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Universal slip detection of robotic 
hand with tactile sensing
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Slip detection is to recognize whether an object remains stable during grasping, 
which can significantly enhance manipulation dexterity. In this study, we explore 
slip detection for five-finger robotic hands being capable of performing various 
grasp types, and detect slippage across all five fingers as a whole rather than 
concentrating on individual fingertips. First, we constructed a dataset collected 
during the grasping of common objects from daily life across six grasp types, 
comprising more than 200 k data points. Second, according to the principle 
of deep double descent, we  designed a lightweight universal slip detection 
convolutional network for different grasp types (USDConvNet-DG) to classify 
grasp states (no-touch, slipping, and stable grasp). By combining frequency with 
time domain features, the network achieves a computation time of only 1.26 ms 
and an average accuracy of over 97% on both the validation and test datasets, 
demonstrating strong generalization capabilities. Furthermore, we validated the 
proposed USDConvNet-DG in real-time grasp force adjustment in real-world 
scenarios, showing that it can effectively improve the stability and reliability of 
robotic manipulation.
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1 Introduction

The importance of tactile feedback has been emphasized by studies in human motor 
control, which show that stable object manipulation is difficult without this sensory input 
(Johansson and Vallbo, 1979). Tactile perception plays a crucial role in human object grasping. 
When slippage occurs, humans can promptly adjust their grip force and strategy to prevent 
the object from falling. This ability significantly enhances the flexibility and stability of object 
manipulation by the human hand (Johansson and Flanagan, 2009).

With the increasing application of robots in unstructured environments, they are required 
to perform more flexible manipulation tasks and achieve stable grasping, similar to humans 
(Chen et al., 2018). Although the accuracy and resolution of artificial tactile sensors still fall 
short of human tactile capabilities, they still play a significant role in improving grasping 
stability in robotic systems (Grover et al., 2022). They provide essential information about the 
interaction between the hand and the object, enabling quicker and more accurate slip detection 
than vision-based methods alone (Johansson and Westling, 1984; Westling and Johansson, 
1984). Robots equipped with reliable tactile sensing can significantly improve their dexterous 
manipulation capabilities and achieve stable grasping of common objects (Cui et al., 2020). 
One of the most important dexterous robot manipulation tasks using the sense of touch is to 
detect or predict sliding while grasping a manipulated object. Slip detection is essential for 
ensuring stable robotic grasping, which is crucial for preventing objects from slipping or falling 
during manipulation. Detecting slip allows robotic systems to adjust their grasp strategies and 

OPEN ACCESS

EDITED BY

Long Jin,  
Lanzhou University, China

REVIEWED BY

Gang Chen,  
Beijing University of Posts and 
Telecommunications (BUPT), China
Wenxin Mu,  
Kunming University of Science and 
Technology, China

*CORRESPONDENCE

Ling-Li Zeng  
 zengphd@nudt.edu.cn

RECEIVED 10 August 2024
ACCEPTED 20 January 2025
PUBLISHED 05 February 2025

CITATION

Zhao C, Yu Y, Ye Z, Tian Z, Zhang Y and Zeng 
L-L (2025) Universal slip detection of robotic 
hand with tactile sensing.
Front. Neurorobot. 19:1478758.
doi: 10.3389/fnbot.2025.1478758

COPYRIGHT

© 2025 Zhao, Yu, Ye, Tian, Zhang and Zeng. 
This is an open-access article distributed 
under the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 05 February 2025
DOI 10.3389/fnbot.2025.1478758

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2025.1478758&domain=pdf&date_stamp=2025-02-05
https://www.frontiersin.org/articles/10.3389/fnbot.2025.1478758/full
https://www.frontiersin.org/articles/10.3389/fnbot.2025.1478758/full
mailto:zengphd@nudt.edu.cn
https://doi.org/10.3389/fnbot.2025.1478758
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2025.1478758


Zhao et al. 10.3389/fnbot.2025.1478758

Frontiers in Neurorobotics 02 frontiersin.org

forces in real-time, ensuring that objects remain securely held (Yan 
et al., 2022; James and Lepora, 2021).

However, there are still some challenges. On the one hand, as 
sensor arrays become increasingly dense and sensing dimensions 
expand, traditional methods struggle to construct suitable models for 
detecting slippage. On the other hand, while previous research has 
made notable progress in slip detection for two\three-fingered robotic 
grippers (Chen et al., 2018; Romeo and Zollo, 2020), slip detection for 
five-fingered dexterous hands presents unique challenges because the 
complexity of grasp types that five-fingered hands can perform, as well 
as the need for algorithms that can generalize across a variety of object 
shapes, sizes, and materials.

