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Understanding human
co-manipulation via motion and
haptic information to enable
future physical human-robotic
collaborations

Kody Shaw, John L. Salmon and Marc D. Killpack*

Robotics and Dynamics Laboratory, Department of Mechanical Engineering, Brigham Young

University, Provo, UT, United States

Human teams intuitively and e�ectively collaborate to move large, heavy, or

unwieldy objects. However, understanding of this interaction in literature is

limited. This is especially problematic given our goal to enable human-robot

teams to work together. Therefore, to better understand how human teamswork

together to eventually enable intuitive human-robot interaction, in this paper we

examine four sub-components of collaborativemanipulation (co-manipulation),

using motion and haptics. We define co-manipulation as a group of two or

more agents collaboratively moving an object. We present a study that uses a

large object for co-manipulation as we vary the number of participants (two or

three) and the roles of the participants (leaders or followers), and the degrees of

freedom necessary to complete the defined motion for the object. In analyzing

the results, we focus on four key components related to motion and haptics.

Specifically, we first define and examine a static or rest state to demonstrate

a method of detecting transitions between the static state and an active state,

where one or more agents are moving toward an intended goal. Secondly, we

analyze a variety of signals (e.g. force, acceleration, etc.) during movements in

each of the six rigid-body degrees of freedomof the co-manipulated object. This

data allows us to identify the best signals that correlate with the desired motion

of the team. Third, we examine the completion percentage of each task. The

completion percentage for each task can be used to determine which motion

objectives can be communicated via haptic feedback. Finally, we define a metric

to determine if participants divide two degree-of-freedom tasks into separate

degrees of freedom or if they take the most direct path. These four components

contribute to the necessary groundwork for advancing intuitive human-robot

interaction.

KEYWORDS

co-manipulation, physical-interaction, multi-agent, haptics, human collaboration and

interaction

1 Introduction

The capability for humans and robots to perform collaborative manipulation tasks has

the potential to improve quality of life and provide assistance in difficult or time-sensitive

circumstances (Goodrich and Schultz, 2008). Applications include search and rescue,

disaster response and cleanup, construction, and logistics. Unfortunately, for reasons

ranging from hardware limitations to safety and effective control, robots still require

significant development in complex cooperative or co-manipulation tasks (Martinetti et al.,

2021; Villani et al., 2018).

In this paper, we describe a multi-agent co-manipulation study and explore

four fundamental categories of importance for future human-robot co-manipulation.

These include the definition of a rest state, signals communicating motion primitives
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(i.e., small sub-movements that that can be integrated to result in

larger complex motion), communicability of desired intent across

degrees of freedom, and how people divide or combine degrees of

freedom (DOF) in multi-DOF tasks. We define motion primitives

as simple predefined movements in each of the 6 DOFs during

co-manipulation. We define co-manipulation as the efforts of two

or more individuals collaboratively moving an object. People have

been working together in this way long before recorded history,

hence it is completely natural for us to gather around an object

too large for an average individual to manipulate alone, and

lift and move it together. Humans rarely need precise visual or

auditory instruction to follow a desired path successfully. How

do we communicate our intent? What are the limits of our

ability to intuit or communicate a path based on haptics? These

are broad, overarching questions that we propose need to be

answered to understand and enable future efforts in human-robot

co-manipulation. Our specific interest is in co-manipulation of

objects with significant mass or extent that would be difficult or

unreasonable to expect an average person to move alone.

We will address four specific sub-components of these

questions by analyzing how human-only teams behave, which can

then be applied in future human-robot co-manipulation. First,

we analyze the static state, which is defined as when a team or

leader has no intentional movement. Identifying and quantifying

important signals about this state will allow a robot to recognize

when to wait, and when it is time to leave the static state. Secondly,

once moving, an assessment of several commonly used signals is

undertaken to determine which is best to identify a desired motion

primitive or direction of motion. Third, for each DOF we explore

how well a desired motion primitive can be communicated through

haptic feedback alone. Finally, given a task requiring the motion

of the co-manipulated object in two DOFs, we determine whether

participants opt to handle one DOF at a time or accomplish both

DOFs simultaneously.

In summary we contribute the following findings.

• A method of identifying the transition from the static to an

active state.

• Quantifying the best signal to use in the prediction of future

motion.

• An itemized list of which DOFs can and cannot be

communicated through haptic feedback, as well as a first-order

ranking of the difficulty of communicating each DOF.

• An analysis of the the paths taken when participants are

required to perform tasks requiring 2 DOF.

For each of these contributions, we also explored whether any

significant effects occurred due to three different leadership types

which depend on what information is available to each participant:

leader-leader teams (LL), leader-follower teams (LF), and a team

with a leader and two followers (LFF). We define a leader as a

participant who is given direct information about the task and

therefore guides the overall motion to a final configuration. In LL,

both participants are given the same instructions simultaneously,

resulting in near-ideal coordination. In contrast, for LF and LFF,

instructions were only provided to the leader. Furthermore, the

leaders were not permitted to use verbal communication, and thus

were restricted to only using the haptic communication channel,

with signals, forces, and displacements expressed through the

motion of the object. The LF type allows us to gain insights into

the use and limitations of haptic communication which is the

signal most readily available to future robotic teammates. Adding

an additional follower in LFF also allows us to determine the effects

of having two participants in the group who must receive the same

message via haptic feedback.

2 Prior work

This section explores five key areas related to intuitive human-

robot interaction development. We explore current works in

the following areas activation thresholds, motion primitives, co-

manipulation signals, leader follower relationships, and several

similar human-human studies.

2.1 Activation thresholds

When operating with a team, knowing when to move and when

to remain motionless is an important distinction for a robot to be

able tomake. If a robot is too sensitive, it will respond to unintended

signals. On the other end of the spectrum, if a robot is not sensitive

enough it will be sluggish and slow to respond. Dumora et al.

(2012) explored this idea as they were exploring the translation vs

rotation problem. They reported that forces over 5N for more than

100 ms or torque over 0.7 Nm for more than 100 ms, indicated

an intentional act. We are exploring this claim in more detail by

considering levels of variation or noise in signals such as position,

velocity, and acceleration while participants are at rest in order to

help determine appropriate levels of sensitivity.

