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Medium density EMG armband
for gesture recognition
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Electromyography (EMG) systems are essential for the advancement of

neuroprosthetics and human-machine interfaces. However, the gap between

low-density and high-density systems poses challenges to researchers in

experiment design and knowledge transfer. Medium-density surface EMG

systems o�er a balanced alternative, providing greater spatial resolution

than low-density systems while avoiding the complexity and cost of high-

density arrays. In this study, we developed a research-friendly medium-

density EMG system and evaluated its performance with eleven volunteers

performing grasping tasks. To enhance decoding accuracy, we introduced

a novel spatio-temporal convolutional neural network that integrates spatial

information from additional EMG sensors with temporal dynamics. The results

show that medium-density EMG sensors significantly improve classification

accuracy compared to low-density systems while maintaining the same

footprint. Furthermore, the proposed neural network outperforms traditional

gesture decoding approaches. This work highlights the potential of medium-

density EMG systems as a practical and e�ective solution, bridging the gap

between low- and high-density systems. These findings pave theway for broader

adoption in research and potential clinical applications.

KEYWORDS

medium-density, myoelectric control, gesture recognition, temporal neural network,

machine learning

1 Introduction

The need for intuitive and accurate myoelectric control systems has grown rapidly with

the increase in the use of prosthetic hands in rehabilitation, assistive devices, and gesture

tracking interfaces for the Metaverse (Vaca Benitez et al., 2013; Toledo-Peral et al., 2022;

labs at Reality Labs et al., 2024).

For millions of people around the world living with upper-limb differences or

amputations, prosthetic hands offer a way to regain dexterity and perform daily tasks.

However, prosthetic hand technology still faces significant challenges (Mendez et al., 2021).

Despite advances in size, weight, and functional capabilities, the control mechanisms of

prosthetic hands remain limited, making it difficult for users to achieve precise and natural

movements. Myoelectric control, a widely used method for controlling these devices,

involves decoding electrical signals generated bymuscle activity. Conventional low-density

electromyography (EMG) systems typically use only a few electrodes (Resnik et al., 2018),

resulting in limited spatial resolution and accuracy. Although high-density EMG systems

offer better spatial resolution, their large footprint and requirement for precise positioning

can be cumbersome, particularly in wearable applications (labs at Reality Labs et al., 2024;

Jiang et al., 2021).
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EMG-based systems traditionally employ bipolar electrodes

to record signals from two antagonistic muscles in the forearm,

allowing basic control over one degree of freedom in prosthetic

hands (Geethanjali, 2016). Users modulate their muscle activity to

exceed a threshold on one electrode, moving prosthetic hands in a

particular direction. However, this approach restricts functionality

to one degree of freedom at a time. Pattern recognition algorithms

have improved the functionality of prosthetic hands by decoding

various grasps directly from EMG signals, enhancing both dexterity

and intuitive use (Parajuli et al., 2019; Jiang et al., 2024). However,

this method usually requires up to eight bipolar electrodes

and involves a complex calibration phase to map each grasp

type to the user’s unique muscle activity patterns. Although

these approaches have achieved promising research results, their

practical implementation is hindered by limitations such as the

complexity of setup, the reliance on experienced personnel for

precise electrode placement, and the time-consuming calibration

(Mendez et al., 2021).

Recent advances in machine learning, particularly deep

learning, have offered new approaches for decoding motor

intentions from EMG data. Convolutional neural networks,

originally popularized in computer vision, have demonstrated

high potential in EMG applications, improving accuracy and

robustness in grasp classification. Their capacity to learn features

directly from raw signals enables them to outperform traditional

machine learning models in several studies. However, even with

their powerful feature extraction capabilities, conventional EMG

systems still rely on carefully placed bipolar electrodes for reliable

classification, which limits their accessibility and practicality for

patients. This dependency creates challenges, especially for users

with amputations resulting from traumatic events, which can alter

the position or structure of muscles in the residual limb.

