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Human skeleton-based action recognition is an important task in the field
of computer vision. In recent years, masked autoencoder (MAE) has been
used in various fields due to its powerful self-supervised learning ability and
has achieved good results in masked data reconstruction tasks. However, in
visual classification tasks such as action recognition, the limited ability of
the encoder to learn features in the autoencoder structure results in poor
classification performance. We propose to enhance the encoder’s feature
extraction ability in classification tasks by leveraging the latent space of
variational autoencoder (VAE) and further replace it with the latent space of
vector quantized variational autoencoder (VQVAE). The constructed models are
called SkeletonMVAE and SkeletonMVQVAE, respectively. In SkeletonMVAE, we
constrain the latent variables to represent features in the form of distributions.
In SkeletonMVQVAE, we discretize the latent variables. These help the encoder
learn deeper data structures and more discriminative and generalized feature
representations. The experiment results on the NTU-60 and NTU-120 datasets
demonstrate that our proposedmethod can e�ectively improve the classification
accuracy of the encoder in classification tasks and its generalization ability in the
case of few labeled data. SkeletonMVAE exhibits stronger classification ability,
while SkeletonMVQVAE exhibits stronger generalization in situations with fewer
labeled data.

KEYWORDS

human skeleton-based action recognition, variational autoencoder, vector quantized
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1 Introduction

Action recognition has consistently remained an active topic of research within the

realm of computer vision. Compared with other data formats such as RGB (Simonyan

and Zisserman, 2014; Feichtenhofer et al., 2019; Buch et al., 2017; Varol et al., 2017)

and depth information (Cao et al., 2017; Fang et al., 2017; Xu et al., 2020; Chen et al.,

2021), skeleton data (Duan et al., 2022; Thoker et al., 2021) eliminate the interference of

redundant information such as background and lighting. It has the advantages of high

order, lightweight, and high robustness. With the deepening of pose estimation (Cao et al.,

2017; Lu et al., 2023) research, the extraction of human skeleton data has becomemore and

more fast and accurate.

Nowadays, the mainstream human action recognition method is still fully

supervised learning, which can be divided into recurrent neural network (RNN)
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(Du et al., 2015; Li et al., 2019), convolutional neural network

(CNN) (Hou et al., 2016; Wang et al., 2016; Banerjee et al.,

2020), graph convolutional neural network (GCN) (Yan et al.,

2018; Liu Z. et al., 2020), and transformer (Wang et al., 2021;

Zhang et al., 2021). These methods require a large amount of

labeled data. However, it is a costly and time-demanding task to

collect and label data. In addition, these methods may lead to

overfitting during the learning process. To alleviate these problems,

some works use self-supervised methods to learn unlabeled data.

They mainly hope to learn a universal feature representation by

solving pretext tasks, and then use it for downstream tasks such as

contrastive learning (Dong et al., 2023; Lin et al., 2023). Contrastive

learning allows the model to learn the feature invariance of the

same skeleton sequences from different views by constructing

positive and negative pairs through data augmentation. However,

these methods of comparative learning pay more attention to

global features, ignore the context relationship between frames, and

depend on the number of comparison pairs.

Recently, action recognition introduced a new self-supervised

method, mask encoding, and proved its effectiveness. In this

method, a part of the data is masked, and the model infers the

semantic information of the masked part through the context

of the visible part, which can effectively capture the contextual

relationship by analyzing the global and local information in the

data, thereby enhancing the model’s ability to capture intricate

patterns and relationships within the data. MAE (He et al., 2022)