In this study, we  present a solution to the problem of slip 
detection in five-fingered robotic hands Five-finger robotic hand can 
perform a wide range of grasp types, each with unique contact 
dynamics, making it challenging to develop a one-size-fits-all 
solution. To address this challenge, we  propose a Universal Slip 
Detection Framework for Different Grasp Types (USDFrame-DG), 
designed to handle the complexities associated with various grasp 
types and object properties. In summary, the main contributions of 
this work are as follows:

 (1) According to the reference document (Feix et al., 2016), six 
common and significantly different grasp types were selected, 
as shown in Figure  1. A large amount of grasp state data 
(no-touch, slip, no-slip) was collected during these six grasp 
types. The 16 objects used for grasping, as shown in Figure 2, 
are made from materials commonly found in daily life, such as 
plastic, steel, and wood.

 (2) A novel universal slip detection framework (USDFrame-DG) 
was proposed, focusing on efficiently collecting large-scale 
datasets and combing the frequency with time domains to 
achieve improved recognition performance.

 (3) To validate which network architecture is better suited to 
address this problem, we compared four classic classification 
methods: Support Vector Machine (SVM), Long Short-Term 

Memory (LSTM) network, Residual Neural Network (ResNet), 
and Transformer. According to the results of the comparison, 
a lightweight and efficient USDConvNet-DG was designed, 
achieving more than 97% accuracy on both the validation and 
test sets. This capability highlights the universality and 
generalization of the proposed framework.

 (4) We evaluated the performance of different methods, the 
contribution of various grasp types, and the performance of 
USDConvNet-DG trained with different numbers of grasp 
types. Additionally, we developed a physical demonstration 
system to showcase network’s ability to detect slip in real-time, 
as shown in Figure 1. Furthermore, we increased the object’s 
weight after achieving a stable grasp to verify whether the 
system can adjust the grasping force in real-time. Video 
demonstrations have been uploaded to the GitHub repository 
and are available at https://github.com/sunshine486/show.

2 Related works

Existing methods for detecting slippage during grasping can 
be divided into two categories: (1) analysis-based methods and (2) 
learning-based methods. Analysis-based methods typically identify 
grasp states using two key features: frequency and friction. Learning-
based methods usually involve collecting data on slip and no-slip 
states to train a classification model.

These are some representative works based on changes in friction 
force. The first, proposed by Claudio Melchiorri, detects slippage by 
comparing the ratio of friction force to grasp force with the coefficient 
of friction (Melchiorri, 2000). The second, introduced by Beccai et al. 
(2008), utilizes friction cones to achieve slip detection, but with a delay 
exceeding 20 ms both methods operate on similar principles. Another 
approach, proposed by Song and Liu, employs the Break-Away 
Friction Ratio (BF-ratio) to predict slippage during the grasping 
process (Song et  al., 2013). Although this method completes the 
prediction within just 4.2 ms, it requires 5–7 s to determine the 

FIGURE 1

Grasp types and grasp state visualization. USDConvNet-DG trained for application in real-world scenarios.
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friction coefficient through haptic surface exploration and has been 
validated in only three scenarios.

The signal spectra of slipping and non-slipping states are 
significantly different (Zhang et al., 2016). Specifically, when the grasp 
is stable, the signal primarily consists of low-frequency components; 
however, during slipping, the signal shifts to higher frequencies. 
Holweg et al. (1996) noted that the normal forces measured by the 
tactile sensor fluctuate at a certain frequency during slip due to the 
elasticity of rubber. Techniques such as Discrete Wavelet Transform 
(DWT) (Shensa, 1992) and Fast Fourier Transform (FFT) (Duhamel 
and Vetterli, 1990) have been employed to detect slip vibrations during 
robotic grasping. DWT is typically used for filtering, followed by a 
manually defined threshold to distinguish between slip and no-slip 
states (Zhang et al., 2016; Deng et al., 2017), making it more suitable 
for analysis-based methods. Zeng et  al. (2022) utilized Discrete 
Wavelet Transform (DWT) to extract high-frequency signals, which 
were then compared against predefined thresholds to achieve slip 
detection. Similarly, Yang and Wu (2021) divided the slipping process 
into two phases: the initial slip phase and the slip suppression phase, 
with detection thresholds estimated separately for each phase. Both 
studies were conducted using a prosthetic hand. It is worth noting that 
Romeo et al. achieved slip detection at the hardware level using filters 
and on–off circuits (Romeo et  al., 2021), which provides higher 
integration. However, adjusting thresholds and filters requires 
replacing components such as inductors and capacitors, making it 
challenging for non-technical users.

Analysis-based methods for slip detection generally rely on single 
touch areas, which overlook the spatial characteristics of different 
fingertips and the variations in touch areas caused by different grasp 
types. The slip detection performance of these methods is highly 
dependent on specific touch conditions. Consequently, parameters such 
as thresholds and filters lack generalization when applied to new contact 
scenarios introduced by a wide range of objects (Cui et  al., 2024). 
Moreover, manually setting these parameters is time-consuming and 
cumbersome, requiring a certain level of engineering expertise.

In learning-based methods, slip detection is commonly 
formulated as a binary classification problem (slip/non-slip). With the 
rapid advancements in machine learning and the growing diversity of 
tactile sensors, machine learning techniques have been increasingly 
applied to slip detection, resulting in impressive outcomes.