2.2 Motion primitives

Motion primitives (or small sub-movements that can be

combined to complete a larger, more complex movement

goal) have been widely accepted to analyze human motions

and improve robotic movement performance for some time

(Hofsten, 1992; Stulp et al., 2012; Burdet and Milner, 1998;

Milner and Ijaz, 1990). The idea of motion primitives has

also been implemented into many robotic systems, with some

success. These sub-motions, or motion primitives, have been

applied to robotic manipulation in many areas not necessarily

related to co-manipulation. For example, Pook and Ballard

(1993) made use of motion primitives to flip an egg via

a robotic arm. Bentivegna and Atkeson (2001) used motion

primitives to simplify the learning process for a robot that played

air hockey.

Specific to human-robot co-manipulation, Bussy et al. (2012),

used ideas obtained from Corteville et al. (2007) and Maeda

et al. (2001) on predicting human intentions via a simple set of

motion primitives in planar 3-DOF co-manipulation of a wooden

frame. They predefined these motion primitives as, forward,

stop, turn, and sideways. By using this approach, they were

able to create a proactive follower that guessed the desired sub-

motion, which, they reported, substantially reduced the “workless
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interaction force” (Bussy et al., 2012), or unnecessary planar load.

Lanini et al. (2018) used a similar approach using start and stop

motion primitives to co-manipulate a pole while estimating a

desired velocity along a single axis. It has been hypothesized that the

benefits of motion primitives can be extended by increasing their

number and scope. However, increasing the number of motion

primitives also increases the difficulty of determining whichmotion

primitives are desired by a group. This paper begins the process of

extending motion primitives from start, stop, turn, etc., to a more

complete set with a motion primitive in each DOF. The motion

primitives are aligned with the DOF of an inertial frame which

is aligned with the frame of the object in its starting position.

In this paper, we examine several signals to determine whether

they can be used to consistently predict motion primitives in

each DOF.

2.3 Signal space

A wide variety of signals have been used to try and understand

co-manipulation and enable robots to effectively assist humans.

For example, work by Dumora et al. (2013) demonstrated that

robots can dynamically adjust their assistance strategies based on

real-time haptic feedback. Similarly, other papers cite the use of

haptic feedback as a beneficial method to collaborate with robots

(see Agravante et al., 2013; Mörtl et al., 2012; Van Der Wel et al.,

2011; Takagi et al., 2019, 2018; Dumora et al., 2012; Madan et al.,

2015). Robotic vision is another channel that has been used to

try and improve performance in human-robot co-manipulation

tasks (Yu et al., 2021; Agravante et al., 2013; Deegan et al., 2022;

Abu Bakar et al., 2010; Groten et al., 2009). Even the auditory

channel has received some attention (Jensen et al., 2021; Ibarguren

et al., 2020; Griffin et al., 2005; Bakar et al., 2007; Ghadirzadeh

et al., 2016). A few papers have considered the relative value

or quality of particular signals. For example, Ibarguren et al.

(2020) reported that 38% of their participants preferred audio.

Abu Bakar et al. (2010) reported that vision and touch were

the most used signals and suggested that knowledge of the goal

could also greatly improve performance. Mojtahedi et al. (2017)

showed that the reduction of impedance in the desired direction

can be used to infer the intended movement. Bin Abu Bakar et al.

(2006) reported in their human-human study, that displacement

torque had little bearing on a follower’s ability to be a proactive

assistant, but that velocities of sufficient magnitude were critical.

Ikeura and Inooka (1995) also found that human followers used

the movement of the object to determine when to actively assist.

We take a more in-depth look into acceleration, velocity, and

several different measures of force that can be readily measured

by a robot, and determine how they might be used to improve

human-robot co-manipulation.

Jensen et al. (2021) also claimed “haptic feedback alone

represents a sufficient communication channel for co-

manipulation tasks”. In this work, we explore this claim in

more detail. We aim to answer questions such as which co-

manipulation tasks can be communicated over haptics, and how

performance is affected when communication is restricted to the

haptic channel.

2.4 Leader-follower relationships

It is important to first define what we mean in this paper as

definitions for leaders and followers.We follow the definitions from

human-human co-manipulation studies like Ikeura and Inooka

(1995), Abu Bakar et al. (2010), and Mielke et al. (2017) where the

leader is expected to determine the overall motion of the object

because of information they have about the goal and objective, and

the follower is expected to be supportive (i.e. not antagonistic) in

achieving the task. This also mirrors a number of human-robot

studies where the human is intended to explicitly be the leader and

generate the motion for a robot to follow (see Arai et al., 2000;

Dumora et al., 2012). We expect that this definition may be the

most useful as we analyze human-human data in this paper with

the objective of applying the results to human-robot systems with

the human as the assumed leader initially. However, there are a

wide variety of definitions of leader-follower teams in the literature

that range from a definition based on relative stiffness (Vianello

et al., 2022) to roles that adapt or change over the course of the

task (Nakayama et al., 2017).

More specific to our analysis of the effect of LL and LF teams

on task performance in this paper, some researchers have begun to

also explore LL and LF leadership types. For example, Agravante

et al. (2016) andWhitsell and Artemiadis (2017) examine how roles

change or are exchanged during co-manipulation tasks. In a two-

person box lifting experiment, Abu Bakar et al. (2010) reported that

the smoothness of a task improved if the follower knew the start

and end locations of the goal. In this work, we expand on Bakar’s

work by comparing three leadership types—LL, LF, and LFF. We

aim to answer questions such as does shared knowledge of the goal

changes the best signals for predicting motion primitives? Does the

addition of another follower, without knowledge of the goal, make it

obviously or statistically more difficult for a leader to communicate

intent? These and other related questions are answered in this work.

2.5 Similar human-human studies

Several human-human studies have been performed in an effort

to better understand and characterize how people work together to

accomplish basic tasks (Mojtahedi et al., 2017; Schmidts et al., 2016;

Melendez-Calderon et al., 2015; Peternel et al., 2016; Bakar et al.,

2007; Reed and Peshkin, 2008). Several others perform experiments

that match the definition of co-manipulation used in this paper,

using at least two people to move a large bulky object (Freeman

et al., 2024; Maroger et al., 2022; Bin Abu Bakar et al., 2006; Mielke

et al., 2017; Jensen et al., 2021; Ikeura and Inooka, 1995; Lanini

et al., 2017). None of these studies were designed to explore the four

fundamental aspects of co-manipulation explored in this work, and

none of them incorporated teams of three at a time.

