

the need for manual policy design, thereby offering scalability

and adaptability to diverse road conditions, including varying

topologies, geometries, and traffic regulations. Sun L. et al. (2018)

present planning and control framework, addressing the challenges

of real-time, safety, and efficiency. Renz et al. (2022) deviate from

conventional pixel-based planning systems that often struggle with

efficiency and interpretability in complex environments. PlanT

employs an object-centric representation, processing a compact set

of scene elements rather than dense grids, thereby enhancing both

computational speed and decision transparency. Guo et al. (2023)

innovate urban autonomous driving by tackling the covariate shift

issue in behavior cloning. It introduces a policy mapping context

states directly to ego vehicle trajectories, bypassing combined state-

action predictions. Cheng et al. (2023) address the inefficiencies

arising from the lack of a standardized benchmark in evaluating

imitation-based autonomous driving planners. By leveraging the

newly introduced nuPlan dataset and its closed-loop benchmarking

framework, they conduct an extensive analysis focusing on two

key aspects: crucial features for ego-motion planning and effective

data augmentation strategies to mitigate compounding errors.

Cheng et al. (2024a) propose a query-based model that integrates

lateral and longitudinal self-attentions sequentially, followed by

a cross-attention mechanism that aligns the decoded trajectory

with the scene context. To mitigate computational intensity,

PLUTO employs factorized attention, reducing complexity without

sacrificing expressiveness.

3.1.3 Inverse reinforcement learning methods
Inverse Reinforcement Learning (IRL) recognizes reward

structures from expert demonstrations that are critical for

emulating nuanced human driving behaviors in autonomous

vehicles. While Reinforcement Learning (RL) optimizes actions

based on known rewards, Inverse Reinforcement Learning (IRL)

deduces the underlying reward functions from observed behaviors,

providing valuable insights into decision-making processes.

Rosbach et al. (2019) optimize driving styles in an integrated

general-purpose planner for autonomous vehicles. The learning

process uses human demonstration data, approximating feature

expectations within the planner’s graph representation to facilitate

maximum entropy IRL. Sadigh et al. (2016) adopt IRL to

develop strategies for autonomous vehicles that proactively shape

the behavior of human drivers. By approximating the human

driver as an optimal planner with reward functions learned

from demonstrations, the method optimizes robot actions without
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explicit communication coding. Brown and Niekum (2018)

address the challenge of deriving high-confidence performance

bounds in scenarios, where the reward function is unknown

by employing a Bayesian Inverse Reinforcement Learning (IRL)

sampling method. Using demonstration data, the framework

employs Markov Chain Monte Carlo techniques to sample reward

functions. These samples are used to compute a tight upper

bound on the worst-case performance discrepancy between any

evaluated policy and the optimal policy induced by the expert’s

latent reward structure. Palan et al. (2019) employ a novel hybrid

framework, which synergistically integrates human demonstrations

and preference queries for efficient reward function learning. Lee

et al. (2022) adopt an IRL-based spatiotemporal approach for

Model Predictive Control (MPC), utilizing a deep neural network

structure with goal-conditioning. This network design ingests

concatenated bird’s eye view images, encompassing occupancy,

velocity, acceleration, and lane information, to implicitly learn

an interpretable reward function. Cai et al. (2021) adopt IRL

to harmoniously blend imitation learning with model-based

reinforcement learning techniques. Phan-Minh et al. (2022)

employ a unique structured neural network, processing separated

features with masked self-attention before integration. Liang

et al. (2018) employ a Controllable Imitative Reinforcement

Learning (CIRL) methodology. The architecture features a gating

mechanism enabling conditional policy execution based on

distinct commands, processing raw visual inputs to output

continuous control actions like steering angles. Huang et al.

(2023c) use IRL for conditional predictive behavior planning in

autonomous vehicles. It features a Transformer-based network

structure that integrates future ego plans with agent history and

vectorised map.

3.1.4 Generative adversarial imitation learning
methods

Generative Adversarial Imitation Learning (GAIL) innovatively

combines the strengths of imitation and generative adversarial

networks (GANs) for autonomous vehicle policy learning. Unlike

traditional reinforcement learning, GAIL learns policies directly

from expert demonstrations. It employs a two-part structure:

a generator acting as a policy and a discriminator acting as

a reward function. With GAIL, autonomous systems can learn

sophisticated behaviors in an end-to-end manner, improving

their adaptability and performance in the field. Li et al. (2017)

extend GAIL for unsupervised discovery of latent structures

in expert demonstrations. By leveraging visual data, it learns

interpretable representations directly from raw pixel inputs.

Kuefler and Kochenderfer (2017) extend the InfoGAIL algorithm

to address multi-modal imitation learning for sustained behavioral

replication. By introducing “burn-in demonstrations,” the method

conditions policies at test time, enhancing their ability to

mimic expert behavior over extended periods. Kuefler et al.

(2017) utilize GAIL to emulate human highway driving patterns.

In particular, the performance of this method is significantly

better on longer-term predictions (over 3 s), highlighting the

superiority under a wide range of assessment metrics. Merel

et al. (2017) introduce a novel extension to GAIL, specifically

tailored for extracting human-like behaviors from sparse and

noisy motion capture data. This method innovates by successfully

training policies using partial state features alone. It further

demonstrates the feasibility of imitation across dissimilar body

structures and dynamics. By integrating a context variable into

the GAIL framework to manage multi-behavior policies, the

approach fosters seamless transitions between various learned

behaviors. Sharma et al. (2018) propose a framework for learning

hierarchical policies from unsegmented demonstrations. Directed-

info Gail adopts directed information flow in a graphical model

to uncover subtasks without the need for action labels. Using

an L2 loss, it refines action replication in complex tasks and

demonstrates effectiveness in various environments, including

grid navigation and continuous control scenarios such as hopper

and walker. Fei et al. (2020) introduce a novel approach to

the multi-modal GAIL method. It integrates an auxiliary skill

selector, enabling the system to adaptively choose behaviors in

response to varying contexts. Theoretical convergence guarantees

for both the generator and selector ensure optimal policy

learning.

