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Traffic forecasting is crucial for a variety of applications, including route optimization, 
signal management, and travel time estimation. However, many existing prediction 
models struggle to accurately capture the spatiotemporal patterns in traffic data 
due to its inherent nonlinearity, high dimensionality, and complex dependencies. 
To address these challenges, a short-term traffic forecasting model, Trafficformer, 
is proposed based on the Transformer framework. The model first uses a multilayer 
perceptron to extract features from historical traffic data, then enhances spatial 
interactions through Transformer-based encoding. By incorporating road network 
topology, a spatial mask filters out noise and irrelevant interactions, improving 
prediction accuracy. Finally, traffic speed is predicted using another multilayer 
perceptron. In the experiments, Trafficformer is evaluated on the Seattle Loop 
Detector dataset. It is compared with six baseline methods, with Mean Absolute 
Error, Mean Absolute Percentage Error, and Root Mean Square Error used as metrics. 
The results show that Trafficformer not only has higher prediction accuracy, but 
also can effectively identify key sections, and has great potential in intelligent 
traffic control optimization and refined traffic resource allocation.

KEYWORDS

intelligent transportation system, short-term traffic forecasting, Transformer, traffic 
spatiotemporal correlation, deep learning

1 Introduction

Traffic forecasting is a fundamental component of intelligent transportation systems (ITS). 
The primary goal of traffic forecasting is to identify key factors influencing traffic variation 
based on historical observations, develop prediction models, and forecast future traffic 
conditions (Yu, 2021; Rong et al., 2022). Traffic forecasting is typically categorized into short-
term and long-term predictions, depending on the forecast horizon. In this study, the focus is 
on short-term predictions, which generally aim to forecast traffic conditions within the next 
hour. It is particularly significant in the real-world context of ITS for several reasons (Ji et al., 
2023; Li et al., 2025). First, accurate short-term forecasts directly benefit travelers by providing 
more precise travel time estimates, which help individuals make informed decisions about 
their departure times and route choices. This can lead to more efficient traffic distribution and 
reduced overall travel time (Bie et al., 2024; Luo et al., 2024). Furthermore, for transportation 
operators, effective short-term forecasting enables the implementation of real time 
management strategies, such as dynamic route guidance. This helps mitigate congestion before 
it reaches critical levels and reduces the risk of accidents (Sun et al., 2018a,b). However, short-
term traffic forecasting also faces specific challenges, particularly due to the stochastic nature 
of traffic flow and the influence of external factors such as weather, accidents, and special events.
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In pursuit of more accurate traffic forecasting accuracy, many 
methods have been explored. These methods typically take historical 
traffic data as input or combine it with other actual data sources. 
Through a variety of means, they mine the characteristics within the 
traffic flow data to achieve predictions of traffic flow features, such as 
traffic flow speed or traffic volume. They are mainly divided into two 
categories: model methods based on linear statistical theory and 
nonlinear theory. Methods based on linear statistical theory, such as 
historical mean prediction, time series prediction (Ma et al., 2021; 
Han, 2024), Kalman filtering prediction (Okutani and Stephanedes, 
1984; Zhang et al., 2023), are characterized by their simplicity, ease of 
implementation, and low computational cost for a single prediction. 
However, they usually fail to address the uncertainty and nonlinearity 
of traffic flow, thereby lacking the capability of effective prediction in 
complex environments. Nonlinear theoretical model-based methods 
mainly include wavelet analysis (Wang and Shi, 2013; Dong et al., 
2021), chaos theory (Shi et al., 2020), neural network, and support 
vector regression (Omar et al., 2024). Among these, wavelet analysis 
models and chaos theory can extract nonlinear characteristics and 
achieve relatively high accuracy, but due to their high complexity, 
research on traffic forecasting based on these methods is relatively 
limited (Zhang et al., 2018). Neural network models and models based 
on support vector regression have rich parameters and strong fitting 
ability for complex nonlinear relationships, making them the 
mainstream prediction methods currently employed (Wang et al., 
2023; Wang J. et al., 2024).

Early neural network models are essentially shallow neural 
networks (NN), which were unable to comprehensively extract the 
fundamental features from traffic data. Therefore, neural network 
models with multiple hidden layers (MHL), such as Multilayer 
Perceptron (MLP), have gradually been applied in traffic forecasting 
(Oliveira et al., 2021). With the increase in model complexity, the 
network’s ability to extract traffic features enhances, but at the same 
time, it requires a larger number of training samples and the prediction 
time per single training also increases. Due to computational 
limitations, early machine learning algorithms did not demonstrate 
significant advantages in traffic forecasting problems. In 2006, Hinton 
et al. introduced the first Deep Learning (DL) paper, highlighting two 
key insights: deep neural networks with MHL excel at feature learning, 
providing a more fundamental data representation, and “layer-wise 
pre-training” effectively mitigates the challenges of training deep 
networks. The publication of this article sparked the wave of research 
in DL (Nigam and Srivastava, 2023).

Recurrent Neural Networks (RNN) (Pascanu, 2013), along with 
variants like Long Short-Term Memory (LSTM) (Schmidhuber and 
Hochreiter, 1997) and Gated Recurrent Unit (GRU) (Yang et al., 2022), 
are effective at handling sequential data and conducting complex 
transformations. These capabilities enable them to capture temporal 
dependencies in traffic flow, making them ideal for time series 
forecasting (He et al., 2022). In addition, with the widespread use of 
surveillance equipment, convolutional neural network (CNN) models, 
which rely on image data, have been introduced into traffic forecasting 
(Parishwad et al., 2023). Based on the multilayer convolution structure 
inherent in CNN models, these models can effectively capture spatial 
correlation characteristics of traffic flow (Narmadha and Vijayakumar, 
2023). On the other hand, graph neural networks (GNNs) models 
(Scarselli et al., 2008), which are based on graph-structured data, have 
also been applied to traffic forecasting. GNNs are good at modeling the 

relationships between different nodes in a traffic network, especially in 
capturing topological structures and interactions. They are suitable for 
scenarios where the spatial relationship between roads and intersections 
plays a vital role. Subsequently, Transformer-based models (Vaswani 
et al., 2017) have gradually shown great potential in traffic forecasting 
problems. Compared with other traffic forecasting methods, 
Transformer can simultaneously focus on different positions of the 
input sequence through its unique multi-head attention mechanism, 
thereby more comprehensively capturing long-distance dependencies 
and complex features in traffic data. In addition, the architecture design 
of Transformer allows it to perform parallel calculations, greatly 
improving the training efficiency. Compared with some methods based 
on CNNs/GNNs, it has obvious speed advantages when processing 
large-scale traffic data sets, and can adapt to dynamic changes in traffic 
conditions more quickly, providing a more efficient solution for real 
time traffic forecasting (Eleonora and Pinar, 2023; Chen et al., 2024; 
Zoican et al., 2024; Guo B. et al., 2024; Guo X. et al., 2024).

