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The development of air traffic control (ATC) automation has been constrained by 
the scarcity and low quality of communication data, particularly in low-altitude 
complex airspace, where non-standardized instructions frequently hinder training 
efficiency and operational safety. This paper proposes the BART-Reinforcement 
Learning (BRL) model, a deep reinforcement learning model based on the BART 
pre-trained language model, optimized through transfer learning and reinforcement 
learning techniques. The model was evaluated on multiple ATC datasets, including 
training flight data, civil aviation operational data, and standardized datasets 
generated from Radiotelephony Communications for Air Traffic Services. Evaluation 
metrics included ROUGE and semantic intent-based indicators, with comparative 
analysis against several baseline models. Experimental results demonstrate that 
BRL achieves a 10.5% improvement in overall accuracy on the training dataset 
with the highest degree of non-standardization, significantly outperforming the 
baseline models. Furthermore, comprehensive evaluations validate the model’s 
effectiveness in standardizing various types of instructions. The findings suggest 
that reinforcement learning-based approaches have the potential to significantly 
enhance ATC automation, reducing communication inconsistencies, and improving 
training efficiency and operational safety. Future research may further optimize 
standardization by incorporating additional contextual factors into the model.
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1 Introduction

1.1 Introduction

As of the end of 2023, there were 259 transportation airports within mainland China 
(excluding Hong Kong, Macau, and Taiwan), 690 traditional general aviation enterprises with 
general aviation operating licenses, and a total of 3,303 registered general aviation aircraft, 
including 1,398 aircraft used for flight training. The number of registered and managed general 
airports nationwide reached 449, of which 163 were classified as Class A general airports. From 
these data, it can be seen that China’s civil aviation transportation has developed very rapidly, 
especially the development of general aviation, which has led to more complex operations in 
low-altitude airspace (Civil Aviation Administration of China, 2024).

Air traffic control plays a crucial role in ensuring aviation safety and enhancing flight 
efficiency. During the control process, controllers send instructions to pilots via very high 
frequency (VHF) radio, and pilots must accurately repeat these instructions to ensure correct 
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understanding (Lin et  al., 2020). Although radiotelephony 
communications for air traffic control have unique and stringent 
regulations (Lin et al., 2019a; Geacăr, 2010), in practice, the dialogues 
between controllers and pilots often loosely follow standardized 
phrases. This is because they frequently add colloquial terms and 
make simple errors, leading to a high degree of arbitrariness and 
non-standardization in control instructions. This not only increases 
the complexity of communication but also elevates the risk of 
misunderstandings and errors. This phenomenon is especially 
prevalent in the control of low-altitude airspace, typically managed by 
approach and tower controllers. Furthermore, the rise of the 
“low-altitude economy” has prompted diverse stakeholders—from 
local governments to private enterprises—to explore the use of 
low-altitude airspace for cargo transportation, tourism, emergency 
response, and other commercial activities. Because these activities 
frequently rely on smaller airports or temporary landing areas near 
urban or suburban zones, the command structures involved become 
more decentralized, and the personnel managing low-altitude traffic 
can come from varied backgrounds, not always under the direct 
supervision of civil aviation authorities. These factors introduce 
additional variability and risk into radiotelephony communications. 
According to regulations by the International Civil Aviation 
Organization (2020) and Civil Aviation Administration of China 
(2015), controllers at high-traffic airports are required to undergo 
additional training to adapt to busy and complex airspace 
environments. Consequently, a standardized communication model 
capable of adapting to such settings is crucial for ensuring safety and 
efficiency in future low-altitude economic activities.

In recent years, significant progress has been made in the 
application of artificial intelligence (AI) technology in the aviation 
field, especially in air traffic control, flight plan optimization, and 
aviation safety monitoring. However, widespread use in frontline 
operations is challenging, with most implementations being small-
scale experimental setups (Glaser-Opitz and Glaser-Opitz, 2015; Lin 
et al., 2019b; Serdyuk et al., 2018). AI technology, through methods 
such as big data analysis, machine learning, and deep learning, can 
enhance the automation of aviation systems, reduce human errors, 
and improve overall operational efficiency and safety. Nevertheless, 
the effectiveness of AI systems relies on a large amount of high-quality 
data. In the field of air traffic control, the scarcity and confidentiality 
of data pose substantial challenges to the promotion and application 
of AI technology.

For small and medium-sized airports, the issue of data scarcity is 
particularly prominent. Due to resource and scale limitations, these 
airports find it difficult to obtain a large amount of standardized 
training data. Additionally, individual communication habits vary, 
and in radiotelephony communications training, the apprenticeship 
model is used, resulting in differences in communication habits even 
among different shifts at the same airport. This further increases the 
variance in the data. The lack of standardized data not only affects the 
training effectiveness of AI models but also increases errors in actual 
applications due to instruction discrepancies.