3 Methods

The human-human study that we describe in this section had

the objective of enabling us to explore patterns of human dyad and

triad behaviors in terms of motion and haptic signals during the

co-manipulation of objects with significant size and mass. Using
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FIGURE 1

An external view of the table (top) showing black Vive Trackers and Oculus Quest 2 virtual reality (VR) headsets. An internal view of the table showing

force-torque sensors and signal conditioning boxes (bottom). This table design was modified and adapted from Freeman et al. (2024).

the resulting data from the study, we explore the following four

areas: first, defining a static or rest state; second, identifying the best

signal to use to predict predefinedmotion primitives corresponding

to object degrees of freedom; third, the communicability of DOFs

via haptics; fourth, paths used by participants to accomplish multi

DOF tasks. This methods section gives a high-level description of

the hardware [which is largely the same as was used in Freeman

et al. (2024) except for a novel virtual reality interface] and then

details the experiments performed to explore these four areas.

The table, or co-manipulated object, pictured in Figure 1,

consisted of four ATI Mini45 force/torque (FT) Sensors and six

HTC Vive trackers v2.0. These trackers were used for localization

in a virtual reality (VR) environment that is described below and

for collecting pose data of the table. We included two Oculus

controllers for the follower(s) to visualize the location of the

physical table accurately in VR, and a microphone to help ensure

the data between multiple systems (VR, force, and pose data) was

synced. We collected data (i.e. force, torque, position, velocity) at

200 Hz. The table is 1.3 m long by 0.5 m wide, weighing 25.3

kg and the table is the same that was used in Freeman et al.

(2024). The justification for using four independent force-torque

sensors (one on each handle) was that the goal of this study was

to obtain ground-truth data when multi-agent teams manipulated

large and heavy objects. Although this type of data would not be

available to robots working in a multi-agent team, understanding

the necessary signals for high performing teams requires that we

initially obtain ground truth. Additionally, the reason for using

four distinct handles instead of letting participants handle the

object directly was to make sure that we accurately measured all

forces applied by each participant. This obviously does not match

manipulation of large, real-world objects like a couch or a fridge,

but does allow us to understand the role of multiple agents and the

forces they apply to heavy, bulky objects.

Pose data from four Vive trackers were transformed to the

geometric center of the table, and their positions were combined

as a weighted average in the same manner as Freeman et al. (2024).

The recorded path of the co-manipulated object was then smoothed

and filtered, as described in detail in Appendix 2. This data was used

to calculate velocity and acceleration, which were then transformed

into the table frame. The table frame is located at the center of

the co-manipulated object with the x-axis pointing toward the side

with the blue rectangle as shown in Figure 2. The FT data was

treated in the same manner as Freeman et al. (2024), yielding two

force measures one for the leader and another for the follower(s).

These two forces and torques were considered from the center

of mass. An important distinction between the experiments of

Freeman et al. (2024) and the current research is that although

the object (i.e. table) was instrumented in a similar way, the tasks

and co-manipulation maneuvers were very different. In Freeman

et al. (2024), human dyads would move the table around five

physical obstacles under different modi or descriptors of how to

move (e.g. quickly, carefully). In the current research, the tasks

involved shorter direct combinations of the 6 DOFs where one or

more human partners were restricted in their knowledge of the goal

(through a virtual reality environment).

We developed a virtual reality (VR) environment, which

enabled us to carefully control visual information and cues given

to each participant through Meta Oculus Quest 2 headsets. In the
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FIGURE 2

Leader and follower perspectives in VR showing the actual position of the table and the superimposed goal (left) and rest (right) locations.

leader’s headset, two copies of the table were displayed; one to

represent and track the pose of the physical object and another

to represent the goal pose (position and orientation), as shown in

Figure 2. Written instructions were also provided on each of the

four virtual walls stating when to start a task, time remaining, and

when to return to the starting position. The followers’ headsets had

only an image of the table representing the real object and markers

to help them return to the starting location before each task. These

components are pictured on the right in Figure 2. Participants were

provided a large enough area to feel confident moving in VR.

Importantly, participants were only allowed to communicate

haptically throughout the study. This means that the only

information available to each team member (both for dyadic and

triadic trials) was the real-world position of the co-manipulated

object (as rendered in VR and based on their own kinesthetic

feedback), and the forces felt through the handles they were

holding. We fully expect that allowing teams to share and

communicate information through additional channels (such as

visual or auditory information) would improve performance,

especially in cases where the follower does not know the goal.

However, from prior experiments (see Mielke et al., 2017, 2024)

we have noted that humans are particularly adept at using only

haptic information to successfully complete complex tasks. The

goal in limiting the participants information to haptic feedback

only is to observe the role of haptic signals in dyadic and triadic

interactions, as well as providing a baseline for future development

of robot teammates that will initially rely on only haptic feedback

to successfully and collaboratively achieve a task.

Our study consisted of 16 sessions with 16 different teams.

Each session, as represented in Figure 3, consisted of three

volunteers. These volunteers watched a short instructional video,

passed a fitness screening by lifting a 30 lb weight to shoulder

height, and were instructed to move quickly throughout the

experiment in order to complete all tasks in a reasonable time.

They were also told to refrain from any verbal communication.

The participants were randomly assigned a number, either one,

two, or three. The group was then randomly assigned to start

with either a leader and follower (LF), or one leader with

two followers (LFF). While the leader-leader group type (LL)

occurred last. The LL type was performed last because we expected

the shared task objective information would impact learning

the least.

In each leadership type a leader was on the green or negative x-

axis side of the table facing the center, using both handles. Followers

were arranged on the blue side also facing the center.

In each leadership type, participants completed three iterations

of the tasks, changing positions for each iteration such that each

participant experienced each role. In each of the nine resulting

arrangements, participants completed a set of 18 tasks as shown

in Figure 3.

Each set of 18 tasks contained twelve 1-DOF movements,

one in the positive and negative directions for each Cartesian

degree of freedom, four 2-DOF movements, and two 3-DOF

movements. Six of the 1-DOF tasks and all the 2- and 3-DOF

tasks are shown in Figure 4. The tasks were communicated to the

leader(s), in a random order, via the Oculus headset. Participants

were allotted 15 s to complete each task, which was shown to

the leader(s) as a countdown timer on the virtual walls inside

the environment.

After the completion of the task, either by arriving at the goal

location and orientation or by running out of time, a period of 5

s was given for the participants to return to the starting location

(which all participants could see). This process was repeated for

the remaining leadership types, yielding 171 tasks per session.