To overcome these limitations, researchers have investigated

high-density EMG, which uses electrode grids to record muscle

activity in high spatial detail and captures two-dimensional

images of muscle activation. Although promising results can be

achieved (Jiang et al., 2021), the high electrode count and spatial

resolution make it unsuitable for wearable applications due to the

large footprint of the system and the requirement for gel-based

electrodes, which can be uncomfortable for daily wear. A trade-

off between low- and high-density EMG is medium-density EMG,

which uses fewer electrodes with increased spatial coverage but

preserves the compactness of low-density systems. A medium-

density EMG system can be in the form of an armband (Rawat

et al., 2016) and, therefore does not require precise electrode

placement. It would be easier to configure and can be embedded in

the prosthesis socket or in a wearable device for practical, real-life

applications.

In this work, we introduce a medium-density EMG system

that addresses current limitations in myoelectric control by

incorporating 21 digital electrodes within a single, compact

armband. This armband significantly improves decoding

performance while maintaining the small footprint typical of

low-density systems. Additionally, we propose a novel time-

domain-based deep neural network architecture based on the

Temporal Convolutional Network (TCN) for the classification of

EMG signals. Our study presents the first controlled comparison

of medium- and low-density EMG systems. We evaluated their

respective classification accuracies in identical experimental

conditions on simultaneously recorded data.

2 Methods

We first describe the development of a medium-density EMG

armband. We then focus on quantifying the impact of additional

EMG sensing units on gesture decoding performance.

2.1 Hardware design

The development of the hardware for the medium-density

EMG armband was guided by design principles established in

our previous research (Aghchehli et al., 2024), which laid the

foundation for a modular and scalable digital EMG recording

system. The prototyped medium-density EMG system is shown in

Figure 1A. Each sensor module includes an analog front-end (AFE)

for signal acquisition and an EMG signal processing subsystem.

The AFE was built on an ADS1293 platform (Texas Instruments,

USA) (Texas Instruments, 2013), which features a fixed-gain pre-

amplifier, a 24-bit analog-to-digital converter across three channels,

and an integrated electromagnetic interference (EMI) filter. As

shown in Figure 1B, each channel interfaces with two active

electrodes and a reference electrode (E1, E2, and E0), performing

differential recordings with the reference attached to the system

ground. The details of the system are listed in Table 1.

The EMG processing unit was powered by a 32-

bit ARM Cortex-M4 microcontroller (STM32L433RCI3,

STMicroelectronics), connected to the analog front-end via a

16 MHz Serial Peripheral Interface (SPI) interface. It sampled

the EMG signals at 1,067 Hz. Signal filtering was performed

using a second-order infinite-impulse response (IIR) Butterworth

bandpass filter (30–350 Hz) to remove undesired spectral

components, and a notch filter (50/60 Hz) to eliminate power-line

interference.

To prevent electrical hazards, meeting the International

Electrotechnical Commission (IEC) 60601-1 standard for medical

electrical equipment safety, each input channel and AFE were

protected with a 10k� resistor. The electrode contacts were built

with commercially available surface mount spring-loaded contacts

(Beryllium Copper), which are compliant with the Restriction of

Hazardous Substances directive. The resistance of each contact is

about 30 m� according to the datasheet (Mill-Max Manufacturing

Corporation, 2024). The system was housed in a 3D-printed case

designed in Fusion360 and printed using PLA with a Bambu Lab

P1S printer.

The medium-density EMG armband consists of two types of

nodes: one primary node and many sensor nodes. The primary

node functions as the network controller and serves as a bridge

between the sensor network and the external device; enabling

data transmission and analysis. The nodes are interconnected

using a 32MHz SPI link. The primary node transfers data which

are collected from all sensors, through USART to a computer

using USB to a serial cable (DSD TECH, 2024). The nodes are
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FIGURE 1

(A) Prototyped medium-density armband, with one primary node and seven sensor nodes. (B) Assembled PCB of the sensor. Top layer accommodate

analog front-end and processing units, and the bottom layer consists of parts for power supply and the input channel contacts. (C) 18 seconds of

data recorded (6 seconds for each grasp, eliminating the rest period in between two movements) during three di�erent grasps using the

medium-density armband. (D) Zoomed-in view of data recorded from channels 1, 2, and 3, between times 17 and 17.5 seconds data showing small

di�erences between channels despite close proximity. (E) Average SNR plot for a sample 30-second EMG data recorded during a grasp for all 21

channels.

connected using a 16-way, 0.5mm pitch flex-PCB cable, allowing

the armband to conform comfortably around the forearm. The

system is powered via USB 2.0, and each node containing an

internal power management unit that supplies the necessary power

to both the AFE and the EMG processing unit.