In summary, it is crucial to research how to improve the model’s 
ability to handle non-standard texts and its robustness. The BRL 
model proposed in this paper converts non-standard control texts into 
standardized texts. This approach can help trainees familiarize 
themselves with and master standardized phrases in control 
simulators, improving training effectiveness. It can also expand the 

standardized data sets of small and medium-sized airports, enhancing 
the generalization and adaptability of AI models. Additionally, real-
time text standardization technology can assist controllers and pilots 
in understanding and executing instructions more clearly, reducing 
communication misunderstandings and errors. Overall, this research 
provides an effective solution to the highly diverse data distribution 
encountered in low-altitude airspace due to varying communication 
habits and regional differences. By bolstering the model’s 
generalizability across diverse operational scenarios, it further 
facilitates the broader adoption of AI in the field of air traffic control, 
thereby enhancing operational safety and training efficiency. Building 
upon this foundation, the key contributions of this paper are 
as follows:

 (1) Model design and proposal: a standardization model based on 
the BART framework combined with deep reinforcement 
learning (BART-Reinforcement Learning, BRL) was proposed. 
This approach enhances the robustness of BART’s text 
generation against interference and noise while improving the 
model’s generalization capability.

 (2) Innovative intent-based evaluation method: to better assess the 
standardization of air-ground communication instructions, 
dedicated evaluation metrics were designed for different intent 
categories, including Command and Readback Accuracy 
(CRA), Fixed Coordination Reporting Accuracy (FCRA), 
Non-fixed Coordination Reporting Accuracy (NCRA), Other 
Text Accuracy (OA), and Total Accuracy (TA). Compared to 
traditional ROUGE metrics, this approach provides a more 
comprehensive evaluation of the model’s standardization  
effectiveness.

1.2 Related work

Non-standard radiotelephony communications text normalization 
refers to the process, in radiotelephony communications scenarios, of 
refining redundant, non-standard, or colloquial utterances and 
converting them into accurate and standardized phraseology to ensure 
efficient and safe information transmission. In essence, it belongs to 
one of the text generation tasks. Text generation tasks typically include 
machine translation, text summarization, and dialogue generation: 
machine translation focuses on equivalence across different languages, 
text summarization aims to extract or generate the core information 
of the source text in a concise manner, while dialogue generation 
centers on producing coherent responses in an interactive context. By 
comparison, non-standard radiotelephony communications text 
normalization most closely resembles text summarization in its effort 
to handle redundant and colloquial content, extracting key directive 
elements. However, it simultaneously emphasizes strict adherence to 
industry norms and precision in expression. Therefore, from a task-
oriented perspective, it can be  categorized under the text 
summarization branch of text generation.

In recent years, researchers have proposed a variety of models for 
text generation and normalization tasks, primarily including the 
sequence-to-sequence (Seq2Seq) model, the Transformer model, and 
generation architectures based on pre-trained language models. The 
Seq2Seq model, introduced by Sutskever et al. (2014), was initially 
applied to machine translation. This model employs an 
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encoder-decoder architecture that encodes the input sequence into a 
fixed-length context vector, from which the decoder generates the 
target  sequence. Bahdanau et  al. (2014) further introduced the 
attention mechanism, enabling the model to dynamically attend to 
different parts of the input sequence during decoding, thereby 
enhancing its capability for modeling long sequences. Luong et al. 
(2015) investigated various types of attention mechanisms and 
achieved favorable results in machine translation tasks. The Seq2Seq 
model has the advantages of simplicity in structure, ease of 
implementation, and suitability for short sequence generation tasks. 
Moreover, it allows end-to-end training, reducing the need for 
extensive feature engineering. Nonetheless, its primary drawback lies 
in its limited ability to model long sequences: a fixed-length context 
vector can lead to information loss, especially when handling inputs 
containing multiple intentions or complex semantics, resulting in 
lower-quality generated text. Wiseman and Rush (2016) and Cho et al. 
(2014) also underscored this issue, noting that despite improvements 
brought by attention mechanisms, the model remains constrained in 
processing lengthy sentences and comprehending multiple intentions.