In the field of machine-learning-based slip detection, the work of 
James and Lepora (2021) is particularly noteworthy. They utilized a 
sensor array to calculate the rate of change of pin positions per frame 
and compared three distinct binary classifiers (Threshold Classifier, 
SVMs, and Logistic Regression), achieving promising results in real-
world scenarios.

In previous research, most studies are based on two-finger 
grippers and use LSTM network. Zhang et al. (2018) developed a 
novel optical-based tactile sensor (FingerVision), and proposed a 
sliding classification framework based on ConvLSTM (Convolutional 
Long Short-Term Memory) networks. Begalinova et  al. (2022) 
employed an LSTM model trained on low-cost tactile sensors and 
evaluated the model using a two-finger gripper. Xie et  al. (2023) 
employs LSTM networks for sliding detection and found that robotic 
grasping with slip detection has a success rate nearly 15% higher than 
grasping without slip detection. Fiedler et al. (2023) utilizes sliding 
detection based on a two-finger gripper to achieve grasping of textile 
objects. Yan et al. (2022) employed multimodal machine learning, 
combining visual and tactile information using a convolutional neural 
network-temporal convolutional neural network (CNN-TCN), 
achieving a detection accuracy of 88.7% for sliding detection with a 
two-finger gripper. James et al. (2018) used the TacTip sensor and 
Support Vector Machine (SVM) algorithm to classify sliding and 
stationary states, achieving an accuracy of 99.88%. However, this 
result was obtained only in structured environments, and the actual 
performance was not tested.

In addition, there are some studies based on five-finger robotic 
hands, but they have only achieved slip detection for a single grasp 
type. Zapata-Impata et al. (2019) utilized ConvLSTM to detect the 
direction of object sliding on the fingertip. The sensors used in the 

FIGURE 2

Grasp types and items for training the model. The first column represents the grasp type names. The second column indicates the grasping type for a 
human hand. The third column represents the corresponding grasping posture for the robotic hand. Columns 4, 5, 6, and 7 depict the items grasped 
for the corresponding grasp types.
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papers are BioTac, which is very expensive. Mi et al. (2021) propose 
two novel methods based on Graph Convolution Network (GCN) for 
robotic stability classification. Grover et al. (2022) train a temporal 
convolution neural network (TCN) to detect slip that achieves an 
accuracy of over 91% on average on validation dataset. These two 
methods are based on three-finger grippers. Garcia-Garcia et  al. 
(2019) constructed a graph neural network to predict the stability of 
grasping, but their work was based on three fingers. Deng et al. (2020) 
utilized sliding detection based on LSTM networks as feedback to 
control the grasping force.

The above studies demonstrate the effectiveness and robustness of 
learning-based slip detection methods utilizing tactile sensing. 
However, there remain several challenges in this field, as 
outlined below:

 (1) Traditional analysis-based methods require manual adjustment 
of thresholds and filters, which is not only time-consuming and 
cumbersome but also demands a certain level of 
engineering expertise.

 (2) Tactile sensors are becoming denser arrays, capable of 
perceiving multi-dimensional forces and more diverse sensing 
modalities. Analysis-based methods struggle to construct 
suitable mathematical models to handle this complexity.

 (3) Previous learning-based studies have primarily focused on 
grippers or two−/three-finger robotic hand platforms, which 
are limited to a single grasping style. In contrast, five-finger 
dexterous hands are capable of performing a wide range of 
grasp types, making slip detection significantly more complex. 
As shown in Table 1, models trained solely on state data from 
a single grasp type exhibit poor performance in detecting slips 
for other grasp types, indicating a lack of 
generalization capability.

 (4) Slip detection for five-finger robotic hands usually detect 
slippage in individual fingertip regions. This study treats across 
all five fingers as a whole for slip detection. However, this 
approach lacks sufficient datasets and requires further 
exploration of suitable network architectures.

In this study, we focus on universal slip detection for different 
grasp types. Inspired by prior work and integrating analysis-based and 
learning-based methods, we propose a novel slip detection framework 
and network.

3 Method

To achieve universal slip detection across different grasp 
types, we  propose a general slip detection framework: 
USDFrame-DG, as shown in Figure 3. The framework consists of 

four key components: Grasp Force Control Module, Data 
Collection for Six Grasp Types, Data Preprocessing, and Model 
Training, each of which will be detailed below. Over 200 k data 
samples covering slipping, stable grasping, and non-touch states 
were collected to train the models. The dataset for slipping and 
stable grasping states was collected using various grasp types and 
everyday objects, ensuring the model’s applicability to real-
world scenarios.

3.1 Hardware setting

The model of five-finger robotic hand used in our experiments is 
RH8D, designed by Seed Robotics, as shown in Figure 4. Inspired by 
the human hand, it is capable of performing essential grasp types, 
featuring tendon-driven mechanisms and underactuated design. The 
RH8D can be mounted at the end of a six-degree-of-freedom robotic 
arm and features 19 degrees of freedom, including an opposable 
thumb and a full spherical wrist joint. It’s three-segment fingers are 
powered by smart actuators housed entirely within the unit, offering 
payload capabilities (750 g in 3D space and 2.5 kg vertical pull). 
Inspired by the human hand, the RH8D provides advanced sensing 
and data acquisition on all actuated joints, including real-time 
feedback on position, speed, current, and PWM output. Additional 
features include a palm Time of Flight (ToF) distance sensor, optional 
capacitive touchpads for enhanced human-robot interaction, and 
reinforced design elements like Dyneema tendons and magnetic 
detachment for durability.