3.2 Reinforcement learning

RL is primarily classified into threemethodologies: value-based,

policy-based, and actor-critic methods. Value-based methods, such

as Q-learning, concentrate on estimating the value of actions in

given states in order to derive optimal policies. The principal

benefit of these methods is their simplicity and efficacy in discrete

action spaces, rendering them well-suited to environments where

the state-action space can be accurately represented and managed.

However, they frequently encounter difficulties when confronted

with extensive action spaces, a phenomenon known as the curse

of dimensionality. Furthermore, they necessitate a considerable

amount of exploration to reach optimal policies. These methods are

typically employed in scenarios with a finite set of actions, such as

grid-world problems or simplified driving tasks. In contrast, policy-

based methods directly parameterise and optimize the policy itself,

thereby offering advantages in the handling of continuous action

spaces and enabling more direct learning of stochastic policies.

These methods are particularly effective in environments where the

action space is continuous or high-dimensional, such as robotic

control or complex maneuvering tasks. However, policy-based

methodsmay be less sample-efficient andmay exhibit high variance

during training, necessitating the careful tuning of learning rates

and exploration strategies. Actor-critic methods integrate the

advantages of both value-based and policy-based techniques by

employing two distinct structures: the actor, which updates the

policy, and the critic, which assesses the action taken by the

actor. This combination enables more stable and efficient learning,

reducing variance and improving convergence rates. Actor-critic

methods are versatile and can be applied in a wide range of settings,

from relatively simple tasks to those of a more complex nature, such

as autonomous driving in dynamic environments. However, they

are prone to being computationally intensive and require careful

balancing between the updates to the actor and critic in order to

maintain stability.

Frontiers inNeurorobotics 12 frontiersin.org

https://doi.org/10.3389/fnbot.2025.1451923
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Hu et al. 10.3389/fnbot.2025.1451923

FIGURE 5

The reinforcement learning processes.

3.2.1 Reinforcement learning problem
formulation

Reinforcement Learning (RL) constitutes a foundational

mathematical framework grounded in the principle of trial-and-

error learning. Mathematically refined of RL, is formalized as (S,

A, P, R, γ ), with S and A representing the sets of all possible

states and actions, respectively. The transition dynamics function,

P(st+1 | st , at): S × S × A → [0, 1], maps state-action pairs to a

probability distribution over subsequent states. The instantaneous

reward function, R(st , at , st+1): S × A × S → R, furnishes the

learning cues. A discount factor γ ∈ [0, 1] governs the present

valuation of prospective rewards, with lower values promoting

shortsighted decision-making.

For scenarios where some environments are not fully

observable, they incorporate an observation space � and an

observation function O, such that O(at , st + 1, ot+1) = P(ot+1 |

at , st+1) quantifies the likelihood of perceiving ot+1 following the

execution of action at leading to state st+1.

At each discrete time step t, the agent conditioned on its

present state st chooses an action at from the action set A,

subsequently earning a numerical reward rt+1 and transitioning

to a new state st+1, as shown in Figure 5. The sequential record

{s0, a0, r1, s1, a1, r2, ...} formed is termed a rollout or trajectory.

The anticipated accumulation of future rewards, encapsulated

by the expected discounted return Gt beyond time step t, is

mathematically defined as follows:

Gt
.
= rt+1 + γ rt+2 + γ 2rt+3 + ... =

T
∑

K=0

γ Krt+k+1 (8)

where T represents a finite value for problems with a finite horizon,

and ∞ for those with an infinite horizon. The policy π(a | s)

assigns probabilities to each potential action based on the current

state. Meanwhile, the value function under policy π , denoted vπ (s),

estimates the expected cumulative return when starting from state

s and adhering to policy π thereafter.

vπ (s)
.
= Eπ [Gt | st = s] (9)

Similarly, the action-value function qπ (s, a) is defined as:

qπ (s, a)
.
= Eπ [Gt | st = s, at = a] (10)

which satisfies the recursive Bellman equation:

qπ (st , at)
.
= Est+1 [rt+1 + γ qπ (st+1,π(st+1))] (11)

The objective of RL is to identify the optimal policy that

maximizes the expected return π∗ = argmaxπEπ [Gt | st = s].

RL is primarily classified into threemethodologies: value-based,

policy-based, and actor-critic methods.

3.2.2 Value-based RL methods
Value-based RL focuses on assessing the value of states

or state-action pairs to guide decision-making. By iteratively

updating a value function that predicts future rewards, these

methods prioritize actions associated with the highest expected

return. Alizadeh et al. (2019) adopt DQN (Deep Q-Network)

to address a discrete action space where decisions such as

lane changes are made in autonomous driving simulations.

Reward mechanisms are designed to incentivise safe behavior,

penalize collisions or aggressive maneuvers and encourage goal-

directed navigation. Deshpande and Spalanzani (2019) address

the challenge of autonomous in the presence of pedestrians.

The action space encompasses velocity adjustments and steering

decisions, while the state space is depicted through a grid-

based representation encoding vehicle and pedestrian positions.

Reward mechanisms are in place to encourage safe distances

from pedestrians and adherence to traffic rules. Tram et al.