has achieved success in the field of image. It can still effectively

restore the original data by masking the image content with high

probability. This excellent performance has attracted extensive

research in different fields, and this concept has been applied to 3D

human skeleton action recognition task. SkeletonMAE (Wu et al.,

2023) based on human 3D skeleton sequence follows the idea of

MAE. It randomly masks some frames and skeleton joints, uses

the encoder—decoder structure to learn the relationship between

unmasked skeleton joints, reconstructs the masked skeleton joints,

and then uses the pre-trained encoder for human skeleton-based

action recognition. However, the encoders of these methods can

only encode limited features, and the extracted data information

is not sufficient. To enhance the feature extraction ability and

generalization ability of the encoder, we propose SkeletonMVAE,

which inserts the potential space of the variational autoencoder

(VAE) (Kingma and Welling, 2013) behind the encoder of

SkeletonMAE. The latent variables of the variational autoencoder

(VAE) are expressed in the form of distribution, allowing the

encoder to learn deeper data structures and data distributions. By

constraining the latent variables to a normal distribution close to

the standard, the encoder can encode more discriminative feature

representations, which is more conducive to the classification

task. Furthermore, we propose SkeletonMVQVAE, which replaces

the latent space with the latent space of the vector quantization

variational autoencoder (VQVAE) (Van Den Oord et al., 2017). In

the quantization process, the change of smaller action will also lead

to a sharp change in the latent vector, so the latent vectors of the

same category are forced to be expressed in a more compact and

distinguishable form, which is beneficial to improve the accuracy of

the encoder for classification tasks. The potential space of VAE and

VQVAE will enable the encoder to capture the inherent uncertainty

and variability in the data, so as to obtain a more robust, more

expressive, and more generalized feature representation.

Specifically, in the pre-training stage, the input skeleton

sequences are randomly masked in temporal and spacial

dimensions, and then, the unmasked data are input into the

network for the reconstruction of the masked part. Finally, the

decoder is removed in the fine-tuning stage, and a simple output

layer is added after the encoder to predict the skeleton data. In

the experiment stage, we discuss the effects of masking rate, latent

variable dimension, decoder dimension, and decoder depth on

the recognition task and found the best combination. Experiment

results show that our method is generalized and robust and

effectively improves the accuracy of classification in downstream

classification tasks.

In general, we have made the following contributions:

1) To improve the feature extraction ability of the encoder after

the masked reconstruction task, we propose SkeletonMVAE

and SkeletonMVQVAE, which insert the potential space of the

variational autoencoder (VAE) and the vector quantization

variational autoencoder (VQVAE) into SkeletonMAE,

respectively. We discuss the differences between them.

2) We compare several mainstreammodels on the dataset NTU-

60 and NTU-120. Experiments show that our models can

effectively improve the accuracy of downstream classification

tasks. SkeletonMVAE has obvious advantages.

3) We prove that our models still have good robustness

and generalization ability under extremely few label data.

SkeletonMVQVAE has more advantages in the case of fewer

data labels.

2 Related work

2.1 Contrastive learning

In the self-supervised learning, most methods use contrastive

learning (Zhang et al., 2022; Chen et al., 2022) that aims

to enable the model to differentiate between various inputs

in the feature space, distinguishing between similarities and

dissimilarities. Research in this area typically involves creating

positive and negative pairs through data augmentation, extracting

representations via an encoder, and computing the similarity

between two samples. Positive samples exhibit high similarity,

while negative samples demonstrate low similarity. Previous

comparative learning used normal enhancement to construct

similar positive sample pairs. AimCLR (Guo et al., 2022) employs

extreme data augmentation to obtain more diverse positive

samples. CrosSCLR (Li et al., 2021) dugs positive sample pairs from

similar negative samples, uses multi-view mining positive samples

to learn cross-view consistency, and extracts more comprehensive

cross-view features. SkeAttnCLR (Hua et al., 2023) focuses on

the fact that human actions are often related to local body parts.

Therefore, local salient features and non-salient features were

proposed, and a large number of contrast pairs were generated to

guide the model to learn the action representation of the human
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skeleton. The above contrastive learning usually has problems such

as the need for a large number of comparison pairs and the lack of

correlation between frames.

2.2 Masked encoding

Other self-supervised works such as BERT (Devlin et al., 2018),

MAE (He et al., 2022), and SkeletonMAE (Wu et al., 2023) leverage

masked reconstruction as a pretext task, which well enhance the

learning of contextual relationships in data time and space. In

natural language processing, the famous model BERT (Devlin et al.,

2018)masks tokens representing sequential data and then predicted

the masked tokens. It calculates the loss between the predicts

results and the original data to capture the features of language

sequences. Following the idea of BERT, in the field of image

processing, MAE (He et al., 2022) adopts an asymmetric encoder—

decoder structure to mask image patches and reconstructed them

at the pixel level. Inspired by MAE, VideoMAE (Tong et al., 2022)

applies masking encoding to the field of RGB video. Because of

the redundancy of time, it can also bring good performance with

a very high masking ratio. MAR (Qing et al., 2023) proposes

“cell running masking” on the basis of VideoMAE to encourage

the leakage of spatio-temporal information, hoping to use the

redundancy of spatio-temporal to provide a detailed context for

the encoder to reconstruct the missing patch. In the field of

skeleton action recognition, SkeletonMAE (Wu et al., 2023) masks

joints at the frame and joint levels, only encodes the unmasked

joints and predicts the masked ones. This integration of masked

reconstruction with self-supervised learning has shown promising

results in various classification tasks and its potential to improve

feature representation and classification performance.