The Fingertips Tactile Sensors (FTS) used in this study are 3-axis 
force sensors designed for precise force measurement, as shown in 
Figure 4. These sensors measure forces along the X, Y, and Z axes and 
are optimized for forces in the 0–10 N range, offering a resolution of 
1mN. For higher forces (10–30 N), an extended range model is used, 
with a resolution of 10mN in this range. The sensors operate with a 
sampling frequency of 50 Hz and have an overload capability of up to 
50 N. Additionally, there is a 20mN offset when the sensors do not 
touch objects. The FTS works via an array of MEMS (Micro-
Electromechanical System) sensors, which are highly resistant to 
magnetic field interference. Noise levels are minimal (on the order of 
millinewtons), making the sensors well-suited for practical 
applications. The sensors are pre-calibrated and exhibit linear 
performance in the typical force range of 10°–30° and beyond. While 
fast temperature changes may cause slight drift (up to 100mN in 
extreme conditions), these effects are generally negligible in most 
scenarios. For more technical details on the sensor specifications and 
design, we refer readers to the Seed Robotics documentation and 
related resources.

3.2 Grasp types

The five-finger robotic hand offers a higher degree of freedom 
compared to two-finger and three-finger grippers, allowing it to 
generate many more grasp types. Feix et al. (2016) summarized 33 
common grasp types used by humans, which can be grouped into six 
categories. When considering only hand configuration, without taking 
into account object shape or size, these 33 grasp types can be reduced 
to 17 more general types. Although the RH8D features 19 degrees of 

TABLE 1 Accuracy of USDConvNet-DG trained with varying numbers of 
grasp types.

Grasp 
types

1 2 3 4

Training 

dataset

A, B, C, D AB, AC, AD, 

BC, BD, CD

ABC, ABD, 

ADC, BCD

ABCD

Accuracy 45.1 ± 6.12% 80.7 ± 6.43% 93.7 ± 2.92% 95.7 ± 2.41%
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freedom, human hands possess 27 degrees of freedom (Agur and 
Dalley II, 2023), meaning the RH8D is unable to perform all the grasp 
types like human.

We initially collected slip and non-slip data for one grasp type and 
used this data to train a USDConvNet-DG model. The recognition 
accuracy exceeded 96% for the trained grasp type (A), but dropped 
below 70% for another grasp type (E). Although the model showed 
some generalization ability, its accuracy was insufficient for adjusting 
grasp force and strategy. Surprisingly, we discovered that it wasn’t 
necessary to collect sliding data for all 33 grasp types. By gathering 
data for a few significantly different grasp types, the model could 
generalize effectively to other grasp types.

In the end, we selected four significantly different grasp types that 
the robotic hand could perform, as shown in Figure 2. These four 
types are suited for various scenarios: “Wrap (A)” for grasping long 

and large objects, “Lateral (B)” for flat objects, “Pinch (C)” for small 
and delicate objects, and “Tripod (D)” for smaller objects. The 
remaining two grasp types (E and F) are used to test generalization.

In our experiment, we chose 16 common items to collect grasping 
data, as shown in Figure 2. The weight of these objects ranged from 
10 g to 300 g, and the materials included plastic, metal, wood, paper, 
and other commonly encountered substances.

3.3 Grasp force control

A PID (Proportional Integral Derivative) controller with a dead 
zone is used to control the robotic hand’s grasping force. The grasping 
force of each finger can be controlled individually. As shown in the 
Figure 5. ( )If i  represents the aim grasping force, and ( )pf i  represents 
the synthesis of the three-directional force detected by the FTS, 
calculated as follows:

 ( ) 2 2 2
p x y zf i f f f= + +

The difference between ( )If i  and ( )pf i  is denoted as ( )re i . To 
prevent oscillation of the robotic hand during grasping, the range of 
change in ( )re i  needs to be limited, as shown in the following formula. 
After multiple tests, setting the threshold 𝑡ℎ𝑟 to 150mN was the 
most suitable.

 
( ) ( ) ( )

( )
0.01 r r

r

e i if e i thr
e i

e i else
 <= 


The value 𝑢 is obtained from the PID controller, which represents 
the flexion degree of each finger (range: 0–4,095). The formula is 
as follows:

FIGURE 3

USD Frame-DG: universal slip detection framework for different grasp types.

FIGURE 4

RH8D adult robot hand and FTS-3.
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After extensive testing, the most suitable values for pK , iK  and dK  
were found to be 0.4, 0.04, and 0.5, respectively.