2.1.1 Signal to noise ratio calculation
The quantitative assessment of EMG signals captured using

medium-density EMG sensors under dynamic conditions was

performed to evaluate sensor quality, which is crucial for

various applications, including pattern recognition-based systems.

The average Signal-to-Noise Ratio (SNR) for each channel was

calculated using the algorithm outlined in Agostini and Knaflitz

(2011) and Aghchehli et al. (2024). The EMG signals were divided

into ON and OFF states to represent periods of activity and rest.

We calculated the variance of the noise during the OFF state and

the variance of the signal during the ON state. If N represents the

number of OFF states, the background noise en can be defined with

en =
1
N

∑N
i=1 σni where en represents the baseline noise level, σni

is the standard deviation of the i-th OFF state, and N is the total

number of data points in the OFF state. To distinguish between

ON and OFF states, we applied the double-threshold method

described by Agostini and Knaflitz (2011). The EMG signals were

first rectified and then two thresholds were set: the Lower Threshold

(LT), defined just above the baseline noise, was calculated as a

multiple of the baseline noise standard deviation, while the Upper

Threshold (UT), set higher, confirmedmuscle activation, also based

on a larger multiple of the baseline noise’s standard deviation.

The calculations are as follows: µn =
1
N

∑N
i=1 xi where µn

represents the mean of the baseline noise, N is the number of data

points in the baseline segment, and xi represents each individual

data point.

Concretely:

LT = µn + k1σn

UT = µn + k2σn
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Where LT is the lower threshold,UT is the upper threshold, and

k1 and k2 are constants that set the sensitivity of the thresholds, with

k1 < k2. To avoid misinterpreting brief fluctuations as transitions

between ON and OFF states, signals above LT were tracked for m

consecutive activation samples. This approach rejected variations

in the detector output shorter thanm samples. For each consecutive

ON and OFF state, the mean variance was calculated and used to

compute the SNR, with:

SNR = 10 log10

(

σ 2
s

σ 2
n

− 1

)

,

where σ 2
s and σ 2

n are the variances of the ON and OFF states,

respectively.

2.2 Ethical approval

This study was approved by the local ethics committee of

Newcastle University (reference number: 20-DYS-050). Eleven

participants (age 19 to 43, 2 women) were recruited. All participants

signed an informed consent form before participating in the

experiment.

2.3 Experiment design

In this study, participants performed six common functional

movements: power grip, lateral pinch, tripod grip, pointer

(extension), opening of the hand, and rest. Each movement was

repeated 10 times for a total of 60 trials, as shown in Figure 2A.

During each trial, subjects followed a structured protocol in

which they engaged in the designated movement for 6 seconds,

immediately followed by a relaxation period of 6 seconds to ensure

adequate muscle recovery and reduce fatigue. This standardized

timing allowed for consistent data capture across movements

and ensured that the neural network received well-distributed

input samples for training and comparison. Furthermore, the

combination of various grip types and rest intervals helped

capture a wide range of functional muscle activity that offered

a comprehensive data set to test the ability of medium-density

electrodes in decoding various movement patterns.

Movement labels were automatically generated for subjects to

follow and saved alongside the recordings using self-developed

software on the Axopy (Lyons and Margolis, 2019) platform. It is

performed as our experimental task generates the label by itself and

marks it down automatically. At the same time, the task instructs

the desired movement to the subjects and labels the simultaneously

recorded data. This software ran on a DELL Latitude 5431 laptop

equipped with a 12th Gen Intel(R) Core i7-1270P, 2.2GHz CPU,

and 32GB of memory, ensuring smooth processing and data

storage. This setup allowed for the precise synchronization of

movement labels with the corresponding EMG data and provided

a reliable basis for further analysis and neural network training.