The LL set was omitted if a session had to be cut short, which

occurred 3 times in the 16 study sessions. The following video links

show a sample of one set of tasks from both VR and real-world

perspectives: VR perspective, Real world perspective.

Frontiers inNeurorobotics 05 frontiersin.org

https://doi.org/10.3389/fnbot.2025.1480399
https://youtu.be/w_2VlkogIEA
https://youtu.be/py5nYCUJs4w
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Shaw et al. 10.3389/fnbot.2025.1480399

FIGURE 3

A flow diagram showing the typical execution order of each study session, with three di�erent leadership types in nine di�erent arrangements,

resulting in 171 tasks per session. Explanations of the abbreviations for task names are detailed in Appendix 1.

FIGURE 4

Visualizing Each DOF task, T stands for linear translation and R stands for rotation, the following letter(s) indicate the axis and direction. Further details

are provided in Appendix 1.

4 Results and analysis

We next summarize the main topics of interest as discussed

in the following sections. First, we perform an analysis of the

static, or at-rest, state, and identify the transition to an active

state where the team is moving toward a new goal location.

This is followed by an exploration of potential signals for

predicting a desired motion primitive. Next, we address which
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FIGURE 5

Standard box plots (showing the minimum, maximum, median, 25th and 75th percentiles, along with outliers) help show an exploration of measures.

(A) A comparison of measures across di�erent leadership types during REST tasks. (B) A comparison of measures across di�erent groups during REST

tasks.

DOF can and cannot be intuitively communicated via haptics,

and a basic breakdown of the difficulty of communicating a

desired motion in each DOF. Finally, we analyze four 2-DOF

tasks to determine whether people tend to divide tasks up into

separate DOFs, or if they combine them to take the most

direct path.
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4.1 Rest task analysis

The ability to differentiate between when to stop and when

to move is one of the most basic and potentially most important

co-manipulation skills. It is therefore crucial to be able to

clearly differentiate between desired static and active states. For

this reason, data was collected for participants standing at rest

before the start of each of the nine leadership arrangements or

combinations, as shown in Figure 3. For this analysis, we consider

the following measures in both their linear and rotational forms:

change in position, velocity, and acceleration. These measures were

chosen because theymust change in order to leave a static state. Our

analysis will consider the levels of noise in each of these measures

across different sessions or groups of people and across leadership

types. The insights gleaned from the analysis on noise are used to

propose and test a basic classifier for discriminating between static

and active states. Note that data from one group was dropped due

to intentional motion that we observed during their REST task.

First, we consider whether each measure is consistent across

sessions and leadership types. A measure that is consistent across

different study sessions and leadership types during the rest task

suggests that the chosen measures will be robust to different groups

of people and different arrangements that might occur in similar

situations. The strong overlap of the box plots in Figure 5 shows

that the measures chosen are practically indistinguishable across

leadership types and groups. A closer inspection of each axis is

made in Table 1 where the means and standard deviations of the

linear and rotational, positions, velocities, and accelerations are

given along each axis of the table frame, as well as their respective

magnitudes. From Table 1 we can again observe a significant

increase in standard deviations as we go from position measures

to velocity and acceleration measures. We can also observe that

the standard deviations of our selected measures are often nearly

as small as the sensors can reasonably detect. This small range in

noise should be ideal for detecting the transition from a static to an

active state.

We reasoned that a simultaneous three-sigma (3σ ) change in

position and velocity along a particular axis would provide a robust

trigger for identifying the transition from rest to an active state.

This was chosen because a 3σ change in linear position of two

centimeters would require a 3σ change in velocity of 0.054 m
s for

approximately 0.38 s. This puts our transition time (from static

to active state) on par with the reaction time of the human foot

reported by Pfister et al. (2014) to be 0.328 ± 0.048 s. Applying

the 3σ bound to position is advantageous because it allows the

object to act as a natural filter that handles the fluctuations and

noise present in both velocity and acceleration. The 3σ bound

on velocity is also robust because a 3σ rate in acceleration would

have to be maintained for more than 5.7 s in order to reach a 3σ

velocity. This approach of applying a simple 3σ threshold to both

changes in position and velocity was applied to each axis for both

rotation and translation using the REST task standard deviation

values as reported in Table 1. In order to confirm that this deviation

is reasonable based on the various sources of noise, the last column

is added which presents the sensor variance (also as a standard

deviation) for each signal and corresponding direction as labeled in

the first column. A sample of the results of this transition method

TABLE 1 Mean and standard deviation (SD) of the REST task and of

stationary or unperturbed sensors.

Mean and variance (SD)

Measurement
type

Rest task
mean

Rest task
SD

Sensor
SD

Position magnitudem 0.007 0.007 0.0006

x positionm 0.000 0.006 0.0029

y positionm 0.000 0.006 0.0018

z positionm 0.000 0.004 0.0024

Velocity magnitude m
s

0.015 0.018 0.0023

x velocity m
s

0.000 0.015 0.0029

y velocity m
s

-0.001 0.015 0.0018

z velocity m
s

0.000 0.010 0.0024

Acceleration magnitude
m
s2

0.097 0.104 0.0296

x acceleration m
s2

0.000 0.081 0.0418

y acceleration m
s2

0.000 0.073 0.0243

z acceleration m
s2

0.000 0.091 0.0306

Rotation magnitude rad 0.004 0.006 0.0004

x rotation rad 0.000 0.003 0.0005

y rotation rad 0.000 0.002 0.0006

z rotation rad 0.000 0.006 0.0004

Rotational velocity

magnitude rad
s

0.010 0.016 0.0020

x rotational velocity rad
s

0.000 0.013 0.0019

y rotational velocity rad
s

0.000 0.007 0.0026

z rotational velocity rad
s

0.000 0.012 0.0013

Rotational acceleration

magnitude rad
s2

0.093 0.139 0.0279

x rotational acceleration
rad
s2

0.000 0.140 0.0287

y rotational acceleration
rad
s2

0.000 0.063 0.0419

z rotational acceleration
rad
s2

0.000 0.065 0.0186

is presented in Figure 6, where plots of position are shown for three

different tasks with a black line denotes the predicted change from

a static to an active state. This method passes visual inspection in

most cases and so is sufficient for this work. Future works should

test the method in human-robot trials and can likely fine-tune the

response by including other signals, considering different levels of

sigma for each axis, or exploring less simplistic approaches.