(2019) integrate DQN with Model Predictive Control (MPC) to

address intersection navigation. The action space comprises six

distinct actions, including proceeding through the intersection

and yielding. The state space encompasses the dynamic vehicle

conditions and partial observability of surrounding traffic. A

reward mechanism is devised to ensure that driving practices are

both safe and effective. Li and Czarnecki (2018) employ a multi-

objective Deep Q-Network variant to address the challenge of

autonomous driving. The action space encompasses a wide range

of maneuvers, including lane changes and adhering to traffic rules

at intersections. The model employs a neural network architecture

featuring shared and specialized layers, with inputs including

vehicle states and environmental factors. Auxiliary factored Q-

functions are integrated to enhance learning efficiency, leveraging

structured representations of the environment. Ronecker and Zhu

(2019) address the complexity of decision-making in autonomous

driving on highways. The action space encompasses the selection

of target points for trajectory planning. The reward functions

have been designed to align with the specific requirements of

highway scenarios. The method provides incentives for safe

and efficient driving behaviors, including maintaining speed,

executing smooth lane changes, and avoiding collisions. Yuan

et al. (2019) employ a Multi-Reward Architecture based DQN

approach. The reward functions have been structured in such

a way as to incentivise the maintenance of a certain speed,

overtakes and safe lane changes. A distinctive network design

incorporates a shared low-level with three distinct high-level

branches, each dedicated to a specific reward aspect. The training

process encompasses a diverse range of scenarios that have been

simulated for autonomous highway driving. Liu et al. (2019)

employ the DDQN (Double Deep Q-Network) for reinforcement
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learning, navigating within a discrete action space comprised

of semantic actions. Rewards are tailored for safe and efficient

maneuvers. Min et al. (2019) employ the DDQN (Distributional

Deep Q-Network), which operates in a discrete action space

characterized by highway driving scenarios. The rewards are

designed for safe and efficient navigation. The network architecture

integrates convolutional layers for processing camera images

and additional layers for LiDAR data fusion. A distinctive dual

Q-function mechanism serves to prevent value overestimation,

thereby enhancing the stability of the training process. The model

undergoes rigorous learning phases, validated through simulations

in a Unity-based highway driving environment. Shi et al. (2019)

employ an HDQN (Hierarchical DQN) approach, which addresses

the complexity of autonomous lane change tasks in dynamic

environments. The rewards are shaped by safety and feasibility

metrics. The method employs a dual-layer network structure,

with fully connected layers used for decision-making. Through

iterative learning and rigorous training, the model demonstrates

its proficiency via simulations, exhibiting convergent loss curves

and accumulating rewards that signify effective decision-making

and planning.

3.2.3 Policy-based RL methods
Policy-based RL directly optimizes a policy function, mapping

states directly to action probabilities. This approach adjusts the

policy parameters based on the policy gradient. Policy-based

methods naturally handle continuous action spaces and can

induce more complex behaviors, yet they may suffer from higher

variance during optimization. Osiński et al. (2020) employ PPO

(Proximal Policy Optimization) to optimize steering commands

in a continuous action. The network is trained predominantly on

synthetic data, which is more cost-effective than training on real

data. The results of real-world validation demonstrated remarkable

success in sim-to-real transfer, evidenced by the performance of

the system in nine diverse driving scenarios, totalling 2.5 km.

Belletti et al. (2017) encompass a variety of policy update methods,

with PPO exhibiting a faster convergence to optimal policies.

Tang (2019) employ PPO for learning multi-agent negotiations

in complex environments. The study addresses a continuous

action space, where agents perform tasks such as acceleration,

steering, and signaling in a state space that encompasses dynamic

traffic scenarios. The rewards are designed to encourage safe and

efficient navigation, with penalties for collisions and incentives

for adherence to traffic rules. Jang et al. (2019) train autonomous

vehicles (AVs) to navigate traffic in a continuous action space

with the TRPO (Trust Region Policy Optimization) algorithm. The

objective of the reward signals was to minimize traffic delays and to

promote smooth merging behaviors. The neural networks process

inputs and apply nonlinear transformations for decision-making.

Chen et al. (2018) adopt a deep HRL (hierarchical reinforcement

learning) approach to address the challenge of autonomous driving

tasks with distinct behaviors, such as passing or stopping at traffic

lights. The reward system is dynamically adjusted based on the

vehicle’s action and the factors of vehicle velocity, distance to

crossing line, and time till signal change. The hierarchical structure

comprises distinct modules for decision-making levels, with inputs

including vehicle dynamics and the generation of acceleration

commands through a policy network.

3.2.4 Actor-critic methods
Actor-critic algorithms integrate the strengths of bothmethods:

an “actor” generates actions based on learned policies, while

a “critic” evaluates these actions through a value function.

Actor-critic methods often achieve greater stability and learning

efficiency, particularly in complex tasks. Next, we will explore

in detail the application of these three methods in decision-

making and planning for autonomous driving. Wu et al. (2018)

address the challenge of dynamically assigning varying speed

limits across lanes, which requires consideration of a complex

state space that encompasses multiple traffic factors. The method

employs Deep Deterministic Policy Gradient (DDPG), a variant

of reinforcement learning, which operates in continuous action

spaces. The reward signals encompass efficiency metrics, safety

indicators, and environmental impact through emissions. The

DDPG model employs a sophisticated actor-critic architecture

that utilizes inputs reflecting real-time traffic conditions to learn

optimal speed limit adjustments. The training process optimizes

both the actor and critic via temporal difference errors and

deterministic policy gradients. Gao and Chang (2021) use the Soft

Actor-Critic(SAC) algorithm tomodel autonomous driving system.