To overcome the limitations of Seq2Seq, Vaswani et al. (2017) 
proposed the Transformer model, which relies solely on self-attention 
mechanisms and discards recurrent neural network structures. The 
Transformer can capture global dependencies in the input sequence 
and supports parallel computation, substantially enhancing training 
efficiency and generation quality. Tian et al. (2020) demonstrated that 
the Transformer outperforms traditional Seq2Seq models in tasks 
such as sequence transformation and machine translation, showing 
significant advantages particularly in dealing with long sequences and 
complex sentence structures (Bapna et al., 2018). The main advantages 
of the Transformer model include its simple architecture, training 
efficiency, capacity for modeling long-range dependencies, and strong 
scalability. However, its drawbacks are also evident: it requires 
substantial computational resources, a large amount of training data, 
and is prone to overfitting when data are limited. These disadvantages 
are especially pronounced in the radiotelephony communications 
domain, where data are scarce due to confidentiality and where 
annotations must be  performed by professionals. Consequently, 
applying the Transformer model in real-world operations 
becomes challenging.

In recent years, generation architectures based on Pre-trained 
Language Models (PLMs) have achieved remarkable progress in text 
generation tasks. Raffel et al. (2020) proposed the T5 model, which 
unifies all text-processing tasks into a text-to-text paradigm, 
broadening the scope of Transformer applications in text generation. 
BERT (Bidirectional Encoder Representations from Transformers) 
(Devlin et al., 2019) employs a bidirectional encoder for deep semantic 
understanding; although it excels in natural language understanding 
tasks, its lack of an autoregressive generation component limits its 
effectiveness in direct text generation. As an improved version of 
BERT, RoBERTa leverages larger-scale data and optimized training 
strategies to enhance understanding performance (Liu et al., 2019), 
yet it remains confined to an encoder architecture that is ill-suited to 
complex generation tasks. In contrast, the GPT (Generative 
Pre-trained Transformer) model (Radford et  al., 2019) adopts a 
decoder structure and uses an autoregressive approach, demonstrating 
robust text generation capabilities in language modeling and dialogue 
generation. However, its unidirectional property renders it less 
effective in scenarios requiring bidirectional context comprehension. 

BART (Bidirectional and Auto-Regressive Transformers) (Lewis et al., 
2019) combines BERT’s bidirectional encoding with GPT’s 
autoregressive decoding, employing a denoising auto encoder 
pre-training objective. This enables strong semantic understanding 
while generating high-quality text, achieving state-of-the-art 
performance across various text generation tasks. Due to the unique 
characteristics of radiotelephony communications—such as succinct 
sentence structures, diverse expressions, and the need for precise, 
standardized instructions—BART’s integration of bidirectional 
understanding and generative capabilities is particularly effective in 
handling non-standard inputs and producing standardized 
phraseology, making it the most suitable choice for this task. Despite 
the excellent performance of PLM-based methods in text generation, 
they share a common drawback: they rely on cross-entropy as the loss 
function, causing the generation process to hinge predominantly on 
Maximum Likelihood Estimation (MLE), which can lead to exposure 
bias and inconsistencies with evaluation metrics (Ranzato et al., 2015). 
Moreover, the optimization objectives in pre-trained models are 
typically not directly aligned with real-world evaluation metrics (e.g., 
BLEU, ROUGE, or semantic matching), making it difficult to 
guarantee the final generated text aligns perfectly with task-
specific goals.

To address these challenges, we  incorporate reinforcement 
learning (reinforcement learning, RL) (Paulus et al., 2017). RL is a 
machine learning framework in which an agent interacts with an 
environment and adjusts its policies based on feedback (rewards or 
penalties) to maximize cumulative reward. In text generation tasks, 
the model receives a reward based on semantic consistency between 
the generated text and the target text for each token it generates, 
thereby learning to produce standardized outputs. The reward 
mechanism inherent in RL aligns naturally with the requirement of 
generating text that closely matches the semantics of standardized 
instructions, allowing direct optimization of final generation quality 
rather than mere surface-level similarity. By incorporating task-
specific rewards, RL can enhance the consistency of generated text and 
improve model stability. Paulus et al. (2017) showed that RL effectively 
improves alignment between generated texts and evaluation metrics 
in text summarization tasks, while Wu et al. (2018) demonstrated that 
it significantly reduces exposure bias and improves model robustness 
(Wang and Sennrich, 2020).

Ultimately, we combine BART with reinforcement learning to 
introduce task-related reward signals during generation, enabling 
end-to-end optimization that notably mitigates exposure bias and 
enhances consistency between the generated text and the target 
standards. This approach ensures both semantic accuracy and 
adherence to standard protocols in the generated output, delivering 
more stable and reliable performance in radiotelephony 
communications normalization tasks.