4.2 Motion primitive signal analysis

As discussed in the prior works section, motion primitives have

been used to improve the performance of robot in a variety of
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FIGURE 6

Showing the transition point between a static and active state for three randomly chosen tasks. The black line shows the estimated point of transition

from a static state to an active state via the proposed method. Time is presented in seconds.

tasks, including co-manipulation. However, as was noted by Bussy

et al. (2012), greater performance can be obtained by increasing

the number of motion primitives, though that comes at the cost

of making them harder to detect. We chose to define a motion

primitive for each of the six degrees of freedom of the co-

manipulated object, in order to generalize to all possible motions.

To ensure the highest confidence when identifying those motion

primitives, we decided to determine a hierarchy of signal reliability

by exploring several possible signals. The first signal was velocity, as

it is closest in relation to changes in position. Next was acceleration,

because it is a precursor to velocity. The third potential signal

was force because forces cause acceleration and can be measured

directly with relatively low noise. Force, however, has significant

complicating factors that prevent it from being straightforward to

use. In co-manipulation, forces applied by each agent that do not

perfectly align can cancel out components of other forces acting

on the same system. These are commonly known as interaction,

internal, or compensating forces (Donner et al., 2018; Shergill et al.,

2003; Groten et al., 2009). These forces act on the system but do

not contribute to the acceleration of the system. To address this

complication, we will consider several different measures of force:

first, the raw force measured on the follower’s side in the axis of

desired motion; second, the forces that contribute to the net force

referred to as parallel force or (f‖), and contributes to themagnitude

of velocity; and third, forces measured from the follower’s side that

are perpendicular (f⊥) to the net force of the system and contributes

to the direction of the net force. A fourth but rather different

measure of force considered is the force of tension or compression.

We observed that participants in our study preferred to keep the

co-manipulated object in tension as opposed to compression and

therefore this measure is also tracked in case fluctuations in this

measure might carry notable signals. These chosen measures of

force are explored in more depth in Shaw et al. (2024).

To explore the chosen signals in search of patterns that might

be exploited for the use of predicting our chosenmotion primitives,

we used two-dimensional (2D) histograms with the value of each

given signal on the y-axis, and the change in position on the

x-axis. Finally, the color indicates the frequency of a particular

combination both a value of a measure at a particular position.

Because we controlled for the position by setting the starting and

ending locations for each task, any regularly repeating patterns

show up as brighter paths on the 2D histograms, as can be seen

in Figure 7. The 2D histograms in Figure 7 use data from all

repetitions of the TX task, translating 1 meter in the positive x-axis

as shown in Figure 4.We can observe several patterns present in the

TX task. Accelerations follow a fairly consistent pattern that looks

like a sideways “Z.” Velocities follow a smooth arc from the start to

the end of the task. Tension, compression, and f⊥ forces drop from

regions of high noise near the start and end of the task to low noise

through the middle of the task. The measured force of the follower

along the x-axis roughly follows the same pattern as acceleration.

Finally, f‖ shows a pattern similar to f⊥ but not as sharp.

The 2D histograms sampled in Figure 7 enabled the

visualization of patterns within the data and may also be

used to effectively explore the data for other promising signals and

combinations in future work. Because our goal was to calculate

the correlation between each signal and the change in position

along each axis, these 2D histograms helped to guide the type of

correlations that we used. From the 2D histograms, we observed

that most relationships were going to be nonlinear therefore a

nonlinear correlation metric was needed. Distance correlation

(Ramos-Carreño and Torrecilla, 2023) was chosen because it is the

simplest correlation metric that handles nonlinear relationships.

It works by examining how close sets of points are to each other

and the spread or variation within each set of points. Our goal

was to find the signal that would predict a motion primitive as

quickly as possible. Therefore, whichever signal has the strongest

correlation with the value we are trying to predict will be the best

signal to track.

We proceeded by calculating the distance correlation with a

growing window. The growing window approach allows us to track

how the correlation coefficient changes over time and/or space.

To apply this method, the distance correlation was repeatedly

calculated starting with the first two points of a signal and location
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FIGURE 7

A 2-dimensional histogram for a task with a translation in the x-axis showing patterns over the change in position for acceleration, velocity, f‖, f⊥,

tension and compression, as well as the raw measured force along the axis of movement. These plots were made and examined for each 1-DOF

task. Only one set is shown here for space considerations. The colorbar is dimensionless and represents the count frequency in the respective cells

of the figure.

in each task and ending with all location and signal pairs collected

for the duration of that task, giving us correlations over time. Then,

we binned these correlations by 1-cm or 1-degree increments (in

the case of rotations) in the direction of the goal and averaged them

to obtain the average correlation up to that point in space for each

task, as described in Algorithm 1. Finally, by averaging the distance

correlation values within each bin across all the repetitions of each

1-DOF task (e.g. translation in and rotation about the x, y, and z-

axes) within each leadership arrangement, we generated Figures 8,

9. Importantly, the trends between LFF and LF groups were very

similar. We therefore only report the results for the LFF (as this

type of group has not been extensively studied in the literature)

and the LL group for comparison. Additionally, we only show this

correlation for tasks moving in the positive direction as the data

was symmetric and this improves the clarity of the accompanying

plots.

In Figures 8, 9, the average correlation values of each signal are

shown. Signals with high correlations, after minimal movement,

close to zero on the x-axis, are likely to be superior predictors of

a desired motion primitive. There are nine plots in each figure, one

row for each leadership type and one column for each DOF. Each

plot contains a scatter plot of the averaged correlation over the

linear distance traveled along an axis in Figure 8, and the angular

displacement in Figure 9.

As can be seen in nearly all of the plots in Figures 8, 9, velocity in

a given axis is both themost strongly correlated andmost consistent

signal with respect to a change in position in the same axis. The

exceptions to this observation are rotations about and translations

in the y-axis. Rotations about the y-axis show no best signal to track

import dcorr ⊲ calculates distance correlation

Loop Over Tasks and signals

for task in Tasks do

for signal in signals[velocity, acceleration,

...] do

Growing window loop

for i in length(task) do

corr=dcorr(task[Pose][:i+1],task[signal]

[:i+1])

results.append(corr)

end for

end for

end for

Bin and Average by Distance

for L in leadership-type[LF, LFF, LL] do

for bin in, distances[0.00, 0.01, 0.02,...] do

dfBinned.append(mean(results[L, bin]))

end for

end for

Algorithm 1. Calculate growing window distance correlation, from time

series data of positions and signals, then bins and averages correlations

into 1-cm bins.

suggesting that participants are inconsistent in how they perform

or attempt this task. Translations in the y-axis show that for the LF

and LFF groups a force on the followers side competes with velocity
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FIGURE 8

Plots showing averaged correlation values over changes in position where each column is a 1-DOF translation task in the + direction, and each row

is a leadership type: LFF and LL.

for the strongest correlation with the desired motion. This is likely

due to torques from the leader creating a force on the followers

side in the desired direction. Quantifying how and when velocity

is strongly correlated with future motion and when it is not lends

support to the observations of several researchers (Bin Abu Bakar

et al., 2006; Mielke et al., 2017; Ikeura and Inooka, 1995; Cremer

et al., 2014) who indicate velocity as an important signal to track

for predicting future motion. It also sheds light on when velocity is

the best signal and where it falls short as will be discussed later in

this section.