A ResNet-34 architecture serves as the backbone for both actor

and critic networks, processing raw image states coupled with

vehicle speed as inputs. Imitation learning pre-training is adopted

to improve model initialization before reinforcement learning

fine-tuning for optimal performance. Chu et al. (2019) employ

Advantage Actor-Critic (A2C) to address the challenge of large,

discrete action space inherent in traffic signal control. Utilizing

Long Short-Term Memory (LSTM) networks, the model processes

complex spatio-temporal traffic flows, maintaining historical

context without overwhelming the state representation. The model

proposed by Lin et al. (2018) is also an A2C method operating

in a discrete action space, where decisions involve switching or

maintaining traffic light phases. The state space includes a 2-D

tensor reflecting the number of stopped vehicles and average speeds

across a 3 × 3 intersection grid. Mousavi et al. (2017) use deep

policy gradient algorithms to control traffic signal operations. The

model operates in a discrete action space, dictating traffic signal

phases and navigating high-dimensional state spaces derived from

complex urban traffic dynamics.

4 Hybrid decision and planning
methods

Hybrid methods exhibit unique advantages in the decision-

making and planning of autonomous driving, yet they also

encounter numerous challenges. Their merit lies in the successful

integration of the learning capabilities of data-driven approaches

and the characteristics of knowledge-drivenmethods. On one hand,

the knowledge-driven component furnishes a rule framework

that ensures the legality, consistency, and interpretability of

decisions, enabling autonomous driving behaviors to adhere to
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traffic regulations and common sense. On the other hand, the data-

driven part, by virtue of learning and mining from vast amounts

of data, accurately identifies and adapts to complex and variable

scenarios. Algorithms such as EPSILON and MARC, through the

collaboration of deep learningmodels and treemodels, significantly

enhance the decision-making level, accomplishing flexible, safe,

and highly interactive decision planning and strengthening the

system’s capacity to cope with diverse road conditions and the

variety of traffic participants.

Nevertheless, the limitations of hybrid methods cannot

be overlooked. In terms of technology integration, due to

the disparate underlying principles, data processing logics,

and model architectures between data-driven and knowledge-

driven technologies, compatibility issues readily emerge during

integration, leading to a substantial increase in system complexity.

For instance, when combining deep learning models with rule

decision trees, differences in data formats, learning modes,

and reasoning logics can easily trigger system malfunctions

or performance degradation. Regarding stability and reliability,

potential conflicts between data and rules frequently disrupt the

normal operation of the system. In extreme scenarios, strategies

learned from data may contravene knowledge rules, resulting

in decision chaos or even system collapse, severely endangering

driving safety and reliability.

The algorithmic framework of hybrid models achieves flexible

and safe high-interactivity decision planning by integrating the

data-driven learning capabilities with the interpretability, safety,

and efficiency of knowledge-driven approaches. The knowledge-

driven component of the hybrid model provides rules to

ensure the legality, consistency, and interpretability of decisions.

Simultaneously, the data-driven component offers insights to

identify and adapt to complex scenarios and dynamic changes

that fall outside the scope of predefined rules. Algorithms such

as EPSILON (Ding et al., 2021), MARC (Li T. et al., 2023),

DTPP (Huang et al., 2023a), TPP (Chen Y. et al., 2023), and

GameFormer (Huang et al., 2023b) enhance the decision-making

process through deep learning models, while using tree-based

modeling to incorporate prior knowledge for rule constraints, the

pipeline of these methods are shown in Figure 6A.

Specifically, EPSILON employs a two-tier structure consisting

of a behavior planning layer and a motion planning layer. Initially,

the algorithm generates a series of possible vehicle action sequences

at the behavior planning layer using partially observable Markov

decision process (POMDP) and branching guidance techniques.

Neural network is employed to identify the potential intentions of

surrounding vehicles. Subsequently, a scenario tree is constructed

to simulate and evaluate traffic scenarios under different action

sequences. During the multi-agent forward simulation phase,

the algorithm assesses the potential risks and benefits of each

scenario. Based on these assessments, it selects the optimal decision

and converts it into specific trajectories with Spatiotemporal

Semantic Corridors (SSC) to ensure the smoothness and safety

of the trajectories. MARC utilizes a neural predictor to forecast

the future trajectories and intentions of surrounding vehicles. It

then goes through steps such as key vehicle selection, scenario

tree construction, Risk-Aware Contingency Planning (RCP), and

strategy evaluation and selection. MARC employs neural network-

assisted risk assessment, enabling it to make decisions according

to varying risk levels, thereby generating driving strategies that

align with user risk preferences. DTPP leverages a Transformer

model for conditional prediction and cost evaluation. The model

uses the future trajectory branch information of the ego vehicle

as the decoder’s query vector, generating multi-stage predictions

for the entire scenario tree and jointly optimizing them with the

ego vehicle’s planning. The TPP method transforms the continuous

space motion planning problem into a discrete Markov decision

process (MDP) by constructing ego vehicle trajectory trees and

scenario trees and uses dynamic programming algorithms to find

the optimal strategy. Neural networks play a crucial role in TPP

by providing deep understanding and prediction of the traffic

environment, thereby assisting the planner in making precise and

efficient planning decisions in complex interactive environments.

The GameFormer framework integrates hierarchical game theory

and Transformer models, proposing a comprehensive solution for

interaction prediction and planning of autonomous vehicles. This

framework employs Long Short-Term Memory (LSTM) networks

and Multi-Layer Perceptrons (MLP) to encode information,

forming a scene context tensor that includes past features of

all agents. Then the Transformer encoder captures relationships

among all elements in the scene. The model adopts a hierarchical

decoder structure where the level-0 decoder independently predicts

future trajectories of agents, and the level-k decoder iteratively

refines predictions based on the previous level’s results. The

self-attention mechanism is used to model interactions between

future trajectories of agents, and the model parameters are

optimized through end-to-end training using imitation loss and

interaction loss.