2 Methods and data

2.1 Methodology

Firstly, the model is pre-trained on data from relevant domains to 
grasp general language features and patterns. Subsequently, we apply this 
pre-trained model to the task of standardizing radiotelephony 
communications texts for air traffic control and perform fine-tuning. This 
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method better adapts the model to the characteristics and norms of 
control communication texts, thereby enhancing its performance in this 
task; secondly, to address the issue of distribution differences in 
radiotelephony communications texts, the policy gradient algorithm 
directly optimizes the generation policy, handles complex sequence 
generation, adapts to diverse inputs, utilizes rich feedback signals, achieves 
stable policy updates, and incorporates historical information, thereby 
improving the quality, coherence, and robustness of the generated texts; 
finally, due to the specificity and professionalism of radiotelephony 
communications, we  introduce a new evaluation criterion based on 
control intent to assess the quality of the generated radiotelephony 
communications texts. This evaluation criterion more accurately reflects 
the model’s performance in the task of standardizing control 
communication texts and provides valuable guidance for 
model improvement.

2.2 Deep reinforcement learning 
architecture

Deep reinforcement learning, as a method that combines deep 
learning and reinforcement learning, is widely applied to solve 
decision-making problems with high-dimensional state and action 
spaces. It uses deep neural networks as function approximators, 
playing a crucial role in the end-to-end learning process from raw 
input to action selection. In the task of text summarization, the 
application of deep reinforcement learning provides a new approach 
to model training, enabling the generation of higher quality 
summaries. Its core framework involves an agent learning the optimal 
policy through interaction with the environment. The agent observes 
the current text state and selects the action of generating the next word 
based on a reward function. By continually optimizing the policy 
network parameters to maximize cumulative rewards, the 
summarization process is optimized. The key lies in designing 
appropriate state representations, action spaces, reward functions, and 
policy networks to ensure that the model effectively learns text 

semantics and contextual information, thereby generating higher 
quality summaries.

The model uses the BART model to encode the raw text and 
employs the BART model as the policy network. Through Beam 
Search, it generates candidate texts and uses the ROUGE-1 score 
as a reward function to evaluate the quality of the generated texts. 
The policy gradient algorithm is used to optimize the parameters 
of the BART model, gradually improving the standardization of 
the generated texts. Through these steps, the model can efficiently 
process and standardize radiotelephony communications texts, 
enhancing the model’s generalization capability. The deep 
reinforcement learning model architecture we propose is shown 
in Figure 1.

Figure  1 details the training process of the proposed deep 
reinforcement learning model architecture. First, the input raw X  is 
encoded using the BART model, converting it into the state 
representation S, as described by the Equation 1:

 ( )S BARTEmbedding X=  (1)

Using the BART model, candidate target texts Y are generated 
from θπ , as described by the Equation 2:

 ( )Y Sθπ=  (2)

Using the Beam Search algorithm, multiple candidate texts are 
generated from the BART model, and the highest-scoring Y∗ is 
selected, as described by the Equation 3:

 ( )( )Y Beamsearch Sθπ∗ =  (3)

The ROUGE-1 score between the generated text Y∗ and the 
reference standard text refY  is calculated as the reward r, as described 
by the Equation 4:

FIGURE 1

Deep reinforcement learning model architecture.
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 ( )1 , refr ROUGE Y Y∗= −
 

(4)

The loss function ( )L θ  approximates the expected value by 
averaging over the training samples, where D  represents the number 
of samples in the experience replay buffer, ir  represents the reward for 
the i-th sample, iY∗ represents the best target text for the i-th sample, 
and iS  represents the embedding of the non-standard text for the i-th 
sample, as described by the Equation 5:

 
( ) ( )log

D

i i i
i

L r Y S
D θθ π ∗

=
= − ⋅∑

1

1

 
(5)

The BART model parameters θ  are updated using the gradient 
descent method, where α  represents the learning rate, as described by 
the Equation 6:

 ( )Lθθ θ α θ= − ∇  (6)

2.3 Experimental data

The experiment comprised three datasets: a training flight 
radiotelephony communication recording text dataset consisting of 
4,910 entries from fourteen hours of flight, a civil aviation frontline 
air traffic control command recording text dataset containing 9,414 
entries, and a dataset of 1,000 generated standardized control texts. 
The generated standardized control text dataset was edited based on 
the industry standard “Radiotelephony communications for air 
traffic services” (MH/T 4014-2003) issued by the Civil Aviation 
Administration of China. In the following text, the civil aviation 
frontline air traffic control command recording text dataset is 
referred to as the operational text, the generated standardized 
control text dataset is referred to as the generated text, and the 
training flight radiotelephony communication text dataset is referred 
to as the training text. The pre-trained model has been trained on a 
large-scale corpus comprising both Chinese and English texts, 
endowing it with robust bilingual language understanding 
capabilities. Building upon this foundation, we  have employed 
reinforcement learning techniques, specifically Reinforcement 
Learning from Human Feedback (RLHF), to fine-tune the model’s 
outputs, ensuring they align closely with human expectations. This 
process enables the model to adeptly generate English words and 
sentences that meet specified requirements. Consequently, the 
model demonstrates exceptional performance in handling both 

Chinese and English content, alleviating any concerns regarding its 
bilingual proficiency.