3.4 Data collection

In this work, slip detection is treated as a classification problem 
with three categories: no-touch, no-slip, and slipping. Deep learning 
methods rely on large amounts of data. It is easy to collect data for the 
no-touch and no-slip states, but collecting enough data for the slipping 
state is challenging because it occurs in an instant. Data from the FTS 
is directly saved as no-touch when no object is being grasped. During 
stable grasps of six types, the collected data belongs to the no-slip 
category. We tried two methods to deal with the challenge of collecting 
slipping data.

The first method involves slowly pulling out the object after the 
robotic hand has stably grasped it. Approximately 2000 data points 
can be collected within 5 s when the sampling rate is set to 50 Hz. 
Although training a network with this data results in high accuracy 
on the validation set, its performance on the test set and in real-world 
applications is poor. Through continuous reflection and analysis, 
we  found that the abrupt change in force during slipping is the 
key feature.

To capture this feature, we  proposed another data collection 
method: after the robotic hand grasps the object, an external force is 
applied by hand to move the object back and forth quickly in the 
direction shown in Figure 1. This allows for the rapid collection of a 
large amount of slipping data, making it possible to use neural 
network-based classification methods. The final test results 
demonstrated significant improvements. We believe that this method 
can also be used to quickly collect a large amount of effective slipping 
data for robotic hands equipped with other types of sensors. For grasp 
types A, B, C, and D, the data is used for training and validation, while 
grasp types E and F are used for testing to evaluate the generalization 
of the detection model.

3.5 Data preprocessing

Each data record comprises 15 measurements, corresponding to 
the force components along three axes (X, Y, Z) for each of the five 
fingers. Noise removal from the dataset is manually performed, with 

particular attention given to the initial and final segments of the data 
sequences. To maintain sample balance, excessively long sequences are 
trimmed. Once processed, the data is ready to construct the training 
and test sets. The final dataset includes over 200,000 scalar data points 
sampled at a frequency of 50 Hz.

Since the collected data represents time series information with 
inherent periodicity and autocorrelation characteristics, training the 
model using a single data record results in suboptimal performance. 
Instead, combining multiple adjacent data records into a single 
sample is more effective, as it enables the system to observe force 
variations over a period of time, which is crucial for detecting 
slippage. However, using an excessively long observation period 
compromises real-time performance. After conducting extensive 
tests, we found that using a stride of 1 and combining 16 adjacent 
data records into a 16 × 15 array yields the best practical results. For 
example, if 2000 data points are collected in one session, the first 16 
records form the first array, the second to the 17th records form the 
second array, the third to the 18th records form the third array, and 
so on, until the final 16 records form the last array. This structure also 
facilitates the application of FFT analysis.

In the collected slipping dataset, a small portion of noise is 
difficult to manually remove, which can significantly affect the trained 
model. A high-pass filter is used to preprocess the slipping data 
because the frequency of the slip signal is higher. The calculation 
formula is as follows:

 ( ) ( ) ( )y i 0.2x i 0.8y i 1= − −

( )x i  represents the i-th array. By applying a filtering method, the 
model’s accuracy improved to a certain extent. Since an object 
generates vibrations during slipping, there is a distinctive spectral 
distribution in the frequency domain that can be used as a feature 
for training the model. A Fast Fourier Transform (FFT) is applied 
individually to each column of the data, resulting in a 16 × 15 
matrix. This matrix is then combined with the filtered time-domain 
matrix, producing a 32 × 15 matrix where the first 16 rows represent 
the frequency domain, and the last 16 rows represent the 
time domain.

Labels in a one-hot format are assigned based on the grasping 
states: [1,0,0] for no-slip, [0,1,0] for slip, and [0,0,1] for no-touch. A 
total of 177,555 matrices (A, B, C, and D) are randomly divided into 
training and validation sets in an 80%:20% ratio, while 26,329 matrices 
(E and F) were reserved for testing, as shown in Table 2. The ratio of 

FIGURE 5

Grasp force control module.
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the three classes—no-touch, slip, and no-slip—is approximately 
24%:38%:38%.

3.6 Network architecture

For slip detection, different types of sensors generate different data 
types, so there is no single model that fits all sensors. To address this, 
we  designed four three-classification algorithms based on four 
classical models (SVM, LSTM, Residual Convolutional Neural 
Network and Transformer). These three categories are sliding, 
non-sliding, and no-touch. Below, we will describe these four models 
in detail.

Based on the SVM (Cortes and Vapnik, 1995) method: As shown 
in the Figure 6A, two support vector machines were trained to achieve 
the three classifications of “no-touch” “no-slip” and “slip.” Because 
both “no slip” and “slip” indicate contact with an object, these two 
categories belong to “touch.” Therefore, the first support vector 
machine is used to recognize whether there is contact (“touch”), the 
second support vector machine detects sliding within the “touch” 
category.