Next, we will further elaborate on methods that utilize neural

networks to provide initial solutions, the pipeline of these methods

are shown in Figure 6B. SafetyNet (Vitelli et al., 2022) propose

a system comprising a Machine Learning Planner (ML Planner)

and a rule based Fallback Layer. The ML Planner generates

trajectories by imitating human drivers’ behavior, while the Fallback

Layer performs plausibility checks, such as collision avoidance

and ensuring physical feasibility. Liu et al. (2023) present a two-

stage integrated neural planning framework that uses occupancy

prediction to guide planning.Within this framework, Transformers

and STrajNet are employed to generate initial planning trajectories.

Hu et al. (2023a) a system is proposed that generates initial plans

through a behavior cloning stage and optimizes trajectories with

a trajectory refinement stage. In this work, ResNet is used as a

CNN encoder to extract features, and a Unet structure integrates

multi-scale features to capture detailed contextual information.

Dauner et al. (2023) introduce three models: PDM-Open, PDM-

Closed, and PDM-Hybrid. PDM-Open is a simple MLP used to

predict future path points; PDM-Closed is based on the Model

Predictive Control (MPC) model, combining prediction, proposal,

simulation, scoring, and selection; PDM-Hybrid is a hybrid model

that merges the advantages of open-loop prediction and closed-

loop planning.

Additionally, some researchers try to leverage the strong

exploration capabilities of reinforcement learning to enhance
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FIGURE 6

Two typical hybrid model pipelines. (A) Represents the pipeline of EPSILON, MARC, DTPP, TPP, and GameForme, and the (B) represents the pipeline

of methods using neural networks to provide initial solutions.

the flexibility of knowledge-driven methods. Goldsztejn and

Brafman (2024) propose a method that combines classical planning

algorithms with reinforcement learning. By using classical planners

such as Dynamic Window Approach (DWA) to initialize the

replay buffer of RL algorithms and employing an Actor-Critic

method regularized by expert policies. This method also includes

a supervisory module optimized with genetic algorithms, which

dynamically switches to a safe policy when approaching obstacles,

thereby enhancing the safety and adaptability of the strategy.

Brito et al. (2021) present an interactive model predictive

control (IntMPC) framework that integrates deep reinforcement

learning with an optimization-based planner. The interaction-

aware policies learned through DRL provide global guidance,

assisting the optimization-based planner in generating control

commands that adhere to dynamic and collision-avoidance

constraints. Additionally, the paper introduces the Predictive

Intelligent DrivingModel (P-IDM) to simulate the driving behavior

of other vehicles, with policies trained using the Soft Actor-Critic

(SAC) algorithm. Zhang E. et al. (2023) propose a predictive

trajectory planning framework based on reinforcement learning.

This framework employs a partially observable Markov decision

process (POMDP) model and a deep Q-learning solution to learn

high-quality policies. It utilizes a Bayesian GaussianMixture Model

(BGM) and Gibbs sampling to generate training data, and the DQN

model is used to learn planning strategies from graph-represented

traffic dynamics.

Hybrid models make an attempt to combine the learning

capabilities of data-driven methods with the rule based logic of

knowledge-driven approaches, aiming to achieve a better balance in

autonomous driving decision-making and planning. However, this

approach also faces some challenges, such as effectively integrating

the two techniques, maintaining system stability and reliability, and

addressing potential conflicts between data and rules. By exploring

and comparing these different methods and their integrated

applications, we can gain a more comprehensive understanding

of the diversity and complexity that must be considered when

designing advanced autonomous driving systems.

5 Experiment platform

The risks associated with testing system functionalities

in real vehicle systems are unpredictable. Therefore, before

conducting real-world road tests, autonomous driving algorithms

are typically systematically evaluated using open-source datasets

and simulation platforms.

5.1 Datasets

Autonomous driving simulation testing is a crucial step

in verifying whether autonomous driving algorithms meet the

expected standards. Therefore, the simulation testing process

requires a large amount of data from autonomous driving

scenarios. The stability, robustness, and generalization of the

algorithm are directly influenced by the size of the dataset, the

richness of the scenarios, and the distribution of the data. Hence,

selecting an appropriate simulation platform and test data is of

utmost importance.

The NuPlan (Caesar et al., 2021) dataset provides a large-scale

and realistic driving dataset and evaluation framework specifically

for the autonomous driving domain. This dataset encompasses

1500 hours of human driving data, covering multiple cities in the

United States and Asia, which exhibit diverse traffic patterns and

driving challenges. The dataset includes various sensor data such

as LiDAR point clouds, camera images, localization information,

and steering inputs. The nuPlan Challenge (Dauner et al., 2023),

the world’s first machine learning-based benchmark challenge for

closed-loop planning for autonomous driving, provides a rich

resource and evaluation framework for the field of autonomous
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TABLE 1 Advanced methods on nuplan.