The automatic labeling feature streamlined the data acquisition

process, enhancing the accuracy and efficiency of capturing labeled

movement data to decode performance assessments.

TABLE 1 System details per sensor.

Number of recording channels per sensor 3

Sampling rate 1,067 SPS

Digitization resolution 24 Bits

Bandwidth 30–350 Hz

Input range (Fixed gain= 3.5x) –400mV to +400mV

AFE Input referred Noise 2.25 µVp−p

AFE Common Mode Rejection Ratio (CMRR) 107 dB

Maximum SNR 20 dB

Power consumption 50 mW

PCB layers 8

PCB dimensions 24× 18mm

Seven sensor nodes, each comprising three EMG channels,

were evenly placed around the forearm approximately 4 cm

below the elbow to provide equal spacing between blocks to

allow consistent signal capture across the forearm’s musculature.

Figure 2B illustrates the positioning of the electrode and provides

a visual reference for the experimental setup and layout of the

electrode.

2.4 Signal analysis

EMG data passed through a pipeline of signal conditioning and

analysis, as detailed in Figure 2C. Hardware components of the

pipeline were described earlier and in Table 1.

As for the software components, we conjectured that

the medium-density arrangement would lend itself well to

demonstrate the additional benefits of adopting spatio-temporal

based descriptor features introduced in Samuel et al. (2019). We

implemented the six proposed features, referred to as spatio-

temporal-based feature sets. The integral square descriptor of

the signal, representing its power, is calculated by summing the

squared magnitudes of the signal values over a given window.

The second and third features were derived from the difference

between the integral square descriptor and the normalized root-

square coefficients of the first and second differential derivatives.

The fourth feature estimates muscle contraction force for a specific

gesture. This is achieved using a variant of the non-linearized form

of the log-detector presented in Tkach et al. (2010). For the fifth

feature, the mean value of the square root of the given window as a

temporal representation of the muscle activity is calculated (Samuel

et al., 2018). Finally, mean derivatives of the higher order moments

were adopted from Al-Timemy et al. (2015). Table 2 presents the

equations used to extract these features. In the table, x represents a

window of the signal, n denotes the window length, and DDx1 and

DDx2 correspond to the first and second differential derivatives of

the signal, respectively. Furthermore, RSCx represents root-square

coefficient of the signal x. We used an overlapping segmentation

scheme with a window length of 281.1 ms and an incremental step

of 9.3 ms to extract features.
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FIGURE 2

(A) The experiment protocol and movement examples. (B) A participant wearing the armband on the right forearm. (C) EMG signal pipeline, including

all utilized built-in blocks within the ADS1293 chip, including filtering for electromagnetic interference rejection, and filtering for anti-aliasing.

TABLE 2 Equations of the six extracted features used in this study.

ISDsig
∑n−1

i=0 x[i]2

Difference between ISDsig and normalized RSCx1

∑n−1
i=0 x[i]2 − 1

θ

∑n−1
i=0 DDx1[i]

2

Difference between ISDsig and normalized RSCx2

∑n−1
i=0 x[i]2 − 1

θ

∑n−1
i=0 DDx2[i]

2

Mean logarithm kernel abs(e
1
n

∑n−1
i=0 log(x[i]))

Mean value of the square root 1
n

∑n−1
i=0 x[i]1/2

Mean derivative of the higher order moments 1
n

∑n−1
i=0 DDx2[i]

In the equations, x, n, DDx1 , and DDx2 represent a window of the signal, the window length,

and the first and the second differential derivatives of the signal, respectively. RSCx denotes

root-square coefficient of the signal x.

2.5 Neural network design

Temporal Convolutional Networks (TCN), as a recently

emerged class of deep learning models, have proven their

superiority against conventional recurrent networks in many time-

series analyses, sequence modeling tasks, and EMG-based hand

gesture classification (Lea et al., 2017; Bai et al., 2018; Betthauser

et al., 2019; Zanghieri et al., 2019; Jabbari et al., 2024, 2021).