2.3 The feature extraction of VAE and
VQVAE

VAE and VQVAE have always been regarded as excellent

generative models. Cheng et al. (2023) used VQVAE to generate

coherent and structured fire scenarios, and the generated data

were used for training and predicting wildfires. Zhu et al. (2023)

proposed DSCVAE to generate consistent and realistic samples

for predicting drop coalescence based on process parameters,

improving prediction accuracy. With the development of deep

learning, VAE and VQVAE have been used for feature extraction

in many fields. Yue et al. (2023) uses the variational autoencoder

to extract the feature invariance of EEG signals and then classifies

them through a one-dimensional convolutional network. To

extract the semantic features between words, Xu et al. (2023)

use vaE to reconstruct the feature space so that it conforms to

the normal distribution. This method can effectively extract text

features for text classification. In the field of speech emotion

recognition, TACN (Liu J. et al., 2020) proposes to use VQVAE to

model speech signals and learn the intrinsic expression of datasets.

Hsu et al. (2022) used VQVAE as the feature extraction module of

the pre-training model to extract the spectral features of prosodic

phrases. In the field of anomaly detection, LSGS (Wang et al.,

2023) uses VQVAE to extract image features and locates anomalies

by reconstructing a more accurate image. They introduced VAE

and VQVAE as feature extractors to improve the performance

of the model. Therefore, in the field of human skeleton-based

action recognition, we introduce VAE and VQVAE into the self-

supervised method of masking reconstruction. We hope to recover

the masked data through its good generation ability to improve the

feature extraction ability of the original encoder.

3 Methods

In this section, based on SkeletonMAE, we propose to improve

the potential space of the masked reconstruction model. We

explore two potential spatial patterns: one is the continuous

potential space of VAE, and the other is the discrete potential space

of VQVAE. We first review the characteristics of the two potential

spaces and then introduce the network structure in detail.

3.1 The potential space of VAE and loss
function

Given the skeleton joint dataset X = {xi}
N
i=1, which contains N

samples. We make z obey the standard normal distribution, and

the probability distribution of the reconstructed sample x of the

decoder is P(x) =
∫

z
P(z)P (x|z)dz, where P(z) is the probability

of sampling the encoded z from the standard normal distribution,

and P(x|z) is the probability of the output sample x of the decoder

when the encoded z is input. By maximizing L =
∑

x
logP(x),

the reconstructed data are similar to the original data. However,

not all z is meaningful, so p(z|x) is introduced to obtain the z

corresponding to the input x. The posterior distribution p(z|x) is

difficult to obtain, so we can use the encoder to fit the distribution

q(z|x) of any x, then

logP(x) =

∫

z

q (z|x) logP(x)dz

=

∫

z

q (z|x) log

(

P(z, x)

q (z|x)

)

dz + KL
(

q (z|x)
∣

∣

∣

∣P (z|x)
)

≥

∫

z

q (z|x) log

(

P (x|z) P(z)

q (z|x)

)

dz

(1)

The right half of the above equation is the Evidence Lower

Bound (ELBO). We express it as Lb and hope that it is as large

as possible.

Lb =

∫

z

q (z|x) log

(

P (x|z)P(z)

q (z|x)

)

dz

=

∫

z

q (z|x) log

(

P(z)

q (z|x)

)

dz +

∫

z

q (z|x) log (P (x|z)) dz

= −KL
(

q (z|x)
∣

∣

∣

∣P(z)
)

+

∫

z

q (z|x) log (P (x|z)) dz

(2)
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As Lb increases, KL
(

q (z|x)
∣

∣

∣

∣P(z)
)

decreases, and
∫

z
q (z|x) log (P (x|z)) dz increases. Since P(z) obeys the standard

Gaussian distribution and q (z|x) obeys the Gaussian distribution,

our SkeletonMVAE reconstruction loss can be written as

Lmvae = β ∗
1

N

N
∑

i=1

1

2

(

eσi − (1+ σi) + (µi)
2
)

+
1

N

N
∑

i=1

(

∥

∥xi − x̂i
∥

∥

2
)