Method OL CL-NR CL-R

PDM (Dauner et al., 2023) 0.829 0.928 0.929

Hoplan (Hu et al., 2023a) 0.852 0.989 0.881

Muti-path (Xi et al., 2023) 0.876 0.817 0.851

Gameformer (Huang et al., 2023b) 0.840 0.809 0.838

PlanTF (Cheng et al., 2024b) 0.892 0.848 0.768

TPP (Chen Y. et al., 2023) - 0.739 0.770

DTPP (Huang et al., 2023a) 0.791 0.896 0.898

Pluto (Cheng et al., 2024a) - 0.932 (The paper does not

clearly identify NR or R)

driving planning research. It has a large-scale, high-quality human

driving dataset from four cities in the US and Asia, providing

semantic maps, sensor data, and automatically labeled agent

trajectories, albeit with a large dataset size (200+TB) and only

partial sensor data. Evaluation servers and templates allow users to

submit ML-based planning codes for closed-loop evaluation, while

the closed-loop simulation framework contains reactive agents for

evaluating planning systems. In addition, the challenge provides

generic and scenario-based planning metrics to comprehensively

measure traffic rule compliance, human driving similarity, vehicle

dynamics, and goal attainment.

One of NuPlan’s significant innovations lies in its closed-

loop evaluation framework, which allows containerized closed-

loop evaluation of code on a confidential test set, ensuring the

fairness and accuracy of the assessment process. Evaluation tasks

are divided into open-loop and closed-loop challenges, requiring

planning systems to simulate human driver behavior or control

the vehicle in real-time. Evaluation metrics encompass traffic

rule compliance, similarity to human driving, vehicle dynamics,

goal achievement, and scenario-specific metrics. We selected the

performance of several algorithms on the nuplan dataset. OL is

open-loop data: trajectory planning is performed through playback,

the planning result does not affect the vehicle, and the prediction

result is compared with the empirical trajectory. CL-NR is closed-

loop data without interaction: the planning result will directly act

on the vehicle, but the surrounding vehicles will not be changed

due to the self-vehicle’s action. CL-R is closed-loop data with

interaction: the planning results are directly applied to the vehicle,

but the surrounding vehicles will change due to the actions of the

self-vehicle. The results of the state-of-the-art method on nuplan

are shown in Table 1.

The Waymo (Sun et al., 2020) Open Dataset is a large-scale

and high-quality dataset containing LiDAR and camera data with

detailed annotations including 2D and 3D bounding boxes. Its

primary purpose is to support perception tasks for autonomous

vehicles. The dataset provides researchers with rich resources to

tackle real-world autonomous driving challenges, such as object

detection and tracking. The high precision and diversity of the

Waymo Open Dataset make it an important benchmark in the field

of autonomous driving research. In the Waymo Open Sim Agents

Challenge, the MVTE algorithm was selected for its closed-loop

TABLE 2 Advanced methods on waymo.

Agent policy ADE MINADE

Wayformer (identical samples, 10 hz replan)

(Nayakanti et al., 2023)

6.823 6.823

Sbta - adia (Mo et al., 2023) 4.777 3.611

Wayformer (identical samples, 2 hz replan)

(Nayakanti et al., 2023)

2.498 2.498

CAD (kuang Chiu and Smith, 2023) 3.334 2.308

Wayformer (diverse samples, 2 hz replan) (Nayakanti

et al., 2023)

2.588 1.694

Joint - multipath++* (Varadarajan et al., 2022) 5.308 2.052

MRT+++ (Qian et al., 2023) 2.125 1.679

Mvta (Wang Y. et al., 2023) 3.938 1.870

Mvte (Wang Y. et al., 2023) 3.873 1.677

∗Optimal version.

training execution, flexible and efficient strategy, and advanced

and rational architecture. It is derived from the TrafficSim-

inspired MVTA, based on the “backwards-looking” strategy, and

improved by the MVTE. It is based on the TrafficSim-inspired

MVTA, which has been improved by MVTE to enhance simulation

diversity and accurately predict behaviors based on the transformer

architecture and GMM header. The results of the state-of-the-art

method on waymo are shown in Table 2 waymo Open Sim Agents

Challenge (WOSAC) (Montali et al., 2024), WOSAC provides

an autoregressive traffic agent-based evaluation framework that

evaluates how well simulated agents match real-world sample

distributions by approximating the negative log-likelihood (NLL).

The evaluation platform and online rankings can be accessed via

a URL for easy submission and viewing of rankings. In addition,

the competition uses test data from Waymo Open Motion Dataset

(WOMD) version v1.2.0, containing a large number of high-fidelity

object behaviors and shapes with different data divisions.WOSAC

provides evaluation criteria that provide a standardized way of

evaluating simulated agents and help to compare the performance

of different methods. By analysing the submitted methods, a

number of trends were observed, and WOSAC is the first open

challenge to address the task of simulating agents with realism and

interactivity and to propose the corresponding metrics, filling a

gap in benchmarks in the field. Through experiments and analyses,

it was demonstrated that the learned, stochastic simulation agent

outperforms the heuristic baseline and the learned, deterministic

simulation agent in terms of combined metrics. In addition, a

summary of the competition identifies the shortcomings of the

existing dataset in terms of collision data and points out the

direction of improvement for future work.

5.2 Simulation and testing tools

In 2023, the Waymo research team further expanded this data

resource by developing the Waymax simulator, which matches

the dataset. Waymax is a data-driven simulator that can use real-

world driving data to initialize or recreate multi-agent simulation
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scenarios. This simulator is specifically designed for large-scale

simulation and testing and supports hardware accelerators such as

TPUs and GPUs to ensure efficient computational performance.

This enables researchers to develop and evaluate autonomous

driving planning software in a safe and cost-effective environment,

significantly improving R&D efficiency and safety.

The Waymax simulator uses data from the Waymo Open

Dataset to initialize simulation scenarios, creating a direct

connection at the data level. This close integration allows Waymax

to create highly realistic traffic environments and driving challenges

based on real data, providing researchers with an authentic and

challenging testing platform. This not only helps to validate the

effectiveness and reliability of autonomous driving algorithms but

also promotes the development and refinement of autonomous

driving technology.