However, existing methods still have limitations. For example, 
traditional graph-based models may face challenges of high 
computational complexity due to complex graph convolution 
operations and strict dependence on road topology. Similarly, in the 
Transformer’s self-attention, while it typically uses all node 
information to compute attention weights, the traffic network, 
composed of roads and intersections, has complex spatial relationships 
that cannot be captured by a simple linear sequence. As a result, the 
current approach introduces unnecessary interactions and noise, 
limiting its ability to fully capture the network’s spatial characteristics. 
Taking into account the complexity of traffic flow and the limitations 
of existing methods, the historical traffic flow data sequence and road 
topology information of traffic nodes are used as the core input data 
source. A DL framework based on the Transformer encoding module 
is constructed to achieve accurate prediction of future traffic speed at 
traffic nodes. Specifically, spatial masks based on spatial topology and 
travel time are designed. In this way, spatial information is effectively 
introduced, significantly enhancing the model’s ability to capture 
spatial relationships in complex urban traffic scenarios and greatly 
improving traffic flow prediction accuracy. In addition, a streamlined 
and effective MLP is used to replace the original complex decoding 
structure of the Transformer. This reduces the computational 
complexity and the number of network layers while ensuring that the 
prediction accuracy is not compromised. The main contributions of 
this work include:

 1 Using the road network topology to generate spatial masks, so 
that the model can take more into account the traffic nodes 
with spatial connections during feature interaction, which 
reduces the unnecessary interaction and noise.

 2 Introducing a Transformer-based traffic forecasting model, 
which can effectively handle long-term dependencies in 
spatiotemporal traffic information and provide 
more interpretability.

 3 Conducting multiple sets of comparative experiments and 
ablation studies using a large-scale real road network dataset to 
assess the model’s performance, accuracy, and its 
internal components.

The remainder of the paper is structured as follows. “Literature 
review” covers DL-based traffic forecasting methods. “Methodology” 
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introduces the DL framework established in this study. “Experiments” 
validates the proposed approach with real world datasets. The research 
conclusions and prospects are presented in “Conclusions.”

2 Literature review

As a core part of ITS, traffic flow prediction aims to anticipate 
traffic conditions, such as traffic flow speed, traffic flow volume, 
enabling authorities to take preemptive measures and travelers to plan 
better. However, traffic flow is complex, affected by various factors. 
Traditional prediction methods struggle to capture its dynamic nature. 
With computing power growth, machine learning, especially DL, has 
emerged as a leading solution (Zhu et al., 2021; Mohammadian et al., 
2023; Ding et  al., 2024; Chen et  al., 2024; Wang Q. et  al., 2024). 
Different DL architectures offer unique strengths in handling traffic 
flow data. RNN and their variants, like LSTM, are designed to handle 
sequential data, making them suitable for capturing temporal patterns 
in traffic flow. CNN excel at extracting spatial features, which is vital 
for understanding the relationships between different traffic nodes (Li 
et al., 2024a). And Transformer, with its attention mechanism, can 
model full dependencies, better handling long-range correlations in 
traffic. Hence, the following sections will explore these three categories 
of DL-based traffic forecasting methods.

2.1 Traffic forecasting based on RNN

RNN and their improved architectures are a highly utilized class 
of NN in the field of traffic forecasting. Tian and Pan (2015) developed 
a recursive LSTM model that incorporates three multiplication units 
in the memory block, allowing for dynamic selection of the optimal 
time lag from historical input, leading to better prediction accuracy. 
Zhao et al. (2017) constructed a two-dimensional LSTM network with 
multiple memory units to facilitate short-term traffic flow forecasting. 
They also compared the established model with other representative 
prediction models to verify its effectiveness. Yu et  al. (2017) 
constructed a hybrid deep model based on LSTM for traffic forecasting 
under extreme conditions and realized the joint simulation of traffic 
flow states under normal conditions and accident modes. A 
bidirectional RNN module was used by Liu et al. (2017) to analyze 
historical traffic data at nodes, uncover periodic traffic flow patterns, 
and incorporate them into urban traffic forecasting. Fang et al. (2023) 
reconfigured the loss function in LSTM based on the negative 
guidance mixed correlation entropy criterion, aiming at the prediction 
error caused by non-Gaussian noise, and constructed a delta-free 
LSTM framework for short-term traffic flow prediction.

2.2 Traffic forecasting based on CNN

CNNs have been utilized by some researchers for traffic 
forecasting tasks. They use multilayer convolutional structures and 
their combined networks to extract the spatiotemporal correlation 
features of traffic flows. Ma et  al. (2022) built a feature selection 
algorithm based on the combined units of CNN and GRU, and 
combined the positive and reverse GRU networks to mine the long-
distance dependencies in the input information to increase the 

accuracy of predictions. Wang and Susanto (2023) used CNN to 
represent and process features such as traffic flow change patterns in 
different time periods in a way similar to image features, so as to better 
understand and use the information in time series data to predict 
traffic flow. However, traditional CNN frameworks are better suited 
for processing data with uniform size and dimension, typically found 
in Euclidean structure data. In the context of traffic networks, the road 
connections between traffic nodes may not be uniformly distributed, 
and the feature matrix dimensions of nodes may also vary. Therefore, 
the spatial characteristics learned by CNN may not necessarily 
represent the optimal features of the traffic network structure. The 
introduction of graph convolutional networks (GCN) (Kipf and 
Welling, 2016) has brought breakthroughs in the application of CNN 
in non-Euclidean structured data (Gong et al., 2023; Guo B. et al., 
2024; Guo X. et  al., 2024). By using the topological structure 
information of the graph to adjust the convolution operation, CNN 
can better adapt to the irregular data distribution and complex node 
relationships in the traffic network, thereby significantly improving its 
performance in tasks such as traffic forecasting (Li et al., 2023).