Across leadership types, we can observe that in every case the

LL type has the smoothest and most distinct correlation between

change in velocity and change in position or orientation. This

suggests that the noise or variance in these plots may correlate

with the difficulty of communicating a particular motion primitive.

We expect that this is because communicating a desired motion

primitive would be more difficult for LF and LFF groups than for

an LL group. This idea is further supported when we note how

the noise increases from a translation in the x-axis to a translation

in the y-axis where LF and LFF must overcome the translation

vs rotation problem (Dumora et al., 2012). We also observed that

the changes in noise correlated with the ability of the leader to

produce a velocity in or about the desired axis on the follower’s side.

In other words, if the leader can produce the desired acceleration

of the co-manipulated object on the follower’s side, without the

assistance of the follower, then the signal will be more clear,

reliable, and consistent. For example, in a translation or rotation

in the x-axis, the leader experiences no mechanical disadvantage

when producing a velocity in or about the x-axis. Similarly, when

performing a translation in the y-axis, the leader must create both a

force and a torque on the leader’s side to create velocity in the y-axis.

The additional torque is needed to counter what is naturally created

by accelerating the leader’s end of the table, thereby preventing a

rotation in the z-axis. The table in this study provides a lever arm

of 0.25 m between each hand to counteract the torque created with

the 0.64 m lever arm between the leader and the center of mass

of the table. Finally, the moment arms available when performing

a translation in the vertical axis are the width of the participant’s

hands, approximately 0.05 m versus the moment arm to the center

of mass of 0.64m. Given the largemechanical disadvantage present,

it is surprising that a vertical movement can be communicated

at all. The leader likely depends on the follower to simply guess

the right direction and magnitude when vertical movements versus

rotations about the y-axis need to be communicated. As evidenced

by the high completion rate in vertical movement tasks and low

completion rates in rotations about the y-axis, which are discussed

in the following section, people default to keeping co-manipulated

objects level rather than anticipating rotations about the y-axis.

It is surprising to note that rotations about the y-axis show

almost no sign of a consistent signal under any leadership type.

Even in LL where both participants knew the task, there is no

consistent correlation. This seems to suggest that rotation about
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FIGURE 9

Plots showing averaged correlation values over the change in orientation where each column is a 1-DOF rotational task in both the + direction, and

each row is divided by LFF and LL.

the y-axis, at least in this experiment, is unfamiliar; most people

have not yet found a consistent and comfortable way to complete

the task, which leads to a more random approach. Thus, we cannot

expect participants to handle rotations about the y-axis intuitively

in the same way we do with the other degrees of freedom. This

may also just be indicative that additional communication channels

(such as visual or auditory signals) may be necessary for some tasks

to clarify intent and coordination. In contrast, both the data and

video analysis showed that human teams could quickly overcome

any ambiguity in the task when rotation was about the x- or z-

axes. Future work includes identifying small impulses or other

haptic or motion-based signals at certain times such that a human-

robot partnership can overcome this problem more effectively (at

least in the x- and z-axes), eventually matching human-only team

performance.

It should also be noted from Figures 8, 9 that the level of

variance is quite high early in the task and increases again upon

getting close to the goal in all tasks. Initially, the participants

have either not yet begun to move or have not built a significant

velocity. Then, when close to the goal, the leader or team tries

to make adjustments that are precise and small in magnitude. In

these situations, velocity does not have sufficient time to become

dominant relative to the other signals. This suggests that velocity

is likely only the best signal in movements of sufficiently large

magnitude. For smaller movements and adjustments, it is not yet

clear which signal or combination of signals will be most reliable.

4.3 Communicability of di�erent degrees
of freedom

One of the primary reasons we tested motions in each of the 6-

DOF (positive and negative), was to address what can and cannot

be intuitively communicated with haptic information in human-

human co-manipulation. To show these results from our study, we

reported the success rates for each task performed in Table 2.

Success was defined as arriving at the goal location with 85%

accuracy within 15 s. The percentage accuracy was calculated by

dividing the progress toward the goal by the total distance to the

goal. An accuracy threshold of 85% was chosen for two reasons:

a percentage was used so that a specific threshold did not have to

be specified for each axis, and the level of accuracy was chosen

based on what felt natural in tests while developing the study. It

is important to emphasize that this was selected before the studies

were completed, and was done to focus our results and analyses on

gross motion that would be most useful for human-robot teams

collaborating to load or unload a truck, move a stretcher, remove

rubble, or other similar tasks where fine manipulation may be less

important for large portions of the task.

Table 2 reports completion percentages across each 1-DOF

task and leadership type, which indicates whether the task could

be communicated within the given time and communication

constraints (i.e. visual cues from the motion of the table, and haptic

cues from interactions through the table).
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TABLE 2 This table compares the di�erence in average time to completion and success rates across leadership types for the 1-DOF tasks.