Testing autonomous driving algorithms in real-world

environments often comes with numerous potential risks, and

deploying these algorithms directly for real-world testing is both

time-consuming and resource-intensive. A simulation testing

environment provides a convenient and efficient way for validating

intelligent algorithms.

Many autonomous driving simulation platforms are developed

using open-source code and protocols, and they are extensively

utilized for testing autonomous driving algorithms. Carla

(Dosovitskiy et al., 2017) is an open-source simulation platform

for autonomous driving, extensively utilized in the research and

development of autonomous driving technologies. Developed

collaboratively by Intel Labs and the Toyota Research Institute,

this platform offers the industry a flexible and scalable simulation

tool. Carla is built on the Unreal Engine 4, enabling the generation

of highly realistic urban, suburban, and rural environments.

This provides credible scenarios for the testing and validation

of autonomous driving algorithms. Carla simulation platform

boasts several key features. Firstly, its high-fidelity physics engine

can accurately simulate vehicle dynamics, as well as various

complex traffic conditions and weather scenarios. This allows

researchers to test autonomous driving systems’ performance in

different environments within a safe and controlled virtual setting.

Secondly, Carla supports the simulation of multiple sensors,

including cameras, LiDAR, and radar, facilitating the integration

and testing of multi-sensor fusion technologies. Additionally, Carla

offers a rich set of API interfaces, supporting Python and C++

programming languages, making it convenient for developers to

customize and extend the simulation environment. In practical

applications. Carla is widely used across various research domains

in autonomous driving. For instance, it plays a significant role in

the development of perception systems by simulating real-world

scenarios involving pedestrians, vehicles, and traffic signals,

thereby enhancing the accuracy of object detection and recognition

algorithms. Moreover, Carla is employed in path planning and

decision-making research, where its realistic road and traffic

environments are used to verify the effectiveness and safety of

various planning algorithms. In the context of deep learning

and reinforcement learning applications, Carla provides a vast

amount of high-quality training data, promoting the advancement

of data-driven methods in autonomous driving technology. The

CARLA Autonomous Driving Ranking is designed to assess the

driving proficiency of autonomous driving systems in real-world

TABLE 3 Advanced methods on carla.

Team Submission Driving
score

Route
completion

Interfuser ReasonNet (Shao et al., 2023b) 79.95 89.89

Interfuser InterFuser (Shao et al., 2023a) 76.18 88.23

PPX TCP (Wu et al., 2022) 75.14 85.63

WOR LAV (Chen and Krähenbühl,

2022)

61.85 94.46

DP TransFuser (Prakash et al.,

2021)

61.18 86.69

NFS TCP reproduced (Wu et al.,

2022)

58.56 83.14

DP TransFuser (Prakash et al.,

2021) (reproduced)

55.04 89.65

traffic scenarios, providing an open platform for fair, repeatable

assessment and simplified comparisons. The task requires the

system to face multiple traffic conditions through predefined

routes containing different scenarios and weather conditions.

Participation is divided into sensor and map modes, both of

which can obtain advanced route descriptions, with sensor mode

requesting limited sensor data and map mode also obtaining

high-definition map data. Evaluation metrics are based on driving

scores (the product of route completion and violation penalties),

with penalties or treatments for violations and interruptions, and

detailed information is recorded for each occurrence. The results

of the state-of-the-art method on Carla are shown in Table 3.

The Waymax (Gulino et al., 2024) Simulation Platform is

a cutting-edge, multi-functional simulation platform extensively

utilized in various fields such as industrial automation, robotic

control, and intelligent systems development. This platform

integrates high-performance computing capabilities with a flexible

simulation environment, offering users an end-to-end simulation

solution from design to validation. The Waymax Simulation

Platform is characterized by its high scalability and flexibility.

Users can customize simulation models and parameter settings

according to specific needs, thereby accommodating different types

of simulation tasks. Additionally, the platform supports various

simulation modes, including real-time simulation, distributed

simulation, and hybrid simulation. The Waymax Simulation

Platform also features robust data analysis and visualization tools.

Through these tools, users can monitor the simulation process in

real-time, analyze simulation results, and generate detailed reports

and charts. These functionalities not only enhance the efficiency of

simulation work but also provide users with means to gain deep

insights and optimize system performance. The other simulation

platforms and their related descriptions are shown in Table 4.

6 Challenges and future perspectives

6.1 Current challenges in decision and
planning

A. Uncertainty in environmental perception significantly

impacts decision-making and planning systems in autonomous
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TABLE 4 Autonomous driving simulation platform and related

descriptions.

Platform Open
source
licenses

Latest
version

Language

Carla (Dosovitskiy et al.,

2017)

MIT License V0.9.15 Python, C++

Waymax (Gulino et al.,

2024)

Apadhe 2.0 V2023 Python

Autoware (Miura et al.,

2019)

Apache 2.0 V1.14.0 C++, Python

Apollo (Xu et al., 2019) Apache 2.0 V9.0 C++

MetaDrive (Li et al., 2022) Apache 2.0 V0.4.2.3 Python

LGSVL (Rong et al., 2020) Apache 2.0 V2023.1 C#, Python

TESS-NG (Kang et al.,

2020)

Closed source V3.3 Qt, C++

CarMaker (Ren et al., 2021) Closed source V13.0 C++

driving. Sensor limitations and data fusion issues can lead to

misinterpretations of the environment, affecting the system’s

judgments and choices. Additionally, dynamic and complex

environmental factors, such as changing traffic flows and sudden

events, require high adaptability and real-time response. Increased

uncertainty complicates the prediction and handling of these

situations, potentially leading to unstable decisions. Therefore,

advancements in sensor technology, data processing, model

optimization, and algorithm innovation are essential to improve the

safety and reliability of autonomous driving systems.