2.3 Traffic forecasting based on 
transformer

Transformer, as one of the variations of DL network architectures, 
was introduced by Vaswani et al. (2017). It models the full dependencies 
between inputs and outputs using attention mechanisms. Models and 
frameworks based on Transformer can better handle long-range 
dependencies in traffic flow data, exhibiting relatively higher flexibility. 
Based on the overall architecture of Transformer, Cai et  al. (2020) 
identified the continuous and periodic patterns in traffic time series, 
modeled the spatial dependence of the road network, and finally verified 
the model’s impact through two real data sets. Yan et al. (2021) used the 
combined framework of the global encoder and the global–local 
decoder to realize the extraction and fusion of global and local traffic 
flow features and achieved high-precision prediction of urban traffic 
flow. Chen et al. (2022) constructed a dual-directional spatiotemporal 
adaptive transformation framework based on codec-decoder structure 
to address the uneven spatiotemporal distribution in traffic prediction, 
and verified its effectiveness on four datasets. Wang F. et al. (2024) 
proposed a comprehensive network based on Transformer and GCN to 
capture the complex spatiotemporal correlations in metropolitan area 
networks and achieve more accurate traffic forecasting. The attention 
distribution in Transformer partly reveals the correlation information 
of traffic flow across different traffic nodes in spatial and temporal 
dimensions, improving the model’s interpretability.

Table 1 lists the basic models, input information, datasets used 
and other key information of some methods. Based on Table 1, it can 
be seen that most of the early short-term traffic forecasting methods 
are based on a single detector to obtain time series data, such as traffic 
volume collected by sensors. However, the information contained in 
a single data source is usually difficult to meet the needs of accurate 
prediction. To this end, some studies have attempted to integrate 
multi-source information, give full play to the advantages of various 
network structures, and build large-scale complex network 
architectures to mine complex spatiotemporal correlation patterns in 
traffic flow data. These methods have indeed improved the prediction 
accuracy to a certain extent. However, the increase in model 
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complexity will increase the training cost and computing resource 
requirements of the model, and ultimately affect the efficiency and 
scalability of practical applications (Lu and Osorio, 2018; Ji et al., 
2022; Berghaus et al., 2024). Therefore, how to build an efficient and 
accurate traffic forecasting model is still one of the key issues that 
need to be overcome in the field of short-term traffic forecasting, and 
it is also the research goal of this paper.

3 Methodology

3.1 Structure of Trafficformer model

The Trafficformer model introduced in this paper is designed for 
short-term traffic speed prediction at road network nodes, where 
traffic nodes represent the locations of traffic sensors on the road 

TABLE 1 Summary of research on short-term traffic forecasting.

References Basic model Prediction target Input Dataset Accuracy

Tian and Pan (2015) LSTM Volume Volume PeMS MAPE = 6.49%

Zhao et al. (2017) LSTM Volume Volume Proprietary dataset MRE = 6.41%

Yu et al. (2017) LSTM Speed Speed and accident data Proprietary dataset MAPE = 1.03%

Liu et al. (2017) LSTM

CNN

Volume Traffic network graph, 

speed and volume, …

PeMS MAE = 4.41

MAPE = 6.99%

RMSE = 6.42

Cai et al. (2020) GCN

Transformer

Speed Traffic network graph, 

speed and volume

METR-LA MAE = 2.43

MAPE = 4.73

PeMS MAE = 1.22

MAPE = 2.78

Yan et al. (2021) Transformer Speed Speed, time of day, and day 

of the week…

METR-LA MAE = 2.66

MAPE = 5.11%

RMSE = 6.75

Urban-BJ MAE = 4.34

MAPE = 6.40%

RMSE = 16.67

Ring-BJ MAE = 2.31

MAPE = 4.15%

RMSE = 6.08

Ma et al. (2022) CNN

GRU

Speed Speed Proprietary dataset MAE = 3.48

MAPE = 8.60%

RMSE = 5.09

Chen et al. (2022) DHM

Transformer

Speed Speed, volume time of day, 

and day of the week…

PeMSD3 MAE = 15.30

MAPE = 15.46%

RMSE = 25.80

PeMSD4 MAE = 18.53

MAPE = 12.37%

RMSE = 29.96

PeMSD7 MAE = 20.28

MAPE = 8.50%

RMSE = 33.24

PeMSD8 MAE = 13.58

MAPE = 9.21%

RMSE = 23.08

Wang and Susanto 

(2023)

CNN

LSTM

Volume Traffic scene images, 

vehicle type, holidays, and 

weather

Proprietary dataset MAE = 16.50

MSE = 0.50

RMSE = 22.26

Fang et al. (2023) LSTM

MCC

Volume Volume Amsterdam traffic 

dataset

MAPE = 11.57%

RMSE = 280.87

Gong et al. (2023) RGCN Volume Spatial knowledge graph 

and volume

Shanghai dataset MAE = 0.15

RMSE = 30.22

Nanjing dataset MAE = 0.19

RMSE = 0.28
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network. Figure 1 shows the structure of Trafficformer. As shown in 
Figure 1, the input of the model is the feature matrix I N

t
×∈S   

consisting of the traffic speeds of N consecutive steps of I nodes and 
the spatial mask P I I×∈M   calculated by the node distance and free 
flow speed. Among them, the feature matrix tS  is input into the traffic 
temporal feature extraction module, and the output is the matrix 
C1 I N
t

×∈S   containing the traffic flow time series features. As a priori 
knowledge, PM  specifically guides the model to focus on those nodes 
that are more likely to affect each other in space, so that the model can 
focus on the key spatial relationship faster and improve the prediction 
performance. With C1

tS  and PM  as input, the model realizes the 
extraction and embedding of spatial features based on the feature 
interaction module, and outputs the global feature matrix I H

t
×∈Z   

containing the spatiotemporal correlation of traffic flow. Finally, with 
tZ  as input, the predicted speed matrix of each node can be obtained 

through the speed prediction module. Below, the three modules in the 
model will be elaborated on in detail.

3.2 Traffic node temporal feature extractor

The Temporal Feature Extractor for traffic nodes primarily 
consists of an MLP. MLP is a type of feedforward artificial neural 
network comprised of multiple layers of nodes. Each layer is fully 
connected to the next layer, and all nodes except the input nodes are 
neurons with non-linear activation functions. The use of activation 
functions introduces non-linearity to the output of the neurons, 
enabling MLP to handle non-linear separable problems effectively. 
Therefore, MLP is suitable for extracting temporal features with high 
uncertainty and non-linear characteristics. In this paper, the 
temporal feature extraction module for traffic nodes is a two-layer 
perceptron structure. It takes a feature matrix tS  as input composed 
of the historical speeds of traffic flow of I nodes over a continuous 
sequence of N statistical intervals starting from time t. The feature 
matrix undergoes two neural network linear layers, one 
normalization layer, and one non-linear layer successively, ending 
up with a temporal feature matrix C1

tS  that contains temporal 
information for each node, as shown in Equations 1–4.

 
Lin1 Lin1 Lin1,t t= +S S W b  (1)

where Lin1 I H
t

×∈S   is the output of the first neural network 
linear layer (H refers to the hidden layer dimensions of the temporal 
feature extractor of traffic nodes); Lin1 N H×∈W   and Lin1 I∈b   are 
learnable weight matrices, respectively.