After carefully studying the industry standards issued by the Civil 
Aviation Administration of China and the radiotelephony 
communication scenarios in actual operations, it was found that there 
are some humanistic nuances included when implementing these 
standards. For example, certain units may specify not abbreviating 
“ILS approach” as “ILS” while neighboring units may not have such a 
regulation. Therefore, the definition of standardization for the same 
text may vary across different units. To ensure that the standardization 
in this experiment better reflects the actual situation, three 
experienced frontline controllers were invited to annotate the 
standardized texts. One of them is a supervisor with twelve years of 
experience in training flight command at Suining Nanba Airport, and 
he has also participated in civil aviation air traffic control command 
at Nanchong Gaoping Airport. The second one is a controller with 
four years of experience at Lhasa International Airport, responsible 
for tower and approach control at Lhasa Airport. The third one is a 
controller with four years of experience in approach control at 
Nanchang. Based on the practical work experience of these controllers 
and the industry standard “Radiotelephony communications for air 
traffic services” we  annotated the standardized texts for both the 
training and operational texts.

During the experiment, since the generated control texts were 
entirely standardized, we expanded these texts by randomly selecting 
some and introducing common errors made by controllers during 
actual command processes. Our augmentation involved three types of 
errors, with each selected text incorporating 1 to 2 of the following:

 (1) Random Insertion of Colloquial Words: Inserting colloquial 
expressions such as “Ah” and “Um” to simulate natural speech 
patterns. For example “Em Air China four four two one climb 
to Um six hunderds meters.”

 (2) Correction Command Errors: Simulating scenarios where 
controllers repeat or correct instructions without using the 
term “correction,” which can lead to misunderstandings. For 
example “Air China four four two one descend to six 
hundred meters.”

In the end, the training data consisted of 4,710 entries of training 
text, 9,214 entries of operational text, 9,214 entries of augmented 
operational text, and 900 entries of generated text. The testing data 
included 200 entries of training text, 200 entries of operational text, 
200 entries of augmented recording text, and 100 entries of generated 
text Table 1 presents some examples from the datasets.

To visualize the distribution of the dataset, we encoded all texts using 
TF-IDF and performed dimensionality reduction using LSA. The results 

TABLE 1 Examples of air traffic control instruction text datasets.

Dataset instance Non-standard text Standard text

Training text One Zero Whiskey Uniform after baoshengzhen, direct to penglai, climb to 

one thousand eight hundred meters, One Zero Whiskey Uniform

One Zero Whiskey Uniform after baoshengzhen, direct to 

penglai, climb to one thousand eight hundred meters

Operational text China Eastern offset change to five miles right of track China Eastern offset five miles right of track

Augmented operational text China Eastern uh offset change to uh five miles right of track China Eastern offset five miles right of track

Generated text
Air China eight six seven four contact PinLiang one one one um decimal 

one eight

Air China eight six seven four contact PinLiang one one one 

decimal one eight
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are shown in Figures 2–5, in the reduced-dimensional data, the X, Y, and 
Z axes represent the directions with the greatest variance in the data. From 
the figures, it can be observed that the distribution of generated text is the 
most uniform, as it follows a fixed format. Augmented operational text 
exhibits a more dispersed distribution compared to the operational text, 
while operational text and training text show similar levels of dispersion. 
This is because operational text consists of independent single command 
instructions, whereas training text contains complete training 
conversation texts with context, encompassing a variety of coordination 
and command content, leading to more complex and diverse text content 
with uneven word vector distributions.

2.4 Evaluation methodology

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) is 
a set of metrics used to evaluate automatically generated summaries 

or machine translation results (Thomas et al., 2022). The advantage of 
the ROUGE evaluation method lies in its simplicity and effectiveness 
in measuring the similarity between generated texts and reference 
texts. It is widely applicable to tasks such as automatic summarization, 
machine translation, and text generation. The specific ROUGE metrics 
include: ROUGE-N: Calculates overlaps based on n-grams (e.g., 
ROUGE-1, ROUGE-2). ROUGE-L: Considers sequence and global 
matching information based on the Longest Common Subsequence 
(LCS). ROUGE-W: Uses a weighted longest common subsequence, 
emphasizing continuous matches. ROUGE-S: Based on skip-bigrams, 
allowing for non-continuous matches (Lin, 2004).