(3)

where σi represents the variance of the i-th sample in the

latent space, µi represents the mean in the latent space, and x̂i is

the reconstructed sample. Adjusting the value of β can affect the

model’s emphasis on reconstruction loss and KL divergence loss

during training. We hope that the model is more inclined to focus

on retaining the details and structural information of the data and

pay more attention to retaining the specific characteristics of the

input data when generating the data, so the value of β is set to

0.005. We add the first part of the loss function as a regularization

term. When z is known to obey the standard normal distribution,

the first part constrains p (z|x), that is, the latent variable is close to

the standard normal distribution, which helps the encoder to learn

a more compact and discriminative data representation. Moreover,

the latent variable in the form of distribution rather than the single

value in SkeletonMAE can enhance the robustness of the model to

noise and abnormal data and has better generalization, which can

adapt to datasets with different distributions. The second part aims

to minimizing the disparity between the reconstructed data and the

original data.

3.2 The potential space of VQVAE and loss
function

Unlike the usual MAE, VQVAE do not directly use z as the

input of the decoder but map it to a discrete vector zq according

to a set of codebooks. Through vector quantization technology, the

continuous feature space is mapped to the discrete potential space,

which helps to learn more meaningful feature representation and

improve the model’s ability to represent data. Because codebook

is discrete, even if the input data x change slightly, the quantized

latent variable zq will change greatly (jump to another discrete

vector). It forces the encoder to extract key information from

the input data x for meaningful mapping in the discrete space.

This mandatory information compression mechanism encourages

encoders to learn more meaningful latent variable representations.

In addition, due to its discreteness, redundant information is

removed, and data of the same category will have a more compact

representation, and the anti-interference ability is also enhanced.

Specifically, for skeleton sequence data, the encoder outputs

a continuous vector z ∈ R
N×D×T′×V ′

. The network learns a

codebook E = [e1, e2, e3...eK] (E ∈ R
D×K), e is the D-dimensional

vector in the codebook, and K is the size of the codebook. VQVAE

completes the mapping between the continuous vector z and the

codebook E through the nearest neighbor search.

k = argmin
j

∥

∥zi − ej
∥

∥

2 (4)

where j is the index of the codebook vector closest to zi.

zi = ek (5)

The continuous vector z is mapped to the discrete vector zq ∈

R
N×D×T′×V ′

.

The reconstruction loss is defined as

Lmvqvae = log p
(

x
∣

∣zq
)

+
∥

∥sg[z]− zq
∥

∥

2

2
+ β

∥

∥z − sg
[

zq
]
∥

∥

2

2
(6)

Among them, the first part is the reconstruction loss, which

optimizes the encoder and decoder by reducing the error of the

original sequence and the reconstructed sequence. The second

part faces challenges due to the argmin operation on the

feature vector during mapping, preventing gradient calculation.

To train the latent space codebook, the L2 error between the

encoder’s output z and the latent space e is computed, with sg

representing the stop gradient operation. In the third part, the

L2 error between the encoder’s output z and the corresponding

potential space e is also calculated, but sg is applied to e to

ensure the encoder’s output aligns with the embedding space

and avoids drastic changes (switching from one embedding

vector to another). The β is the weight coefficient, and we set

it to 0.25.

3.3 Model architecture

We propose to insert the potential space of VAE and VQVAE

into SkeletonMAE to improve the feature extraction ability of

the encoder. The model structure is shown in Figure 1. The

same thing of the SkeletonMVAE and SkeletonMVQVAE is that

both have encoder and decoder. The encoder is employed to

extract the feature representation of the unmasked data, while the

decoder reconstructs the masked data based on the latent variables

obtained during encoding. The difference is that SkeletonMVAE

adds the potential spatial structure of VAE after the encoder, while

SkeletonMVQVAE adds the potential spatial structure of VQVAE.

The potential spatial structure of VAE and VQVAE is shown

in Figure 1.

3.3.1 Spatial-temporal masking strategy
Because of the randomness of data loss, we perform random

masking in both temporal and spatial dimensions when we mask

skeleton data. Given the skeleton sequence S ∈ R
N×C×T×J .

First, in the temporal dimensions, some frames are masked (i.e.,

deleted) according to the given frame masking rate Mt , and

the masked skeleton sequence becomes S ∈ R
N×C×(1−Mt)×T×J .

Then, in the spatial dimensions, the joints on all frames are

randomly masked according to the given joint masking rate Mj.

Finally, the skeleton sequence input into the network is S ∈

R
N×C×(1−Mt)×T×(1−Mj)×J . The above masking process is shown

in Figure 2. Gray represents the masked skeleton joints, and blue-

green represents the unmasked skeleton joints.
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FIGURE 1

Masked reconstruction model structure.