To improve the accuracy of non-linear feature extraction and 
alleviate overfitting issues, a standardization layer and a non-linear 
layer have been introduced after the first linear layer. The 
standardization layer employed in this module is LayerNorm (Lei Ba 
et al., 2016). LayerNorm performs individual data sample training 
without relying on other data, which effectively avoids stability issues 
caused by the uneven distribution of mini-batch data in the batch 
normalization process during batch training. Furthermore, it 
eliminates the need to store mini-batch mean and variance and saves 
storage space. Considering the convergence speed of the model, the 
non-linear layer uses the ReLU activation function.

 
( )Lay Lin1LayerNorm ,tt =S S

 
(2)

 
( )ReLU reluReLU ,t t=S S

 
(3)

 
C1 ReLU Lin2 Lin2,t t= +S S W b  (4)

where Lin2 H H×∈W   and Lin2 I∈b   are learnable weight 
matrices, respectively.

3.3 Traffic node feature interaction

Based on the traffic node temporal feature extractor, the temporal 
feature of each node was obtained. However, the spatial features 
among the nodes remained unprocessed. Therefore, subsequent to the 
traffic node temporal feature extractor, the traffic node feature 
interaction module was constructed using the encoder in the 
Transformer. The input of this module is C1

tS , which encompasses the 
temporal features of all nodes, and the output is the global feature 
matrix tZ  that contains the spatiotemporal features of the nodes. The 
traffic node feature interaction module is constituted by L fundamental 
units. Each of these fundamental units mainly consists of a multi-head 
attention layer and a feedforward part. Among them, the multi-head 
attention layer is utilized to capture the complex spatial correlations 
and dependencies between different nodes by computing attention 
weights for each node’s features and generating new representations 
based on the weighted sum of other nodes’ features. And the feed-
forward layer is employed to perform a non-linear transformation on 
the features obtained from the multi-head attention, mapping the 
input temporal feature matrix to the spatiotemporal feature output. It 
helps to further refine and enrich the feature representation, endowing 
the model with stronger discriminative ability. Next, a detailed 
introduction to the structures of the multi-head attention layer and 
the feedforward layer will be provided.

3.3.1 Multi-head attention layer
The multi-head attention mechanism, which is an evolved form 

of the self-attention mechanism, functions by concurrently executing 
multiple self-attention heads. This parallel operation empowers the 
mechanism to capture the intricate dependency relationships within 
traffic node feature sequences from various vantage points, thereby 
endowing the traffic flow prediction model with more elaborate and 
accurate feature representations. In the context of each individual self-
attention head, the model first derives the query, key, and value feature 
matrices that correspond to the node’s feature vectors. Subsequently, 
the model computes the attention weights between nodes by 
leveraging the query matrix of a particular node and the key matrices 
of other nodes. Finally, through the utilization of the value matrices of 
other nodes and their respective attention weights, the model achieves 
the update of the node feature matrix. Equations 5–9, with the j-th 
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( 1,2, ,j J= … ) self-attention head serving as a representative example, 
illustrate the update process of the feature matrix j I H

t
×∈Z   at time t.

 
C1 ,Q,j j
tt =Q S W  (5)

 
C1 ,K ,j j
tt =K S W  (6)

 
C1 ,V,j j
tt =V S W  (7)

 
( )T ,j j j

t t t=A Q K
 

(8)

 

softmax ,
j

j jt
t t

kd

 
 =
 
 

AZ V

 

(9)

where , ,j j j I H
t t t

× ∈  
Q K V   are the query, key, and value 

feature matrices in the j-th self-attention head respectively; 
,Q ,K ,V, ,j j j H H×∈W W W   are the weight matrices, which can 

be updated during the training process; j I I
t

×∈A   is the attention 
weight in the j-th self-attention head; ( )softmax ⋅  is a normalization 
function that scales the values of each element in the matrix between 
0 and 1 by dividing the attention weights between nodes by the sum 
of the weights; kd  is a scaling factor primarily used to mitigate the 
gradient disappearance issue introduced by the softmax function, 
which is numerically equal to the dimension H of the row vector ,i j

tk  
of the node keys in the matrix j

tK .

Theoretically, the self-attention mechanism possesses the 
capacity to incorporate the information of all nodes for the 
generation of a comprehensive feature matrix. Nevertheless, in 
real-world applications, especially when confronted with complex 
traffic networks that encompass a large number of nodes, if the 
model were to compute the attention weights with respect to all 
nodes without discrimination, it would entail exorbitant 
computational overheads and might introduce a significant amount 
of superfluous noise and interference. In light of this, prior 
information has been elected to be employed to fabricate a spatial 
mask PM . This mask allows the model to ignore nodes that are less 
likely to be relevant spatially when calculating attention weights. 
This effectively narrows the computational scope, reduces the 
impact of noise, and ultimately enhances both training efficiency 
and model accuracy. To be more specific, initially, the travel time 
expended by a vehicle in traversing each node at the free flow 
speed FV  is computed. Here, the free flow speed pertains to the 
velocity at which a vehicle travels under an ideal, unimpeded traffic 
flow scenario. Subsequently, by considering the connectivity traits 
among the nodes within the road network, those nodes whose 
travel time falls within the range of [0, LimitT ] are designated as 
strongly correlated nodes, while those with a travel time exceeding 

LimitT  are classified as weakly correlated nodes. The mask 
elements corresponding to the strongly correlated nodes are 
assigned a value of 1, and those corresponding to the weakly 
correlated nodes are set to 0. This process culminates in the 
construction of the spatial mask. Equations 10, 11 takes node i and 
node i∗  ( , 1, 2, , ;i i I i i∗ ∗ = … ≠  ) as examples to illustrate the 
calculation process of the spatial mask.
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FIGURE 1

Structure of Trafficformer model.
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where ,i iL
∗

 is the actual distance between nodes, mile.
At this stage, the calculation methodology for the attention weight 

j
tA  is revised as Equation 12:

 
( )T P,j j j

t t t= ⊗A Q K M
 

(12)

where ⊗  denotes elementwise multiplication of matrices.
Once the feature matrix of each attention head have been 

computed, the global feature matrix tZ  within the framework of the 
multi-head attention mechanism can be calculated in accordance with 
Equation 13. The multi-head attention mechanism’s network structure 
is presented in Figure 2.

 
( )1 2 OConcat , , , ,J

t t t tt= …Z Z Z Z W
 

(13)

where ( )Concat ⋅  represents the concatenation operation, which 
specifically refers to horizontal concatenation of the feature matrices 
under different conditions in this paper; ( )O H J H

t
× ×∈W   is a 

learnable weight matrix that represents the importance of different 
attention angles based on a global perspective.