For evaluating the effectiveness of standardizing radiotelephony 
communications texts, the advantages of ROUGE-N and ROUGE-L 
lie in their ability to meticulously assess word and phrase matches 
while considering order and global structure. This makes them well-
suited for evaluating the results of standardizing radiotelephony 
communications. The drawbacks of ROUGE-W and ROUGE-S are 

FIGURE 2

The distribution of word vectors for generated text.

FIGURE 3

The distribution of word vectors for training text.

FIGURE 4

The distribution of word vectors for augmented operational text.

FIGURE 5

The distribution of word vectors for operational text.
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that while they provide more flexibility and matching possibilities, 
their complexity and potentially overly lenient matching standards 
may reduce their effectiveness in tasks requiring strict semantic and 
structural matches (Lin and Och, 2004).

The calculation method for ROUGE-N is Equation 7:

 

( )

( )
n

n

match n
S referencesummariesgram S

n
S referencesummariesgram S

Count gram

ROUGE N
Count gram

∈ ∈

∈ ∈

− =
∑ ∑

∑ ∑
 

(7)

In the translation you  provided, n  represents the length of 
n-grams, ( )match nCount gram  denotes the maximum count of 
n-grams that appear simultaneously in the generated summary and 
the corresponding reference summary, while ( )nCount gram  indicates 
the count of n-grams in the reference summary.

The calculation method for ROUGE-L is Equations 8–10:

 

( )
( )

,
LCS

LCS X Y
R

len Y
=

 
(8)

 

( )
( )

,
LCS

LCS X Y
P

len X
=

 
(9)

 

( ) LCS LCS
LCS

LCS LCS

R P
F

R P

β

β

+
=

+

2

2

1

 
(10)

Among these, LCSR  represents the recall rate, LCSP  represents the 
precision rate, and LCSF  is the ROUGE-L value. The parameter β  is 
adjustable and used to balance the focus between recall and precision. If 
the focus is more on recall, it implies that we want the generated text to 
include as much information from the reference text as possible. A high 
recall rate indicates that the important information in the reference text is 
well reflected in the generated text. Conversely, if the focus is more on 
precision, it implies that we want the generated text to be more accurate, 
reducing the introduction of irrelevant information. A high precision rate 
indicates that most of the information in the generated text is important 
information from the reference text.

In contrast to everyday conversations, air traffic control (ATC) 
communications exhibit stronger norms, although this does not imply 
that there’s only one correct way to phrase each instruction. ATC 
communications require language to be concise and precise, avoiding 
hesitant words like “um” or “uh.” In actual operational scenarios, some 
content can be  omitted without affecting the completeness of 
instructions. Therefore, using only the ROUGE evaluation method 
may not comprehensively assess the model’s performance in 

generating standardized texts. For example, in the training flight 
dataset, the original recording states “contact Wuhan one one two 
DAY-SEE-MAL two thank you  for your guidance one two niner 
Delta,” while the standardized form is “contact Wuhan one one two 
DAY-SEE-MAL two goodday one two niner Delta”, THE model’s 
output is “contact Wuhan one one two DAY-SEE-MAL two goodday 
thank you for your guidance one two niner Delta”, which, if evaluated 
using the ROUGE series, would yield the evaluation results as shown 
in the table. However, according to ATC regulations, the model’s 
output instructions are also correct and standardized, even more so 
than the original instructions.

From the ROUGE series evaluation results in Table 2, it is evident 
that while the ROUGE evaluation method can generally reflect the 
model’s ability to generate text, it cannot comprehensively assess the 
model’s capability to generate standardized air traffic control (ATC) 
communications. Therefore, considering the characteristics of ATC 
communications and the varied normative requirements across 
different units, in addition to manually evaluating the quality of text 
generation, a new evaluation method has been established based on 
the intent of ATC instructions.

First, this study categorize all air traffic control (ATC) 
communications into four types, including: command and readback 
texts, fixed coordination report texts, non-fixed coordination report 
texts, and other texts. Specifically, command and readback texts refer 
to instructions issued by controllers that require pilots to execute 
tasks, as well as the texts where pilots read back these instructions. 
Fixed coordination report texts refer to coordinated instructions with 
fixed formats, such as controllers reporting flight dynamics. Non-fixed 
coordination report texts refer to unstructured coordination and 
reporting, such as pilots reporting weather conditions encountered, 
or controllers reporting sudden situations, as well as altitude 
coordination between controllers and pilots. Other texts refer to texts 
other than the above categories, which generally do not affect ATC 
communications, such as “hello” and “thank you.” We have annotated 
each communication text with all intent categories it contains.