FIGURE 2

Spatial-temporal random masking process.

3.3.2 Encoder
As shown in Figure 1, our model applies multiple STTFormer

blocks to capture the relationships between different keypoints

in consecutive frames, which is used to encode and represent

the unmasked parts of the skeleton sequence. To preserve

the location information, we introduce location embedding

after masking.

3.3.3 SkeletonMVAE potential space
After the data pass through the encoder, the mean value

µ and the standard deviation σ are output through the fully

connected layer. The reparameterization technique is used to

sample from the latent space to obtain the latent variables

z = µ + σ ∗ ε (ε ∼ N (0, I)). This process is shown

in Figure 1. As mentioned in Section 3.1, KL divergence, as a
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regularization term, limits the potential variables to approach

the standard normal distribution. Regular potential space means

that the Gaussian distribution parameters of the same category

are basically the same after mapping to the potential space, and

the adjacent points in the potential space are the same category

after decoding. The encoder can learn the more compact and

discriminative data representation, which is more conducive to the

classification task.

3.3.4 SkeletonMVQVAE potential space
Different from SkeletonMVAE, in SkeletonMVQVAE, the data

pass through the latent space of VQVAE after the encoder. As

described in Section B, in the latent space of VQVAE, the feature

vector z is mapped to the discrete latent vector zq according to

the discrete codebook. This process is shown in Figure 1. The

discrete potential space makes the encoder more able to extract

representative features and enhance its robustness to noise.

3.3.5 Decoder
As shown in Figure 1, our model decoder also consists of

multiple STTFormer blocks. Feature vectors are sampled from the

latent space formed by the encoder. We complement the learnable

token for the missing skeleton sequence. The decoder decodes the

masked token based on the sampled feature vectors and position

information. The reconstruction goal is to be consistent with the

original skeleton sequences.

3.4 Pre-train

The pre-training process of our model is shown in Figure 1.

We randomly mask skeleton joints at both temporal and spatial

dimensions and then add the positional embedding to the skeleton

sequences. The unmasked skeleton data are fed into the encoder,

mapped to the latent space. The sampled unmasked skeleton

data, along with the mask token, are input into the decoder for

reconstruction. When VAE potential space is used, we use the

reconstruction loss of Equation 3 from SectionA as the pre-training

loss function. When VQVAE potential space is used, We use

the reconstruction loss of Equation 6 from Section B as the pre-

training loss function. The learning of the feature representation

is continuously improved by minimizing the disparity between the

original data and the reconstructed data. We save the model with

the minimum verification loss as the best model.

3.5 Fine-tune

To evaluate the representation learning ability of our model,

we utilize only the encoder part of the pre-trained model and

add a fully connected layer for classification. We load the pre-

trained parameter weights onto all training data and perform end-

to-end fine-tuning for downstream recognition tasks. Throughout

the fine-tuning process, the cross-entropy loss is utilized as the

loss function and save the model with the maxmum verification

accuracy as the best model.

4 Experiments

4.1 Datasets

4.1.1 NTU-RGB+D 60
The NTU RGB+D 60 dataset (Shahroudy et al., 2016) contains

60 action classes with a total of 56,578 action sequences. Among

them, there are 40 kinds of daily behavior actions, 9 kinds of health-

related actions, and 11 kinds of mutual actions between two people.

The dataset is partitioned into training and testing sets using two

criteria. The first one is Cross-Subject, which divides the dataset

into training set and test set based on different subject IDs. The

training set and test set are completed by 20 different subjects,

respectively, which are used to evaluate the performance of the

model under different subjects of the same action. The second is

Cross-View. The three cameras that capture the video are at the

same height and different angles. The data of camera 1 are used

in the test phase, and the data of camera 2 and camera 3 are used

in the training phase, which can be used to evaluate whether the

model can perform action recognition for skeletons at different

angles.

4.1.2 NTU-RGB+D 120
The NTU RGB + D 120 dataset adds 60 action categories

based on NTU RGB+D 60 and adds 32 settings. Each setting uses

different camera heights and different distances from the subject.

The dataset is also divided using two criteria. The rule of Cross-

Subject is consistent with NTU RGB+D 60. According to the ID

of the subject, 53 people are divided into the training set and the

other 53 people are divided into the test set. The model considers

both different subjects and different settings during the training and

testing process, which is used to evaluate the generalization ability

of the model in the real world. In addition, it also adopts another

partitioning strategy: Cross-Setup, which divides the training set

and the test set according to the IDs of 32 settings. The even

ID is classified as the training set, and the odd ID is classified

as the test set, which is used to evaluate the adaptability of the

model under different perspectives on the setting of the same

subject.