B. Another major challenge in autonomous driving is handling

the uncertainty of other traffic participants’ behaviors. Actions

of vehicles, pedestrians, and cyclists are highly unpredictable,

requiring real-time monitoring and prediction. This complexity

demands advanced perception capabilities and sophisticated

algorithms for behavior prediction, involving extensive data

processing and machine learning. Additionally, the system must

make conservative decisions to ensure safety when predictions are

uncertain. Thus, addressing this unpredictability requires advanced

perception, complex prediction algorithms and conservative

safety strategies.

C. The application of data-driven algorithms in

autonomous driving faces significant challenges related

to data comprehensiveness and generalization. First, data

comprehensiveness is critical as effective decision-making requires

understanding diverse road conditions, traffic behaviors, and rare

events. However, collecting and labeling datasets that cover all

potential scenarios is extremely difficult, leading to gaps that can

cause models to perform poorly in unseen situations. Second,

generalization is a concern as algorithms may not remain effective

in new environments not represented in the training data. This

can result in errors or failures to adapt, posing safety risks, such as

misinterpreting traffic rules in different regions.

D. The lack of interpretability in data-driven algorithms

poses major challenges for autonomous driving decision-making.

Firstly, safe operation relies on reliable and precise decisions,

and interpretability is key to building user and public trust. If

users can’t understand the vehicle’s behavior or logic, distrust may

arise, affecting social acceptance and adoption. Secondly, in the

event of abnormal behavior or accidents, poor interpretability

complicates investigations and accountability, increasing legal

and ethical risks and potentially leading to stricter regulations.

Additionally, non-interpretable decision processes hinder

debugging and optimization, as developers struggle to diagnose

and fix issues, leading to system instability and unpredictable

behavior. This also limits further algorithm development

and fine-tuning.

6.2 Future perspectives

Enhancing perception and reducing uncertainty: Enhancing

perception and reducing uncertainty in autonomous driving can

be achieved through multi-sensor fusion and advanced deep

learning techniques. By integrating data from various sensors

such as cameras, radar, and LiDAR, a more comprehensive

understanding of the environment is possible. This fusion

technology offers stable and reliable perception under diverse

conditions (e.g., fog, night), mitigating the limitations and

errors of individual sensors. Additionally, deep learning and

artificial intelligence enhance the understanding of dynamic and

complex environments. These models learn high-level features

from vast datasets, improving decision-making and judgment in

uncertain situations.

Improving prediction of other traffic participants behavior:

Improving the prediction of other traffic participants’ behavior

involves developing advanced behavior prediction models

and utilizing simulation technologies. Machine learning-based

predictive models can simulate and understand interactions among

traffic participants, forecasting the possible actions of vehicles

and pedestrians in the coming seconds to inform safer driving

strategies. Additionally, creating virtual driving environments

to simulate complex traffic scenarios helps algorithms learn to

respond under unknown or extreme conditions. Augmented

reality technology further enhances this by simulating potential

hazards during actual driving, thereby improving the system’s

response capabilities.

Enhancing data comprehensiveness and generalization:

Enhancing data comprehensiveness and generalization

involves generating synthetic data to train models for rare or

unseen scenarios and using domain adaptation techniques to

minimize performance variability across different geographic

and environmental conditions. Additionally, implementing

online learning capabilities in algorithms allows them to

update and optimize in real time based on newly collected

data, thereby adapting to continuously changing environments

and conditions.

Improving algorithm interpretability: Improving algorithm

interpretability involves developing interpretability mechanisms,

such as visualization techniques or generating explanatory texts,

to help users understand the rationale behind model decisions.

Additionally, combining traditional rule based systems with

modern deep learning methods not only maintains decision
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efficiency but also increases transparency and traceability in the

decision-making process.

Drawing on neuroscience to enhance the intelligence

of foundational models: In recent years, interdisciplinary

contributions from psychology and neuroscience have increasingly

influenced the development of self-driving vehicles. Insights

from neuroscience, particularly in understanding human

perception, decision-making, and sensorimotor integration,

have inspired advancements in algorithms for autonomous

systems. For example, studies on how humans process visual

and auditory cues in dynamic environments have informed

the design of multi-sensory data fusion techniques in self-

driving cars. Similarly, psychological research on human

behavior, attention, and cognitive biases has contributed to

the development of more intuitive human-machine interfaces

and predictive models that anticipate pedestrian and driver

actions. By integrating these principles, the field of self-driving

vehicles not only achieves more robust performance but also

fosters safer and more human-centric designs. Future work

could benefit further from deeper collaborations across these

disciplines, particularly as neurorobotics continues to bridge

the gap between biological and artificial systems. In the future,

psychology and neuroscience are expected to play a crucial role

in advancing human-centric and intelligent self technologies.

Neuroscience research on human perception and decision-making

can inspire innovative algorithms by offering insights into

how the brain processes multimodal information in dynamic

environments, improving sensor data fusion and real-time

decision-making. Similarly, psychological studies on human

behavior and cognitive processes will enhance the safety and

naturalness of human-machine interactions, helping design

interfaces that align with human habits and reduce risks in

interactions with passengers and road users. Furthermore, as

neurorobotics evolves, self-driving systems may achieve greater

adaptability and human-like intelligence by emulating the

functioning of biological brains and neural networks. Realizing

this vision will require interdisciplinary collaboration across

psychology, neuroscience, artificial intelligence, and engineering,

fostering safer, more efficient, and human-centric autonomous

technologies while exploring the relationship between artificial and

human intelligence.
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