During radio communication, the most common types of texts 
are command and readback texts, followed by fixed coordination 
report texts. These two types of texts are required to strictly adhere to 
communication rules. If the standardized text does not strictly follow 
these rules or contains typographical errors or omissions, it will 
be marked as incorrect. In contrast, non-fixed coordination report 
texts and other texts only need to maintain semantic consistency to 
be considered correct. Therefore, during the standardization process, 
these two types of texts are generally not altered. When conducting 
statistics, correctness is marked based on semantic accuracy. In the 
statistics, if a text contains an error in any part, it is counted. For 
multiple errors of the same type within a single text, we count only 
once. Finally, we  calculate the proportion of correct texts in 
each category.

TABLE 2 ROUGE series evaluation results of examples.

Evaluation method Number of n-grams in 
standard instructions

Number of overlapping n-grams between 
model output and standard

Results

ROUGE-1 12 10 0.833

ROUGE-2 11 9 0.818

ROUGE-L 12 10 0.833
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Based on the above, the evaluation indicators based on the intent 
of the instruction include the following four types: CRA (Command 
and Readback Text Accuracy), FCRA (Fixed Coordination Reporting 
Text Accuracy), NCRA (Non-fixed Coordination Reporting Text 
Accuracy), OA (Other Text Accuracy). The specific calculation 
formula as Equation 11:
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2.5 Experimental setup and results

The experiments were carried out on a Windows operating system 
with the following computer configuration: an Intel Core i5-8400 
processor, 56GB of RAM, NVIDIA RTX 4090 24GB graphics card, 250GB 
SSD, and a 3.6 TB HDD. The deep learning framework utilized was 
PyTorch. Table 3 presents the hyperparameter settings for the BRL model.

3 Results

To assess the performance of our constructed model, 
we  conducted comparative studies with current mainstream 
pre-trained models, including GPT-2, BERT, Roberta and Bart.

To better explore the effectiveness of the models across various 
distributions, we annotated the intent types of all training texts, as 
shown in Figure  6. Thus, when testing the models on the three 
datasets, both the ROUGE series evaluation methods and human 
evaluation employed for assessment. Additionally, for the training 
text, we  conducted evaluation using an intent-based evaluation 
method for air-ground communication commands. Experimental 
results are presented in Tables 4–9.

To evaluate the performance of our constructed model, 
we  conducted a comparative study with the current mainstream 
pretrained models, including GPT-2, BERT, Roberta and Bart. As the 
generated text and operational text are independent single-line 
command texts, while the training text consists of complete training 
communication texts with context, the training text is comparatively 
less standardized and contains various types of coordination and 
command content, we have annotated the intent types for all training 
texts, and the results are shown in the Figure  6. Therefore, when 
testing each model on the three datasets, we  employed both the 

ROUGE series evaluation method and manual evaluation, for the 
training text, we further utilized an evaluation method based on the 
intent of air traffic control (ATC) instructions. The experimental 
results are shown in Tables 4–9.

According to the results in Tables 4–8, from the perspective of the 
Rouge evaluation method, all the control models perform well on the 
operation text and generated text tests, with our proposed BRL model 
slightly outperforming the control models. However, it is worth noting 
that on the training text dataset, the generalization performance of all 
control models is not ideal, exhibiting significant generalization 
problems, while the performance of our proposed model only slightly 
decreases. Table 9 provides a detailed display of the performance of 
each model under the evaluation criteria based on instruction intent. 
It can be observed that our constructed BRL model demonstrates the 
best performance on all datasets, indicating that our proposed 
improvement strategy greatly alleviates the problem of poor 
generalization in transfer learning. These performance disparities 
primarily stem from each model’s underlying architecture. GPT-2, 
leveraging autoregressive mechanisms with unidirectional attention, 
excels in generating coherent text but may introduce redundancies or 
omissions in scenarios that demand thorough context comprehension 
and adherence to specialized ATC conventions. BERT and RoBERTa, 
although adept at semantic encoding via bidirectional context 
modeling, have relatively limited sequence-decoding capabilities; thus, 
when strict formatting is required, they can produce errors in key 
fields or overall consistency. Moreover, ATC instruction texts are 
characterized by a “highly standardized” core format while still 
allowing for a certain degree of colloquial or variant expressions. Such 
conditions require models not only to preserve precise structure but 
also to handle and correct potential deviations. BRL addresses these 
needs by incorporating reinforcement learning into BART’s encoder–
decoder framework, where metrics such as ROUGE serve as reward 
functions to iteratively refine alignment with standardized references. 
Through repeated optimization, BRL more effectively resolves 
potential errors and maintains semantic consistency, allowing it to 
balance the rigorous requirements of ATC instructions with the 
flexibility to accommodate minor textual variations. Consequently, 
BRL demonstrates superior stability and generalization across diverse 
ATC datasets, further validating its effectiveness in this task.