3.3.2 Feedforward networks
The feedforward network is a two-layer MLP structure. Unlike the 

normalization operation embedded within the traffic node’s temporal 
feature extraction component, the normalization operation in the 

feature interaction component is implemented separately by an 
external module. Therefore, the feedforward network consists only of 
fully connected layers and non-linear activation functions, as shown 
in Equation 14:

 
( )F1 F1 F2 F2ReLU ,t t= + +F Z W b W b

 
(14)

where F1 F2, H H× ∈ W W  , F1 F2, I ∈ b b   are learnable 
weight matrices, respectively.

To build a deep model that effectively captures the complex 
spatiotemporal features in traffic flow data, Transformer employs 
residual connections around each module, followed by layer 
normalization, as shown in Equations 15, 16. In summary, the basic 
unit of the traffic node interaction module can be abstracted as the 
following equation, and the structure of the basic interaction module 
can be represented by Figure 3.

 
( )C1 C1LayerNorm ,t t t= +Z Z S

 
(15)

 
( )C2 C1LayerNorm ,t t t= +Z F Z

 
(16)

3.4 Traffic node speed forecasting

The traffic node speed forecasting module also follows the MLP 
structure, which is identical to the traffic node temporal feature 
extraction module. Both modules consist of two neural network 

FIGURE 2

Structure of multi-head attention.
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linear layers, one normalization layer, and one non-linear layer. The 
difference lies in the input, output, and hidden layer dimensions of 
the network. The input of the traffic node speed forecasting module 
is the fused interaction feature matrix C2

tZ  that captures the 
spatiotemporal correlations in the road network, while the output is 
the traffic speed matrix C2 I

t ∈S   for each node on road network at 
time step 1t N+ + , as shown in Equations 17–20. MLP has various 
advantages of structure simplicity and highly parallel processing, 
which makes it computationally efficient for large-scale traffic 
forecasting tasks. This is why MLP has been chosen multiple times in 
this study for processing traffic node features.

 
C2,Lin1 C2 C2,Lin1 C2,Lin1,tt = +S Z W b  (17)

 
( )C2,Lay C2,Lin1LayerNorm ,t t=S S

 
(18)

 
( )C2,LayC2,ReLU ReLU ,t t=S S

 
(19)

 
C2 C2,ReLU C2,Lin2 C2,Lin2,t t= +S S W b  (20)

where C2,Lin1 H H ∗×∈W  , C2,Lin1 I∈b  , C2,Lin2 1H ∗×∈W   
and C2,Lin2 1∈b   are all learnable weight matrices; H ∗  denotes the 
dimensions of hidden layers in the traffic node speed 
forecasting module.

4 Experiments

4.1 Dataset description

In this study, the efficacy of the method was evaluated by leveraging 
the publicly available Seattle Inductive Loop Detector Dataset V1 
(referred to as the Loop dataset hereafter). This dataset consists of 
speed information collected from loop detectors deployed on four 
highways in the Seattle area: I-5, I-405, I-90, and SR-520. Each blue 

icon in Figure 4 represents a milepost on the road network, with a total 
of 323 mileposts along the entire route. For any given milepost, the 
speed information is obtained by averaging the data from multiple 
detectors on the corresponding main road direction. The dataset used 
in this study is available at the following link: https://github.com/
zhiyongc/Seattle-Loop-Data.

The dataset contains the complete spatiotemporal speed 
information for the highway system in 2015, with a time interval of 
5 min for each detector. The dataset comprises over 3.83 million 
records. In terms of the principle of algorithmic consistency, the model 
program was implemented based on the opensource code from a 
previous study (Cui et al., 2019). Several comparative experiments were 
performed using the identical dataset. The dataset was partitioned into 
three parts: training set, validation set, and test set, maintaining a 7:2:1 
proportion. The training set served the purpose of model training, the 
validation set was reserved for finetuning and optimizing the 
parameters, and the test set was designated for evaluating the 
generalization performance of the model. Additionally, the road speed 
limit was set to 60 miles per hour, so F 60V =  mph is obtained. In the 
preprocessing stage, each speed value in the speed matrix is divided by 
the maximum speed value in the data set to normalize the speed data 
to the [0, 1] interval. This normalization operation is of great 
significance. It unifies the data scale, effectively improves the efficiency 
and stability of model training, and avoids the model’s excessive 
attention to certain features due to differences in data scale.

4.2 Experimental settings

4.2.1 Baselines
In this paper, the Trafficformer model is compared with several 

established baseline models. These baseline models are carefully 
selected to represent a diverse range of techniques in the traffic flow 
prediction field, including both classic linear methods such as 
ARIMA and SVR, which possess well-established theoretical 
foundations but also come with certain limitations, and various 
nonlinear models like DiffGRU, LSTM, DMLP, LSTM+MLP, and 
TGG-LSTM. By comparing with these models, a thorough analysis 
of their performance is provided, and the distinct advantages of 
Trafficformer in different traffic forecasting scenarios 
are highlighted.

FIGURE 3

Feature interaction module structure of traffic nodes.

https://doi.org/10.3389/fnbot.2025.1527908
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://github.com/zhiyongc/Seattle-Loop-Data
https://github.com/zhiyongc/Seattle-Loop-Data


Chang et al. 10.3389/fnbot.2025.1527908

Frontiers in Neurorobotics 09 frontiersin.org

 (1) SVR: Support Vector Regression model (Hamed et al., 1995).
 (2) LSTM: Long Short-Term Memory network (Schmidhuber and 

Hochreiter, 1997).
 (3) ARIMA: Autoregressive Integrated Moving Average model 

(Smola and Schölkopf, 2004).
 (4) DiffGRU: An improved model based on Convolutional 

RNN. The spatial dependencies between traffic nodes are 
captured using Spectrogram Convolution, and the temporal 
dependencies are captured using enc-decoding components 
with scheduled sampling (Li et al., 2017).

 (5) TGG-LSTM: A DL model based on LSTM, which modeled the 
spatial correlations between different traffic nodes using graph 
convolution and utilized LSTM for vertical mining of the 
historical information of traffic flow (Cui et al., 2019).

 (6) DMLP: A network model consisting of two double-layered 
perceptions, where each MLP is responsible for traffic feature 
extraction and prediction, respectively (Wang Z. et al., 2024).

 (7) LSTM + MLP: A comparative algorithm proposed in relation 
to LSTM, aiming to highlight the unique significance of 
designing traffic flow feature extraction and prediction as 
separate modules. It consists of a single layer of LSTM for 
extracting traffic feature states and a two-layer perceptron for 
predicting traffic speed, which effectively improves the analysis 
of traffic flow data.