Task % Success rate Comparing average time to completion

LF LFF LL LF-LL (s) P-value LFF-LL (s) P-value

TX 100 98 100 0.8 0.000∗∗∗ 1.4 0.000∗∗∗

TX_N 100 100 100 1.7 0.004∗∗ 1.3 0.018∗

RZ 100 96 100 1.4 0.000∗∗∗ 2.8 0.000∗∗∗

TY_N 100 100 100 2.3 0.000∗∗∗ 2.9 0.000∗∗∗

RZ_N 100 96 100 1.9 0.000∗∗∗ 3.3 0.000∗∗∗

TY 98 100 100 2.8 0.000∗∗∗ 2.5 0.000∗∗∗

TZ_N 96 96 100 2.8 0.000∗∗∗ 3.0 0.000∗∗∗

RX_N 100 96 100 3.3 0.000∗∗∗ 3.7 0.000∗∗∗

TZ 100 94 100 3.4 0.000∗∗∗ 3.7 0.000∗∗∗

RX 96 100 100 3.4 0.000∗∗∗ 4.4 0.000∗∗∗

RY 45 50 100 7.9 0.000∗∗∗ 6.8 0.000∗∗∗

RY_N 34 38 100 9.1 0.000∗∗∗ 9.0 0.000∗∗∗

The data are sorted from least to greatest average difference in time from the LL type. p-values are reported from paired t-tests Virtanen et al. (2020) comparing the means from LF and LFF to

LL. ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.

When considering the completion percentage, it is clear that

rotations about the y-axis are by far the most challenging task to

communicate. It is surprising to note that translations in the z-

axis had high success rates. The translation vs rotation problem

(Dumora et al., 2012) and our hypothesis predicted that there

would be significant confusion between translations in the z-axis

and rotations in the y-axis, but only rotations about the y-axis

seem to have been affected enough to show up in our criteria for

success. This seems to suggest that there is some default human

behavior, such as assuming that the object should stay level, that

prompts us to default to a vertical translation when there is an

ambiguous choice, as opposed to a rotation about the y-axis.

We also note that there is little if any significant difference in

levels of success between leadership types. With the exception of

rotations about the y-axis, participants achieved very similar levels

of success in all tasks. This suggests that neither the restriction

of verbal and visual cues (relative to the other agents in the

team) nor the addition of a second follower rendered leaders

unable to communicate the task. However, it is possible to obtain

a better perspective of the differences between leadership types

by examining their performance in metrics other than a boolean

completion of the task.

Since participants were instructed to complete the tasks quickly,

the time taken to complete a task can be used as a simple

performance metric. It is then possible to compare performance

within specific tasks. Next, aggregating by leadership type allows

us to correlate the average time to completion with the relative

difficulty of completing a task. If all groups took, on average,

longer to complete the task under a given leadership type,

then we assume it was more challenging for them to complete.

As discussed earlier, in the LL type both participants were

simultaneously given the same instructions, (when to start, goal

configuration, and time remaining), which resulted in near-ideal

communication. Therefore, the average LL time can be used as

a baseline performance against which to gauge the LF and LFF

leadership types. When comparing against this baseline, we assume

that longer average completion times are indicative of greater

communication challenges. We can see in Figure 10 the significant

jump in average time from LL type to LF and LFF types (see p-

values in Table 2). This suggests that the increased difficulties in

communication do indeed have a significant effect on the average

time. We can also observe that there is little difference between the

average completion times of LF and LFF types. This suggests the

addition of a second follower does not cause a large difference in

the communicability of the task. In our experiment, the addition

of an extra participant was unlikely to enable groups to finish

tasks significantly faster because in all cases there is only 6.3 kg

per arm acting on the table. In addition, it may be that the just

noticeable difference (JND) in forces is reduced for both followers

in that each of them is responsible for manipulating a smaller

percentage of the total mass of the object. Thus, the JND may be

lower and allow the followers to respond earlier and possibly faster.

Although adding a second follower might initially be considered a

complication in the dynamics of the co-manipulation, we do not see

a significant increase in time to completion. With more chances for

disagreement to occur, it would not be surprising if a task with three

participants took longer than with two but this was not evident in

the experiments, or at least within the boundaries and context of

this research.

By examining Table 2, we can form a rough idea of the hierarchy

of DOFs from most to least difficult to communicate. Starting

from the top, translations in the x-axis are the easiest followed by

rotations about the z-axis and translations in the y-axis. These are

followed by translations in the z-axis and rotations about the x-

axis. The most difficult tasks to communicate are rotations about

the y-axis.

4.4 Combining motion primitives

Having explored the signal space that can be used to predict

motion primitives, as well as the communicability of motion
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FIGURE 10

Average time to completion in seconds for 1-DOF tasks. The data are shown as box plots (with the minimum, maximum, median, 25th and 75th

percentiles, along with outliers).

FIGURE 11

Explanation of how we developed our metric to quantify the

separation of the degrees of freedom in a path. The diagram shows

a path with perfect separation assuming a value of 1, a path with

both DOFs used separately, and a hypothetical actual path.

primitives in each DOF, we now attempt to answer the following

question: Given a task requiring two degrees of freedom (DOFs),

do participants opt to handle one DOF at a time or attempt to

accomplish them both simultaneously? To answer this question, we

first needed to define a metric that would determine to what degree

an individual task was completed by combining two DOFs versus

splitting up the 2-DOF task into separate 1-DOF tasks.

To do this, we took the shortest path from a start point to a

goal location, forming a right triangle with components along each

axis. Following the shortest path would mean moving both DOFs

simultaneously, while the right angle path would mean perfectly

separating DOFs, as shown in Figure 11. To calculate the metric we

use the pose of the table at each time step on the actual path taken by

the participants, calculate its distance from the diagonal path, and

normalize by the average distance between the right-angled path

and the diagonal path. Finally, all of the normalized distances are

averaged giving our DOF separation metric. A zero value indicates

traveling in both DOFs simultaneously and a one indicates a perfect

separation.

By making a histogram of this multi-DOF metric across each

of the four 2-DOF tasks and splitting by leadership type, we can

obtain an understanding of how frequently and to what degree

people combine or divide the DOFs. Where a zero indicates

having taken the shortest path, a one indicates a separation of

the degrees of freedom, and values greater than one indicate that
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FIGURE 12

Histograms showing whether participants tend to combine DOFs to accomplish tasks or split them up. We compare across leadership types, LF

(blue), LFF (orange), and LL (green).

a longer path was taken. This is shown in Figure 12. Consider

tasks TXY_NN and TXY_PP (translation in the negative x and

y directions, and translation in the positive x and y directions),

which are more fully described in Appendix 1. Note that the

histograms are skewed to the left, toward zero, especially for

the LL type. This indicates that for planar tasks most people

are unsurprisingly inclined to take the shortest path, and higher

quality communication enables participants to be more direct.