Based on the LSTM (Hochreiter and Schmidhuber, 1997) 
model, as shown in Figure 6B: Inputting a 16×15 array, it passes 
through an LSTM network, a flattening layer, two fully connected 
layers, and finally outputs the probabilities of belonging to each 
category. The hidden layer dimension and the number of recurrent 
neural network layers in the LSTM network are both set to 10. 
During testing, we observed that increasing the size of the LSTM 
network initially increased the classification accuracy, but then 
decreased. The best performance was achieved when the hidden 
layer dimension and the number of recurrent neural network layers 
reached 10. However, when the number of layers reached 50, the 
accuracy dropped to 56%.

Based on the ResNet18 (He et  al., 2016) model, as shown in 
Figure 6C: Compared to the standard ResNet18, the number of input 
channels in the first convolutional layer has been reduced from three 
to one, and the output dimensions of the final fully connected layer 
have been adjusted from 1,000 to 3 to match the classification task. 
The rest of the architecture remains unchanged.

Based on the Transformer (Vaswani et al., 2017) model, as shown 
in Figure 6D: The input to the model is a 16×15 array. An average 
pooling layer and a fully connected layer are added after the 
Transformer. The best performance is achieved when both the encoder 
and decoder consisting of a single layer.

Although ResNet18 achieved over 99% accuracy on the validation 
set, its accuracy just reached 70% on the test set, which is unacceptable 
for practical applications. ResNet18 has over 10 million parameters, 
which does not match the scale of our training dataset. Therefore, as 
shown in Figure  7, we  designed USDConvNet-DG based on the 
design principles of ResNet18:

 (1) Residual connections: these connections help mitigate the 
vanishing gradient problem in deep networks, allowing more 
efficient gradient flow and facilitating the training of 
deeper architectures.

 (2) Hierarchical feature extraction: ResNet18 employs a 
progressively deeper hierarchical structure, extracting features 
from lower to higher levels through multiple convolutional 
layers. Similarly, USDConvNet-DG adopts a block-based 
design, where each block consists of multiple convolutional 
operations, enabling finer feature extraction while enhancing 
the network’s representation capacity.

 (3) Batch normalization (BN): USDConvNet-DG retains BN layers 
after each convolution, standardizing data distribution to 
accelerate convergence, reduce the risk of gradient vanishing, 
and stabilize the training process for slip detection.

 (4) Multi-scale feature integration: ResNet18 integrates multi-scale 
features through residual blocks and layer-wise feature 
extraction. USDConvNet-DG combines multi-layer 
convolution and residual connections to effectively extract 
multi-scale features across different grasp types and contact 
states, improving performance in slip detection tasks.

The network takes a 2D input, which is processed by a series of 
convolutional layers. The first layer is a Conv2d (2D convolution) 
followed by Batch Normalization and a ReLU activation function 
being followed by MaxPooling, which reduces the spatial dimensions 
of the feature map. After multiple tests, we found that four blocks are 
the most suitable. Each block consists of two convolutional layers 
(Conv2d) with Batch Normalization. The blocks represent different 
levels of feature extraction with increasing depth, and contributing to 
a more complex and rich feature representation. The feature map is 
then flattened and passed through a fully connected layer 
(FullConnection), which helps in classification. The final layer outputs 
one of the three categories: slip, no-slip, or no-touch. 
USDConvNet-DG achieved a maximum accuracy of 97% on the 
test set.

3.7 Training

Furthermore, all tactile sensing, slip detection networks, and 
robotic five-finger hand control algorithms are executed on a PC 
equipped with an Intel Core i7-12700K processor (3.60 GHz, 12 cores, 
20 threads) and an NVIDIA RTX 3080 Ti GPU. The codes are 
implemented using PyTorch and Python, running on the Windows 11 
operating system.

4 Results

This section primarily discusses related test results based on 
different methods. The result is based on four trained grasping 
gestures. Overall, the recognition accuracy for the “no-touch” state is 
higher than other two categories. The classification performance of the 
method based on USDConvNet-DG is the best, while the performance 
of SVM method is poorest.

The performance of different models as shown in Table 3, which 
provides a detailed comparison in terms of accuracy on the validation 

TABLE 2 Class distribution of grasp states across different grasp types.

Grasp 
type

A B C D E F Total

Slip 15,448 16,512 16,752 16,137 6,643 6,587 78,079

No-slip 15,948 15,538 15,987 16,392 6,513 6,586 76,964

No-touch 48,841 48,841
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dataset (grasp types A, B, C, D) and the test dataset (grasp types E and 
F), prediction time, and the number of parameters. We selected the 
highest accuracy from the 24 epochs, then averaged and calculated the 
standard deviation of the ten accuracy values. Given the high demand 
for real-time performance in slip detection, we  also tested the 
prediction time of various methods.