4.2 Experiment settings

Our experiments are implemented under the framework of

Pytorch (Paszke et al., 2019), using a computing node on the

supercomputing platform and four HYGON DCUs under one

computing node. Both the pre-training model and fine-tuning

model utilize the Adam optimizer. When VAE potential space is

used, the base learning rate is set to 0.001. When VQVAE potential

space is used, the base learning rate is set to 0.01. We set the weight

decay to 0.0001. The pre-training epoch number is 200, and the

fine-tuning epoch number is 200. Batch size is set to 64. We employ

a step-wise learning rate strategy, adjusting the learning rate to

one-tenth at epochs 60, 90, and 110.
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TABLE 1 Fine-tuned results on NTU-60 and NTU-120 datasets.

NTU-60 (%) NTU-120 (%)

Method Backbone X-sub X-view X-sub X-set

SkeletonCLR (Hua et al., 2023) ST-GCN 82.2 88.9 73.6 75.3

CPM (Zhang et al., 2022) ST-GCN 84.8 91.1 78.4 78.9

CrosSCLR (Li et al., 2021) ST-GCN 86.2 92.5 80.5 80.4

AimCLR (Guo et al., 2022) ST-GCN 86.9 92.8 80.1 80.9

Hi-TRS (Chen et al., 2022) Transformer 86.0 93.0 80.6 81.6

AimCLR (Guo et al., 2022) STTFormer 83.9 90.4 74.6 77.2

CrosSCLR (Li et al., 2021) STTFormer 84.6 90.5 75.0 77.9

SkeletonMAE (Wu et al., 2023) STTFormer 86.6 92.9 76.8 79.1

SkeletonMVAE STTFormer 88.4 93.1 80.6 83.5

SkeletonMVQVAE STTFormer 88.0 93.3 80.0 81.4

The bold values represent optimal values.

TABLE 2 Fine-tuned result comparison on the NTU-60 and NTU-120 datasets with fewer labeled data.

NTU-60 (%) NTU-120 (%)

Method X-sub X-view X-sub X-set

5% 10% 5% 10% 5% 10% 5% 10%

Hi-TRS (Chen et al.,

2022)

63.3 70.7 68.3 74.8 – – – –

CrosSCLR (Li et al.,

2021)

63.5 71.0 66.9 75.1 50.2 58.5 50.4 60.6

AimCLR (Guo et al.,

2022)

63.9 70.2 67.5 76.2 49.0 58.6 51.8 60.5

SkeletonMAE (Wu

et al., 2023)

64.4 73.0 68.8 76.9 50.4 61.8 52.0 62.5

CPM (Zhang et al.,

2022)

– 73.0 – 77.1 – – – –

SkeletonMVAE 65.1 73.7 67.1 78.1 53.9 62.7 53.0 64.6

SkeletonMVQVAE 66.2 73.5 69.6 77.9 55.7 62.4 56.3 64.3

The bold values represent optimal values.

4.3 Comparison with existing mainstream
methods

The comparison of our SkeletonMVAE, SkeletonMVQVAE,

and other mainstream models on the NTU-60 and NTU-

120 datasets is shown in Table 1. On the NTU-60 dataset,

our SkeletonMVAE achieved a 1.8% higher accuracy than

SkeletonMAE under the X-sub protocol and a 0.2% higher

accuracy under the X-view protocol, and our SkeletonMVQVAE

achieved a 1.4% higher accuracy than SkeletonMAE under the

X-sub protocol and a 0.4% higher accuracy under the X-view

protocol. On the NTU-120 dataset, our SkeletonMVAE achieved

a 3.8% higher accuracy than SkeletonMAE under the X-sub

protocol and a 4.4% higher accuracy under the X-set protocol,

and our SkeletonMVQVAE achieved a 3.2% higher accuracy than

SkeletonMAE under the X-sub protocol and a 2.3% higher accuracy

under the X-set protocol. We can see that our SkeletonMVAE fine-

tuning results is not only outperform other classical methods on

small datasets but also have the potential to perform even better on

larger datasets. The accuracy of our SkeletonMVQVAE on NTU-

60 and NTU-120 datasets is also improved to varying degrees

compared to SkeletonMAE. In this way, in terms of improving

accuracy, SkeletonMVAE is slightly better, and the potential space

of VAE-style regularization is more conducive to the realization of

classification tasks. Experimental results show the effectiveness of

our proposed method.