Next, observe the TYZ_NP task. In this task, participants move

horizontally relative to the object being manipulated and then lift

vertically. The histograms in this case show a natural splitting

of the task into separate DOF movements, likely because it is

more challenging to perform the vertical task before performing

the horizontal movement. To perform the vertical task before

the horizontal would require participants to hold the object in

an uncomfortable position (uncomfortable in terms of human

biomechanics) for a longer period of time. It is surprising that

many participants opt to start lifting vertically before finishing the

horizontal movement in the TYZ_NP task. Finally, in the RXZ_PN

task, the LL configuration defaults to a very direct approach while

the distribution of the LF and LFF types are nearly normally

distributed, suggesting that there is a notable difference between

this 2-DOF task and the others. Perhaps communicating two

rotations simultaneously is more cumbersome than other 2-DOF

tasks.With evenmore complicatedmaneuvers, such as a 3DOF task

(e.g., rotation about two axes and translating in a third) ormore, the

analysis would necessarily require combining units (for distance

and angle) in some way. Future efforts could explore how to take

the aforementioned implementation of normalized trajectories and

adjust them accordingly for higher DOF tasks with mixed units

(i.e. meters and radians) or keep the various DOFs separate in a

multi-objective sense.

5 Conclusion

Our work contributes several key components necessary

for advancing natural robotic co-manipulation by addressing

challenges present in the base-level motions, non-motion, and

transitions in human co-manipulation. Our exploration of rest

tasks identified primary signals involved in detecting a static

state, as well as the subsequent transition into an active state.
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An exploration of the signal space clarified and validated that

current velocity is a primary signal for determining future motion.

It also revealed the limitations of velocity at low speeds, such

as during the early stages of acceleration and fine positioning

near the end of a task, which provided a clear area of study

for future work. Our study also sheds light on what can and

cannot be communicated intuitively via haptics, with the surprising

result that, within our setup, all but one of the DOFs are

communicable. Next was an analysis of how leadership types

and different levels of information restriction affected the time-

to-completion performance metric against a baseline level of

performance, which was the average time to completion of

the leader-leader teams. This baseline can be used in future

human-robot co-manipulation implementations. Furthermore, an

exploration was made into combining motion primitives, and a

simple metric was proposed for measuring multi-DOF movement

vs DOF separation to accomplish tasks. We showed that human

co-manipulation path selection depends on goal location and

communicability of the given task. Other works will also benefit

from the simple and flexible nature of the study; any set or

subset of the tasks can be replicated and compared against this

human-human data.

The development of effective future co-manipulation

controllers should take into account the following points discussed

in this paper:

• By ensuring easy replication (full or partial), this study

facilitates robust data comparison across future human-

robot interaction research. This enables researchers to track

performance metrics and behaviors, guiding the incremental

development of robots and controllers.

• A three-standard deviation threshold on both position and

velocity was shown to work well as a trigger, indicating a shift

from a static to an active state.

• Velocity was shown to have the strongest correlation with

changes in position in every DOF except rotations about the

y-axis, but it is limited in its usefulness at the beginning and

ends of tasks when velocity is low.

• The average times to completion for the LL type serve as

a baseline performance against which future studies can be

compared.

• The first-order ranking of communicability will allow future

researchers to tailor their tasks to meet specific goals. For

example, they might build a control algorithm to first tackle

the easiest of tasks and then build on it to address more

challenging tasks.

• Common approaches for human-human, two-DOF tasks can

inform the development of more intuitive robotic controllers

and serve as a reference point for evaluating behavior in

diverse scenarios.

Future work in this area might involve quantifying levels

of noise present within potential signals during multi-DOF

movements and determining if velocity continues to be the

best signal for determining future motion and whether it is

suitable for identifying changes in direction. Likewise, future

explorations could expand into more diverse types of co-

manipulation, especially around the home, where furniture and

appliances are repositioned, and at construction sites, where

large and heavy boards, drywall, and piping are carried and

manipulated by more than one person concurrently. In summary,

this work improves our understanding of some of the most

basic and fundamental behaviors in human co-manipulation,

thus furthering the endeavor toward more effective and intuitive

human-robot partnerships.
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Appendices

1 Nomenclature

1 DOF

RX: Rotation in x axis by 90 degrees

RX_N: Rotation in x axis by−90 degrees

RY: Rotation in y axis by 45 degrees

RY_N: Rotation in y axis by−45 degrees

RZ: Rotation in z axis by 90 degrees

RZ_N: Rotation in z axis by−90 degrees

TX: Translation in x axis by 1 meter

TX_N: Translation in x axis by−1 meter

TY: Translation in y axis by 1 meter

TY_N: Translation in y axis by−1 meter

TZ: Translation in z axis by 0.5 meter

TZ_N: Translation in z axis by−0.5 meter

2 DOF

RXZ_PN: Rotation in x axis by 90 degrees, and rotation in z axis

by−90 degrees

TXY_NN: Translation in x axis by −1 meter, and translation in

y axis by−1 meter

TXY_PP: Translation in x axis by 1 meter, and translation in y

axis by 1 meter

TYZ_NP: Translation in y axis by −1 meter, and translation in

z axis by 0.5 meter

3 DOF

R_leader: Rotation about the leader by 90 degrees about z

via right hand rule

TXY_RZ_NPP: Translation in x axis by -1 meter, translation in

y axis by 1 meter, and rotation in z axis by 90

degrees

2 Filtering and smoothing

The post processing of the position signals was performed

in MATLAB with Algorithm 2 producing smooth and clean data

streams for position (Pose), velocity (Vel), and acceleration (Acc)

over time.

Algorithm 2 was visually tuned with a goal to capture both

the quick jostling movements as well as the longer sustained

movements as the table was moved to each pose, while

rejectingmeasurements that would suggest improbable movements

accelerations and velocity. This was accomplished by removing

outliers and smoothing the data after each derivative calculation.
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Traj = Pose ⊲ Duplicate the array of position measurements.

Pose = filloutliers (Pose,“clip”, “movemedian”, 10, “ThresholdFactor”, 0.5)

Pose = smoothdata (Pose,“sgolay”, “SmoothingFactor”, 0.25);

Vel = gradient (Traj, 0.005) ⊲ Calculated velocities

Vel = filloutliers (vel, “clip”, “movmedian”, 30, “ThresholdFactor”, 0.5)

Vel = smoothdata (Vel,“sgolay”, “SmoothingFactor”, 0.25)

Acc = gradient(Vel, 0.005) ⊲ Calculated acceleration

Acc = filloutliers(Acc, “clip”, “movmedian”, 30, “ThresholdFactor”, 0.5)

Acc = smoothdata(Acc, “sgolay”, “SmoothingFactor”, 0.25)

Algorithm 2. Outlier rejection smoothing and derivation.
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