4 Conclusion

This study developed a standardized instruction generation 
method for real-time radiotelephony communications using a deep 
reinforcement learning model, BRL, based on the BART pre-trained 
language model. The BRL model demonstrated substantial 
improvements in standardizing control instructions across multiple 
datasets, including training flight data, civil aviation control operation 
data, and generated control instructions derived from the 
“Radiotelephony communications for air traffic services” standard.

Our method effectively addresses the challenges of non-standard 
communication practices prevalent in air traffic control, particularly 
in low-altitude control scenarios managed by small and medium-sized 
airports. By leveraging transfer learning and reinforcement learning 
techniques, the BRL model achieved certain improvements under the 
ROUGE evaluation criteria and demonstrated significant performance 
enhancements under the evaluation criteria based on the intent of 

TABLE 3 Model architecture hyperparameters.

Hyperparameters Values

Dropout 0.1

Max sequence length 128

Learning rate 0.0001

Batch size 16

Number of epoch 20

Optimizer Adam

Beamsearch 3

Weight_decay 0.001
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FIGURE 6

Distribution of intent in training texts.

TABLE 4 The results of GPT2 based on the ROUGE and MER evaluation standard.

GPT2

Evaluation 
methodology

Training text Operational text Augmented 
operational text

Generated text

ROUGE-1 0.933 0.977 0.979 0.929

ROUGE-2 0.864 0.970 0.971 0.828

ROUGE-L 0.932 0.977 0.979 0.929

MER 0.790 0.960 0.965 0.050

TABLE 5 The results of BERT based on the ROUGE and MER evaluation standard.

BERT

Evaluation 
methodology

Training text Operational text Augmented 
operational text

Generated text

ROUGE-1 0.832 0.970 0.959 0.974

ROUGE-2 0.687 0.955 0.923 0.952

ROUGE-L 0.823 0.970 0.959 0.974

MER 0.285 0.890 0.630 0.730

TABLE 6 The results of BART based on the ROUGE and MER evaluation standard.

BART

Evaluation 
methodology

Training text Operational text Augmented 
operational text

Generated text

ROUGE-1 0.934 0.980 0.980 0.988

ROUGE-2 0.872 0.976 0.974 0.983

ROUGE-L 0.933 0.980 0.980 0.988

MER 0.800 0.980 0.970 1
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control instructions, with an overall accuracy increase of 12% 
compared to the baseline model.

The comprehensive evaluation, including a novel assessment 
based on the intent of land-air communication instructions, 
highlighted the model’s capability to enhance the clarity and 
correctness of instructions, thereby reducing communication 
misunderstandings and errors. This advancement not only improves 
training effectiveness for air traffic controllers but also enhances the 
operational efficiency and safety of real-time air traffic control  
communications.

The findings suggest that the implementation of such AI-driven 
models can significantly mitigate the generalization challenges of transfer 
learning models across disparate datasets, promoting broader adoption 
and application of AI technology in air traffic control. Due to the aviation 
industry’s stringent requirements for accuracy and speed, large-scale 
models do not meet practical needs; therefore, we have not considered 
such approaches. Future work will focus on further refining the model 
and exploring its application in other domains requiring standardized 
communication protocols.
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TABLE 7 The results of Roberta based on the ROUGE and MER evaluation standard.

Roberta

Evaluation 
methodology

Training text Operational text Augmented 
operational text

Generated text

ROUGE-1 0.929 0.977 0.978 0.987

ROUGE-2 0.859 0.977 0.972 0.983

ROUGE-L 0.928 0.977 0.978 0.987

MER 0.745 0.980 0.980 1

TABLE 8 The results of BRL based on the ROUGE and MER evaluation standard.

BRL

Evaluation 
methodology

Training text Operational text Augmented 
operational text

Generated text

ROUGE-1 0.941 0.979 0.981 0.988

ROUGE-2 0.873 0.973 0.974 0.983

ROUGE-L 0.940 0.979 0.981 0.988

MER 0.865 0.980 0.960 1

TABLE 9 Results comparing based on instruction intent evaluation criteria for training texts.

Model CRA FCRA NCRA OA TA

GPT2 0.805 0.800 0.555 0.941 0.790

BERT 0.309 0.150 0.148 0.411 0.285

BART 0.834 0.800 0.555 0.882 0.800

RoBERTa 0.762 0.800 0.518 0.882 0.745

BRL 0.907 0.900 0.667 0.941 0.905
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