4.2.2 Training parameters
All LSTM and MLP layers have the same weight dimensions, with 

a hidden layer size of 128. The input traffic flow data was composed of 
the historical speeds of traffic flow of 323 nodes over a continuous 
sequence of 10 artistical intervals starting from time t, denoted as 

10N = . The predicted time step is 1. The size of the node connectivity 
constraint indicator LimitT  can be adjusted to observe the effects of 
feature extraction and interaction within different spatial ranges. 
Through multiple experiments, the value of LimitT  was set to 5. This 
means that each traffic node interacts with other traffic nodes that can 
be  reached within 5 min of free flow speed from that node. Each 
model is trained with the goal of minimizing the MSE, which serves 
as a reliable and commonly used metric to quantify the disparity 
between the predicted and actual values. The optimization process is 
carried out using the AdamW optimizer, a sophisticated variant 
proposed by Loshchilov (2017). This optimizer ingeniously applies 
weight decay, a technique that effectively curtails the gradient of 
model parameters. By doing so, it not only mitigates the risk of 
overfitting but also substantially lowers the computational complexity 
associated with training. In terms of the learning rate strategy, the 
ReduceLROnPlateau approach (Ruder, 2016) has been adopted. This 
strategy is designed to dynamically adjust the learning rate based on 
the evaluation metrics. The initial learning rate is meticulously 
configured at 1E-3, a value determined through an extensive series of 
preliminary experiments. A decay factor of 0.2 is employed, which 
means that whenever the performance metric plateaus, the learning 
rate is reduced by this factor. The minimum learning rate is set at 1E-6 
to ensure that the learning process does not stagnate completely. The 
total number of iterations is capped at a maximum of 150 to prevent 
excessive training and potential overfitting.

To further safeguard the convergence and generalization ability of 
the model, a mechanism to adaptively reduce the learning rate has 
been implemented. Specifically, if there is no observable improvement 
in performance for 10 consecutive epochs, the model will 
automatically reduce the learning rate. This adaptive learning rate 

FIGURE 4

Seattle freeway satellite map (https://github.com/zhiyongc/Seattle-Loop-Data).
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adjustment strategy allows the model to finetune its learning pace and 
explore the parameter space more effectively, ultimately leading to 
better convergence and performance. In addition to the 
aforementioned strategies, a crucial regularization technique known 
as Early Stopping has been incorporated. The Early Stopping strategy 
acts as a safeguard against overfitting by closely monitoring the 
performance of the model on the validation set. Once the performance 
on the validation set ceases to improve, the training process is 
promptly halted. This ensures that the model is trained sufficiently to 
capture the underlying patterns in the data while preventing it from 
overfitting to the training data and losing its generalization capabilities. 
Overall, these meticulously designed optimization and regularization 
strategies work in tandem to enhance the performance, stability, and 
generalization ability of the model, enabling it to effectively handle the 
complex and dynamic nature of the traffic flow prediction task.

4.2.3 Metrics
To evaluate the discrepancy between predicted traffic flow speed 

and actual traffic flow speed, three performance metrics are utilized: 
Mean Absolute Error (MAE), Mean Absolute Percentage Error 
(MAPE), and Root Mean Square Error (RMSE) (Li et al., 2021, 2022; 
Guo B. et al., 2024; Guo X. et al., 2024). The calculation method of the 
three metrics is shown in Equations 21–23.

 1 ,ˆ1 I
i iiMAE y y

I =
= −∑

 
(21)

 
1 ,
ˆ1 I i i

i i

y y
MAPE

I y=

−
= ∑

 
(22)

 
( )21 ,ˆ1 I

i iiRMSE y y
I =

= −∑
 

(23)

where, ˆiy  represents the predicted speed of the traffic flow 
corresponding to node i, and iy  represents the actual speed of the 
traffic flow corresponding to the same node, which serves as the 
data label.

4.3 Experimental results

4.3.1 Comparative study
The performance metrics for each model on the test dataset can 

be found in Table 2. It can be observed that ARIMA and SVR are at a 
significant disadvantage. The limitations of these models stem from 
their inherent structural characteristics, which restrict their 
performance in large-scale prediction problems. For instance, 
ARIMA-based methods require the data to be  stationary before 
making predictions, which can consume a significant number of 
computational resources in large-scale prediction tasks. Additionally, 
as mentioned in the Introduction, ARIMA-based methods have 
limited effectiveness in handling nonlinear data, which further 
restricts their applicability. While SVR performs well in handling 
low-dimensional and small sample datasets, it struggles with large-
scale training samples and is sensitive to missing data. Consequently, 

it faces challenges in pre-processing and parameter tuning. On the 
other hand, DiffGRU and LSTM demonstrate a significant 
improvement in RMSE compared to ARIMA and SVR, with a 
reduction of 23%/26 and 53%/55%, respectively. This highlights the 
advantages of DL models in traffic forecasting. Traffic flow exhibits 
long-term fluctuations in both time and space, and these underlying 
patterns need to be  mined and learned in the traffic forecasting 
process. Both GRU and LSTM leverage gate structures to achieve 
recurrent processing and feature extraction in sequential data. GRU 
does not have the forget gate structure found in LSTM, which may 
make it less effective in certain tasks requiring long-term 
dependencies. However, in some cases, GRU’s simplicity can lead to 
better efficiency. Furthermore, the network complexity of DiffGRU 
and LSTM is relatively low, and their ability to represent highly 
nonlinear road network features is limited with a small number of 
parameters. Therefore, their prediction accuracy is lower compared to 
other DL methods (models 5–8).

DMLP, LSTM+MLP, TGG-LSTM, and Trafficformer are four 
models with sufficient complexity to capture the nonlinear patterns 
within traffic flow data. Therefore, compared to the previous three 
models, all four models show a notable enhancement in accuracy. 
However, even the best performing model among the four, 
LSTM+MLP has a 16% higher RMSE compared to Trafficformer. The 
forecasting accuracy of the initial three models is similar but with 
some differences. DMLP and LSTM+MLP have the closest 
performance, indicating that a single-layer MLP and LSTM have 
similar effectiveness in extracting traffic flow features. Comparing 
them with a single-layer LSTM network also reveals the importance 
of designing separate networks for traffic flow feature extraction in 
improving prediction performance. TGG-LSTM takes into account 
the complex spatiotemporal features of traffic flow data and explores 
the prediction task thoroughly using LSTM and graph convolutional 
neural networks as core algorithms. Theoretically, it is supposed to 
surpass other DL algorithms that overlook traffic flow spatial features. 
However, its evaluation metrics are slightly higher than the other three 
algorithms. Relative to the proposed Trafficformer model, the MAE, 
MAPE, and RMSE show increases of 22, 27, and 50%, respectively.