The SVM-based classification method had the shortest prediction 
time, only 0.08 ms, but with low accuracy. When the number of 
parameters reaches the scale of 10 million, the LSTM and Transformer 
models achieve approximately 63% accuracy on the validation dataset 
and 43% on the test dataset, which is about 30% lower than the 
accuracy of ResNet18. Particularly, the prediction time of the 
Transformer exceeds 129.55 ms, which is unacceptable for real-time 
tasks. Additionally, both LSTM and Transformer exhibit slow 
convergence. The original LSTM lacks residual connections, so 
multiple LSTM layers can lead to gradient vanishing issues, making it 
difficult to converge. Moreover, slip detection primarily focuses on 
local changes in force tactile data, such as short-term high-frequency 
features. While the self-attention mechanism of the Transformer is 
applied to capture global long-range dependencies, this capability may 
not align well with the requirements of slip detection tasks. The 
complexity of the Transformer may introduce unnecessary 
computational overhead, whereas convolutional networks are more 
straightforward and effective for this application.

The ResNet-based classification method has very high 
accuracy on the validation dataset, but its prediction time is the 
longest, with over 10 million parameters, making its scale too large 
to be  conveniently integrated into a robotic hand. Thus, 
we attempted to decrease the number of parameters for ResNet 
network. We found that the accuracy on the validation dataset 
decreased by less than 1% when the parameter exceeded 40 k. 
However, reducing the parameters further resulted in a more 
pronounced decrease, with accuracy dropping by more than 5%. 
Specifically, when the parameters are reduced to approximately 
2 k, the accuracy on the training dataset decreased by around 4%, 
but the accuracy on the test dataset improve to 77.38%. These 
findings suggest that a smaller parameter count may enhance 
generalization on the test dataset, though it slightly compromises 
performance on the training and validation datasets. This 
phenomenon is known as “DEEP DOUBLE DESCENT,” which is 
common in ResNet and convolutional networks (Nakkiran 
et al., 2021).

The combination of FFT and filtering with USDConvNet-DG 
yields the best overall results, with over 97% accuracy on validation 
dataset and test dataset. These results provide stronger evidence that 
the network demonstrates robust generalization across diverse grasp 
types, not limited to the initially trained or tested categories. This 
model maintains a short prediction time (1.26 ms) and the same low 

FIGURE 6

Four classical architectures for slip detection models: (A) based on SVM model, (B) based on LSTM model, (C) based on ResNet model, (D) based on 
Transformer model.
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number of parameters (2,395), making it the most effective and 
efficient model among those tested.

Figure 8 presents the performance of different models on the 
validation and test dataset. The epoch was set to 24. The six methods 
are tested ten times, and the accuracy of each epoch was averaged to 
capture the overall trend. The following observations can be made:

The accuracy of all models is higher on the validation set than on 
the test set, and exceeds 90%. For validation, LSTM performs worst, 
and the accuracy of the Transformer gradually increases to around 
90% as the number of epochs increases. However, both models only 
achieve about 60% accuracy on the test dataset, showing weak 
generalization in this problem and struggling to generalize well to 

FIGURE 7

USD ConvNet-DG: universal slip detection convolutional network for different grasp types.

TABLE 3 Quantitative comparison of different methods

Model Accuracy Prediction time Parameters

Validation dataset Test dataset

SVM 62.81 ± 1.03% 51.34 ± 3.24% 0.08 ms <100

LSTM 91.24 ± 1.40% 65.69 ± 4.85% 1.30 ms 10,163

63.38% 42.85% 12.26 ms 10,630,403

Transformer 96.09 ± 0.89% 68.38 ± 2.35% 1.57 ms 129,499

63.33% 42.76% 129.55 ms 11,034,156

ResNet 99.67 ± 0.06% 78.35 ± 5.27% 2.66 ms 11,171,779

99.84 ± 0.06% 75.10 ± 5.50% 2.12 ms 709,155

99.14 ± 0.20% 72.71 ± 6.72% 1.66 ms 47,499

95.75 ± 0.67% 77.38 ± 10.54% 1.23 ms 2,305

ResNet18 + FFT + Filter 99.02 ± 0.11% 97.09 ± 1.40% 2.66 ms 11,171,779

USDConvNet-DG 97.07 ± 0.18% 86.46 ± 9.58% 1.26 ms 2,395

USDConvNet-DG + FFT 97.78 ± 0.20% 96.65 ± 1.34% 1.26 ms 2,395

USDConvNet-DG + Filter 97.02 ± 0.32% 89.62 ± 4.25% 1.26 ms 2,395

USDConvNet-DG + FFT + Filter 97.71 ± 0.29% 97.12 ± 1.08% 1.26 ms 2,395
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untrained grasp types. ResNet shows the highest accuracy on the 
validation set, and its accuracy on the test set is about 10% higher. 
The USDConvNet-DG we  propose performs slightly lower than 
ResNet on the validation set, but it outperforms ResNet on the test 
set. When applying FFT and filtering to ResNet, the validation 
accuracy remains consistently high, and the test accuracy improves 
compared to using ResNet alone.

When FFT is used to preprocess the training data, the test 
accuracy of USDConvNet-DG improves significantly. The 
improvement is relatively smaller with filtered data. Overall, 
combining FFT and filtering with USDConvNet-DG results in the 
most stable and high accuracy on the test dataset, closely approaching 
the validation accuracy. This model appears to effectively balance 
feature extraction and generalization, making it the most robust 
among the tested configurations.