4.4 Semi-supervised results

We randomly sample 5% and 10% of data from the training

set for semi-supervised fine-tuning. The sampling rule is to

sample the same proportion of data within each class. The semi-

supervised results are presented in Table 2. The results show that

the performance of our proposed method is significantly better
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TABLE 3 Ablation study on frame and joint masking ratio.

Frame
masking
ratio

Joint
masking
ratio

SkeletonMVAE
(%)

SkeletonMVQVAE
(%)

0.4 88.4 88.0

0.4 0.6 87.0 86.2

0.8 87.8 86.8

0.4 87.5 86.5

0.5 0.6 87.5 87.8

0.8 87.4 87.7

0.4 87.4 86.1

0.6 0.6 87.5 87.3

0.8 87.4 87.1

than the compared methods. We compare our SkeletonMVAE and

SkeletonMVQVAE with the SkeletonMAE on NTU-60 and NTU-

120 datasets. SkeletonMVAE has different degrees of improvement

(0.5% to 3.5%) than SkeletonMAE. SkeletonMVQVAE also

has different degrees of improvement (0.4% to 5.3%) than

SkeletonMAE. It can be seen that when the sampling ratio is

5%, SkeletonMVQVAE shows a greater advantage. When the

sampling ratio is 10%, SkeletonMVAE and SkeletonMVQVAE

perform basically the same. It can be concluded that the potential

space of SkeletonMVQVAE discretization is more conducive to

generalization in the case of less labeled data. The experimental

results indicate that our SkeletonMVAE and SkeletonMVQVAE still

exhibit generalization ability with a small amount of labeled data

and the generalization is improved compared to SkeletonMAE.

4.5 Ablation study

All the experiments in this section are carried out on the NTU-

60 dataset, and more detail of the model we proposed is analyzed.

4.5.1 Frame and joint masking ratio
According to practical experience, the missing information in

actual data is typically random. Therefore, we adopted a random

method tomask the joints in both temporal and spatial dimensions.

In temporal dimension, frames are masked with probabilities of

0.4, 0.5, and 0.6, while in spatial dimension, joints are masked

with probabilities of 0.4, 0.6, and 0.8. As shown in Table 3, under

the X-sub partition standard of NTU-60, when the frame mask

rate is 0.4 and the joint mask rate is 0.4, SkeletonMVAE and

SkeletonMVQVAE have the best performance.

4.5.2 Latent variable dimension
The dimension of the latent variable in the VAE determines

the number of features that the model can learn and represent,

which influence model’s capacity to learn and represent features

and the quality of the generated data.We conduct experiments with

different latent variable dimensions, and the results are presented

TABLE 4 Ablation study on SkeletonMVAE latent variable dimension.

Latent variable dimension SkeletonMVAE (%)

15 87.7

25 88.4

35 87.5

45 87.6

55 86.9

65 87.6

TABLE 5 Ablation study on SkeletonMVQVAE latent variable dimension.

Latent variable dimension SkeletonMVQVAE
(%)

100 86.8

128 88.0

256 86.3

512 87.7

TABLE 6 Ablation study on decoder embedding dimension.

Dimension SkeletonMVAE
(%)

SkeletonMVQVAE
(%)

128 86.1 86.7

256 88.4 87.7

512 86.6 86.4

TABLE 7 Ablation study on decoder depth.

Decoder
depth

SkeletonMVAE
(%)

SkeletonMVQVAE
(%)

5 87.9 87.4

7 87.5 88.0

9 88.4 87.7

11 87.9 87.1

in Table 4. It shows that the model performs best when the latent

variable dimension is 25. The lower latent variable dimension can

lead to information loss, while the higher latent variable dimension

can increase the model’s complexity, requiring more training data

and time to achieve good performance. Considering the model’s

performance and available resources, we chose the latent variable

dimension of 25.

We explore the impact of the codebook size of the latent space

(i.e., the compactness of the latent vector) on the classification task.

The influence of codebook size K on classification task is shown in

Table 5. It is found that too large or too small K is not conducive

to classification, because too large K has no way to learn compact

representation, and too small K will lose information. When K is

128, the classification accuracy is 88.0%, which is the best result. The

different latent space makes SkeletonMVQVAE greatly reduce the

number of parameters of themodel compared with SkeletonMVAE.
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TABLE 8 Number of model parameters, computational complexity, and

pre-training time for SkeletonMVAE and SkeletonMVQVAE.