The phenomenon can be explained by two main causes. First of 
all, the self-attention mechanism in Transformer permits the model 
to capture information from any position in the sequence, enabling 
better handling of long-range dependencies. On the other hand, GCN 
can only address long-range dependencies through expanding the 

TABLE 2 Evaluation metrics of baseline model test set.

Number Model MAE/
STD 

(mph)

MAPE 
(%)

RMSE 
(mph)

1 SVR 6.85/1.17 14.39 11.12

2 LSTM 2.70/0.18 6.83 4.97

3 ARIMA 6.10/1.09 13.85 10.65

4 DiffGRU 4.67/0.38 11.18 8.22

5 TGG-LSTM 2.57/0.10 6.01 4.63

6 DMLP 2.40/0.09 5.80 3.57

7 LSTM+MLP 2.40/0.09 5.70 3.56

8 Trafficformer 2.10/0.07 4.70 3.08
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number of convolutional layers. However, as the number of layers 
increases, the model’s effectiveness in capturing dependencies 
diminishes and the interpretability of the model is reduced. Therefore, 
prediction models based on GCN lack flexibility in feature extraction. 
Second, traffic data is typically collected by fixed location detectors at 
regular time intervals, resulting in sequences with clear temporal 
features. With the inherent advantages of attention mechanisms, 
Transformer can be applied to any type of input regardless of its shape. 
However, the GCN algorithm can only handle graph data, and treating 
traffic flow data as graph input disrupts the internal structure of the 
data to some degree, which limits the model’s performance and results 
in relatively lower accuracy. This does not mean that GCN-based 
network structures cannot be applied to traffic forecasting problems. 
When the data collection method changes, such as using image-based 
traffic data collected by video detectors, GCN-based models may 
achieve better prediction results (Li et al., 2024b,c).

In conclusion, the Trafficformer model shows significant 
improvements in MAE, MSE, and RMSE compared to other baseline 
methods, which indicates good performance in predicting future 
traffic flow.

In addition, to more rigorously evaluate the reliability of its 
performance improvements from a statistical perspective, LSTM + 
MLP, which performed best among the comparison methods, is 
selected. The predicted and true values from both models on the test 
set are used as inputs for paired t-tests and DM tests. The paired t-test 
is employed to determine whether there is a significant difference in 
the means of the two paired datasets. The null hypothesis states that 
the means of the two groups are equal, while the alternative hypothesis 
posits that the means are not equal. If the p-value obtained from the 
paired t-test is less than 0.05, the null hypothesis can be rejected, 
indicating a statistically significant difference between the means of 
the two groups. The DM test is used to compare whether there is a 
significant difference in the predictive accuracy of the two models. Its 
null hypothesis is that there is no difference in predictive accuracy 
between the two models, and the alternative hypothesis is that there 
is a difference (Iftikhar et al., 2023, 2024; Gonzales et al., 2024). When 
the p-value calculated from the DM test is less than 0.05, there is 
sufficient evidence to reject the null hypothesis, suggesting that the 
predictive accuracies of the two models differ significantly.

As shown in Table 3, the p-values from the paired t-tests between 
Trafficformer and LSTM+MLP are very small (averaging 3.27E-18 and 
2.96E-03), well below the 0.05 significance level. Thus, the null 
hypothesis is rejected, confirming a statistically significant difference 
between the predicted and true values of the two models. Moreover, 
the DM test further supports this conclusion by rejecting the null 
hypothesis that the models’ predictive performances are identical. The 
multiple DM statistics and corresponding minimal p-values indicate 
that the prediction errors of the models are fundamentally different, 
reflecting the distinct effectiveness of their prediction mechanisms 
rather than random fluctuations. In summary, Trafficformer 
demonstrates clear advantages in both prediction accuracy and 
statistical significance, showcasing its broad application potential in 
traffic prediction problems.

Figure 5 shows the loss curves of the four deep neural network 
models on the validation set and the training time of DL comparison 
model training set.

Due to the introduction of early stopping, the number of iterations 
of each model during the training process is different. Interestingly, as 

the model complexity increases, the model training time gradually 
increases, which is opposite to the trend of model accuracy. DMLP 
and LSTM+MLP still show similar training time, and both models 
converge in about 50 epochs. TGG-LSTM converges in 84 epochs, 
while Trafficformer converges in 93 epochs. Figure on the right of 
Figure 5 shows the training time of the four algorithms on the training 
set at the same step size, from which similar conclusions can be drawn. 
It can be seen that relatively simple network architectures such as 
DMLP and LSTM+MLP are significantly faster in training than larger 
networks such as TGG-LSTM and Trafficformer. This shows that 
improving model accuracy comes at the cost of increasing training 
time. Therefore, in practical applications, it is necessary to balance 
accuracy and complexity according to specific scenarios and 
requirements. For scenarios where traffic flow patterns are relatively 
stable and have high real time requirements, simple models may have 
advantages due to their fast-computing speed and relatively simple 
deployment methods. For scenarios where traffic conditions are 
complex and changeable and have strict requirements on prediction 
accuracy, complex models have high training and deployment costs 
but can provide more accurate predictions and help with traffic 
management decisions.

4.3.2 Ablation study
The Trafficformer model is a DL framework composed of three 

modules: traffic node feature extraction, traffic node feature 
interaction, and traffic node speed forecasting. The experimental data 
for models 3–6 in Table 2 have demonstrated the necessity of using 
separate feature extraction and prediction modules, underscoring the 
significant advantages of employing MLP as the feature extraction 
module in terms of accuracy and efficiency. With the other modules 
kept unchanged, this section focuses primarily on the analysis of the 
effectiveness of the node feature interaction module.

TABLE 3 LSTM+MLP & Trafficformer statistical significance verification 
table.