It is worth exploring whether the data collected from different 
grasp types contributes differently to universal slip detection. 
Therefore, we designed a controlled experiment as follows: five of the 
six grasp types were used to train the model, and the remaining one 
was used to test the model to obtain the accuracy. The test results for 

the six grasp types are shown in Table 4. The accuracy is lower when 
Type A is not included in the training set, indicating that Type A 
contributes more to universal slip detection.

Table 1 shows the accuracy of USDConvNet-DG with varying 
numbers of grasp types. The test dataset consists of Grasp Types E and 
F, and the number of epochs is set to 20. As the grasp type is 1, the 
model was trained separately on the four training sets (A, B, C, D). The 
test was repeated five times. Finally, the average and standard deviation 
of the 20 accuracy results were calculated. When the grasp type is 2, the 
training dataset is a combination of two grasp types. The model was 
trained separately on the six training sets (AB, AC, AD, BC, BD, CD), 
and the accuracy improved significantly. When the grasp type is 3, the 
training dataset consists of three grasp types. When the grasp type is 4, 
all four grasp types together form a single training dataset, and the 
improvement in accuracy is minimal. Overall, with the number of 
grasp types increases, the accuracy on the test dataset improves.

To test the effectiveness of recognizing tactile events locally (i.e., per 
fingertip), we trained USDConvNet-DG using individual sensor data 
(3 × 16 arrays). Each fingertip was independently detected whether 
slippage occurred. If any one of the five fingertips detected slippage, the 

FIGURE 8

Performance of learning-based method during training.
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system classified the event as slippage; otherwise, it was classified as no 
slippage. The results showed that the model’s accuracy decreased to 
93.48% on the training dataset and 80.58% on the test dataset. 
Additionally, the computation time increased to 5.34 ms because the 
detection process was repeated five times to evaluate the tactile events 
for all five fingertips individually. These findings indicate that considering 
all five fingertips as a whole is more effective than recognizing tactile 
events locally. Treating the five fingertips as a unified system not only 
improves the model’s accuracy but also reduces computational overhead.

We applied 5-fold cross-validation to measure the accuracy for all 
six types, where the datasets for all six grasp types and the no-touch 
state were randomly and evenly divided into six groups. One group 
was used as the test set, while the other five groups were used for 
training and validation. The test was repeated five times. The accuracy 
on the validation set is 97.60%, with a standard deviation of 1.06%. 
The accuracy on the test set is 97.15%, with a standard deviation of 
1.05%. These results provide evidence that the network demonstrates 
robust generalization across diverse grasp types.

Overall, the USDConvNet-DG model combined with FFT and 
filtering demonstrates the best generalization on the test set while 
maintaining high validation accuracy and short computing time, 
suggesting that this configuration is the most effective for slip 
detection in this experiment.

Moreover, we designed two groups of physical experiments to test 
the accuracy and real-time performance of USDConvNet-DG in real-
world scenarios. In one group, the grasp state was detected in real-
time while external force was applied to the object. In the other group, 
the grasping force was increased (from 100mN to 700mN) upon slip 
detection, demonstrating that the force adjustment could be completed 
with the object slipping by less than 1 cm. However, there were still 
limitations in accurately detecting minimal contact and slight slippage. 
For instance, slight slippage around the 6-s mark in Video 1 was not 
detected, and the contact state was misclassified in Video 3 due to 
minimal contact. Additionally, a clear delay existed between the end 
of slip and switching back to the no-slip state, as robotic hand 
re-established a stable state after detecting slippage. Video 
demonstrations are available at https://github.com/sunshine486/show.

5 Conclusion

Overall, this work presented a novel framework, USDFrame-DG, 
that performs slip detection across different grasp types for a five-
fingered robotic hand equipped with integrated 3-axis force sensors. The 

proposed framework achieved this by utilizing a large dataset of various 
grasp types to train models, enabling it to detect slip across a wide range 
of untrained grasp types. It is found that the accuracy on the test 
gradually improve as the number of grasp types in the training set 
increased. To identify the most suitable network for universal slip 
detection, we designed three deep networks based on three classic deep 
learning models. Then, a lightweight network called USDConvNet-DG 
was designed based on the structure of the best-performing ResNet18. It 
has fewer parameters, shorter computation time, and no significant drop 
in accuracy. Using FFT and a digital high-pass filter for data 
preprocessing facilitated the extraction of spectral features and reduced 
low-frequency noise, significantly improving recognition accuracy. 
Physical experiments were conducted to demonstrate that the proposed 
framework can quickly detect the state of a grasp and adjust grasp force 
in real-time. These experiments also demonstrated that the ability to 
detect slip serves as a useful and reliable metric for determining grasp 
stability. Future research will focus on three aspects: First, we will explore 
the implementation of our framework on robotic hands with varying 
numbers of fingers and a diverse range of sensors. Second, the framework 
can be applied to adjust grasp strategies to achieve grasp stabilization. 
Third, a robotic hand equipped with slip detection should be capable of 
grasping unknown objects using minimal force while preventing them 
from slipping or being dropped.
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