Model Parameter
(M)

FlOPs (G) Pre-training
time (hours)

SkeletonMAE 11 42.8 39

SkeletonMVAE 25 44.9 42

SkeletonMVQVAE 10 36.3 38

TABLE 9 Structure of SkeletonMVAE.

Layer
name

Input
dim

Output
dim

QKV
dim

Encoder

Input layer 3 64

Block1 64 64 16

Block2 64 64 16

Block3 64 128 32

Block4 128 128 32

Block5 128 256 64

Block6 256 256 64

Block7 256 256 64

Block8 256 256 64

vae(input) Dim(input) 2*25

vae(output) 25 dim(output)

Decoder

Block1 256 256 64

Block2 256 256 64

Block3 256 256 64

Block4 256 128 64

Block5 128 128 32

Block6 128 64 32

Block7 64 64 16

Block8 64 64 16

Output layer 64 3

4.5.3 Decoder embedding dimension
We perform ablation experiments on the decoder’s embedding

dimension, evaluating the model’s performance across three

different dimensions: 128, 256, and 512. The experimental results

are shown in Table 6. The SkeletonMVAE and SkeletonMVQVAE

achieve the best accuracy when the decoder embedding dimension

is set to 256.

4.5.4 Decoder depth
We further conduct the ablation study on different decoder

depths (i.e., the number of STTFormer blocks used and a full

connection layer). The decoder depths are set to 5, 7, 9, and 11

layers. The results are shown in Table 7. Too deep or shallow

depths both reduce the fine-tuning accuracy. Considering the

TABLE 10 Structure of SkeletonMVQVAE.

Layer
name

Input
dim

Output
dim

QKV
dim

Encoder

Input layer 3 64

block1 64 64 16

block2 64 64 16

block3 64 128 32

block4 128 128 32

block5 128 256 64

block6 256 256 64

block7 256 256 64

block8 256 256 64

Decoder

block1 256 256 64

block2 256 256 64

block3 256 128 64

block4 128 128 32

block5 128 64 32

block6 64 64 16

output layer 64 3

fine-tuning accuracy and model parameters, we set the decoder

depth of SkeletonMVAE to 9 layers, and the decoder depth of

SkeletonMVQVAE to 7 layers.

As shown in Table 8, compared with SkeletonMAE, the

parameters of SkeletonMVAE increased by 14M, the FLOPs

increased by 2.1G, and the training time increased by 3 h.

The parameters of SkeletonMVQVAE decreased by 1M, the

FLOPs decreased by 6.5G, and the training time decreased by

1 h. SkeletonMVQVAE achieves the best performance when the

decoder depth is 7, and the training efficiency is also improved

compared with SkeletonMVAE.

We summarize the Skeletonmvae network structure as shown

in Table 9. The dim(input) is the output dim of block8× (1−Mt)×

T×
(

1−Mj

)

×J. The dim(output) isC×(1−Mt)×T×
(

1−Mj

)

×J.

In addition, we also list the model structure of

SkeletonMVQVAE, as shown in Table 10. SkeletonMVQVAE

shows better results on fewer decoder layers. We believe that it

is because too strong decoder is not conducive to the encoder to

extract features. In this way, SkeletonMVQVAE further reduces the

parameters of the model.

5 Conclusion

The masked reconstruction model aims to improve the

accuracy of the encoder in the downstream classification task by

pre-training the reconstruction of the masked skeleton joints. The

traditional masked reconstruction model uses the autoencoder

structure but cannot learn richer potential information and data

structure. To this end, we propose to improve the latent space

based on the SkeletonMAE model and explore two different
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latent spaces. One is the VAE normal distribution regularization

space, and the other is the VQVAE discrete latent space. We

also performed pre-training of masked reconstruction and fine-

tuning of downstream classification tasks on them and discussed

the influence of two different latent spaces on downstream

classification tasks, as well as the generalization ability of two

different latent spaces. The experimental results show that the

use of different latent spaces in pre-training can significantly

improve the performance of downstream classification tasks in

human skeleton-based action recognition. This shows that the

choice of potential space plays a vital role in improving the

overall effectiveness of the SkeletonMAE model. The shortcoming

of this model is that the current focus is still on the

field of action recognition, and the problem of cross-domain

generalization needs further research to make it more conducive to

practical application.
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