Models LSTM+MLP Trafficformer

Paired 

t-tests

Step 1 t-statistic 6.03 10.96

p-value 1.67E-09 8.74E-28

Step 24 t-statistic 2.84 14.91

p-value 4.55E-03 3.89E-47

Step 123 t-statistic 2.85 8.59

p-value 4.34E-03 9.82E-18

Average t-statistic 3.91 11.49

p-value 2.96E-03 3.27E-18

DM 

tests

Step 1 DM statistic 22.70

p-value 0.00

Step 24 DM statistic −8.38

p-value 1.55E-15

Step 123 DM statistic 2.53

p-value 0.01

Average DM statistic 5.62

p-value 3.87E-3
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Figure 6 presents the performance of the models on the training, 
validation, and test sets when the number of layers within the 
module’s internal encoder represented by L varies (where L = 0 
indicates the absence of the feature interaction module). It can 
be observed that as the number of encoder layers increases from 0, 
the performance of the model on the training set, validation set, and 
test set shows a trend of first rising and then stabilizing. This is 
because in the initial stage, increasing the number of encoder layers 
enables the model to gradually learn more complex spatiotemporal 
features and potential patterns in traffic flow data. The model 
achieves optimal performance when the number of encoder layers 
reaches 6. Therefore, this study sets the number of encoder layers in 
the interaction module to 6. In addition, it can be found that even 
without the spatial mask matrix based on road topology as a priori 
constraint, the performance of the model is still better after adding 
the interaction module. This is mainly due to the structural design 
inside the interaction module. The encoder in the interaction 
module can perform multi-level feature extraction and 
transformation on the input traffic node features, and enhance the 
model’s ability to learn complex relationships between nodes 
through information transmission and fusion between different 
layers. In addition, in each layer of the encoder, through the 

multi-head attention mechanism, the model can simultaneously 
focus on the correlation of different nodes in different feature 
subspaces, thereby capturing the dynamic change pattern of traffic 
flow in time and space dimensions.

Furthermore, to better understand the effect of attention 
mechanism in the interaction module, this study plots the 
topological connectivity graph of the road network at using node 
indices as the x and y coordinates. As shown in Figure 7A, the yellow 
region represents the spatially connected target nodes. This 
connectivity does not imply the existence of roads for vehicle passage 
between the nodes but rather indicates the spatial range reachable by 
vehicles traveling at free flow speed. The spatial mask mentioned in 
the paper is also constructed based on this concept. Figure  7B 
displays the attention relationships between different nodes, where 
darker colors indicate stronger correlations between nodes. It can 
be observed that the learned attention of the Trafficformer model is 
within the range of the connectivity graph. Additionally, the darker 
regions in the graph mostly correspond to busy traffic segments as 
highway entrances or exits. Taking the location highlighted by the 
red box in Figure  7A as an example, it is a crossroad near the 
entrance of Mercer Island, located between I-90 and the city’s main 
arterial roads. This segment is a significant feature in the Loop 

FIGURE 6

(A) Training loss curve, (B) validation set mean square error, (C) test set mean absolute error.

FIGURE 5

Mean square error of DL comparison model validation set and training time of DL comparison model training set.
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dataset, and the dark markings within the yellow box in Figure 7B 
confirm this observation.

Based on the aforementioned analysis, this study introduces 
constraints based on road topology in both single-layer and multilayer 
interaction modules to investigate the importance of spatial masks. As 
shown in Table 4, for a network structure with only one interactive unit, 
after adding a spatial mask, the model’s prediction accuracy of node 
speed increased by 6.27, 9.34, and 10.41% on the training set, verification 
set, and test set, respectively. For a network structure with six interactive 
units, after adding spatial masks, the prediction accuracy of the model 
on the training set, validation set and test set increased by 33.95, 17.28 
and 18.37%, respectively. Obviously, with the addition of spatial mask 
prior, the performance of the interaction module is significantly 
improved. This is mainly attributed to the optimization of the spatial 
mask in the model mechanism. From the perspective of interaction 
mode, it limits the range of interactive nodes, allowing the model to 
focus on highly accessible traffic nodes when calculating attention 
scores and feature fusion, avoiding interference from irrelevant nodes 
and accurately capturing influencing factors. From the perspective of 
information transfer, by discarding a large number of irrelevant node 
information, the model reduces the spread of redundant information 
during the training process, thereby significantly reducing the amount 
of calculation and improving the operating efficiency of the model. 
Therefore, the addition of spatial mask can enable the model to 

efficiently learn the spatial dependence in the traffic network, which is 
of key value in Trafficformer.

Figure 8 shows the comparison curves of the true value (blue 
curve) and the predicted value (grey curve) in the test set. It is 
apparent that, despite the traffic flow’s operating conditions, the 
predicted curve closely follows the actual curve. This observation 
indicates that the Trafficformer model is capable of effectively 
extracting traffic flow features and achieving high-precision 
predictions for spatiotemporal fused traffic networks.

5 Conclusion

In this paper, a DL framework built upon the Transformer 
architecture is proposed to address short-term prediction 
challenges in spatiotemporal fused traffic networks. Specifically, the 
multilayer perceptron and multi-head attention mechanisms are 
employed to efficiently extract spatiotemporal features of traffic 
flow. Prior constraints based on traffic node connectivity are also 
incorporated to limit interactions to reachable nodes, reducing 
unnecessary noise and improving both algorithm stability and 
precision. Test results demonstrate that the Trafficformer 
framework possesses a robust network structure and outperforms 
other baseline methods in both accuracy and computational 

FIGURE 7

(A) The actual road network topology connectivity graph, (B) model attention value.

TABLE 4 Comparison model evaluation indexes.

Datasets and evaluation 
metrics

Single-layer interaction control group 1 Multilayer interaction control group 2

No spatial mask With spatial mask No spatial mask With spatial mask

Training set MSE (mph)2 5.44E-04 5.10E-04 5.76E-04 3.63E-04

Validation set
MAE (mph) 2.34 2.30 2.24 2.10

MSE (mph)2 5.12E-04 4.64E-04 4.90E-04 4.05E-04

Test set

MAE (mph) 2.34 2.24 2.30 2.10

MAPE (%) 5.50 5.10 5.40 4.70

RMSE (mph) 3.50 3.31 3.41 3.08
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complexity, making it particularly suitable for large-scale traffic 
forecasting tasks. In addition, using the learned attention 
distribution, managers can identify key traffic nodes and adjust 
control strategies accordingly, such as extending the green time of 
major roads or adjusting the signal phase of surrounding 
intersections, thereby optimizing traffic flow, alleviating congestion, 
and improving traffic efficiency.

Nevertheless, it is important to acknowledge the limitations of 
this paper. The model in this paper is mainly trained and predicted 
based on conventional traffic data. However, traffic flow is affected by 
many special factors such as weather, traffic accidents, and road 
construction. The model is not adaptable and flexible enough to these 
special situations, and the prediction accuracy will be reduced when 
encountering abnormal situations. In future work, more metadata, 
including but not limited to weather data, event report data, etc., will 
be introduced, and these special factors will be incorporated into the 
model training process. This aims to enhance the model’s ability to 
cope with various complex situations, thereby improving its 
prediction accuracy under abnormal conditions.
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Example of traffic speed forecasting.
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