The dilated structure of causal one-dimensional convolutional

operations along the time dimension makes them computationally

efficient and suitable for real-time on-board implementation (Cote-

Allard et al., 2021). However, most previous work has implemented

the TCN structure in a stacked-layer framework, using purely

temporal networks in a straightforward manner (Zanghieri et al.,

2019). This approach lacks spatial representation of the signals,

as the model focuses solely on the temporal aspect in each layer.

Therefore, such models can be regarded as a vanilla TCN structure.

To address the spatial aspect of the signal in addition to temporal

considerations, most spatio-temporal deepmodels use independent

spatial and temporal blocks in a cascaded framework (Jabbari and

Nazarpour, 2024; Xia et al., 2018; Hu et al., 2018; Wu et al., 2018;

Ma and Nazarpour, 2024).

In this study, we implemented a novel spatio-temporal

convolutional network capable of performing spatial and temporal

convolutional operations simultaneously. In this structure, each

input sample at time t is not only convolved to the sample at

t − n, but is also convolved to the input at the same time t

from other channels. Therefore, this structure can be regarded as a

simultaneous spatio-temporal convolutional network. A schematic

block diagram of the proposed architecture is shown in Figure 3A.

As the schematic diagram illustrates, we present a simple scenario

with two features from two time steps, which can be extended to

six features and a broader range of time steps. For two features,

F1 and F2, from two channels at two time steps t and tn, the

first stage, as shown, applies temporal and spatial convolutions

on the right and left, respectively. For the output at time step t,

the temporal connections are realized by convolving features of

channel m and q, F1 and F2, from t and tn, separately. In parallel,

in the spatial convolutional layer, the spatial output is achieved by

convolution between F1 and F2 from channel m and q at time

step t. Therefore, features F1 and F2 from channel m at time step

t not only are connected to features F1 and F2 from the same

channel at time step t − n, but also are connected to features F1

and F2 from channel q, too. The same approach is applied for
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FIGURE 3

Schematic representations of the spatial-temporal convolutional network. (A) The vanilla TCN. (B) Segmented raw EMG signals are used to extract

features and are then fed into the models based on the deployed configurations. Each dilated convolutional layer is followed by batch normalization

and dropout layers.

features F1 and F2 from channel q. Each convolutional layer is

followed by a batch normalization and dropout layer to prevent

overfitting, and the final decision is made by a softmax layer. In

addition to the proposed spatial-temporal convolutional network,

we implemented two baseline approaches for benchmarking. A

vanilla TCN architecture (Figure 3B), which applies temporal

convolutions purely along the time dimension, and a traditional

linear discriminant analysis (LDA) method.

2.6 Explainability with saliency maps

We employed the saliencymapsmethod to visually explain how

the proposed model extracts spatio-temporal components from the

input data. The concept comes from computer vision for image

classification, and the main purpose of the method is to show the

importance of each input pixel when output is generated with an

opaque machine learning model (Meng et al., 2023). Each input

pixel is assigned an importance score, visualizing the degree of

contribution it has to the final output of the model. Inspired by

the saliency map in image classification, features of each channel at

every time step are considered as a spatio-temporal pixel in a time

series classification problem (Crabbé and Van Der Schaar, 2021;

Ismail et al., 2020; Yan et al., 2021). We implemented the saliency

map method using the keras.vis library as described in Simonyan

(2013). Taking into account a specific input I0 and class c, as well

as the class score function Sc(I0), the purpose is to illustrate the

contribution of each channel-time component of I0 based on its

influence on the score Sc(I0). If we consider a linear score for the

class c, Sc(I) can be written as:

Sc(I) = w
T
c i+ bc

Where i is the vectorized version of I and the magnitude

of elements of w describes the importance of the corresponding

spatio-temporal component of input I for the class c. In the

proposed spatio-temporal model the class score Sc(I) is a non-linear

function of I. However, Sc(I) can be approximated by a first-order

Taylor expansion as:

Sc(I) ≈ w
T
i+ b

Therefore, the main concept behind the idea is to calculate the

gradient of the classification score Sc with respect to the input I

at the spatio-temporal component of I0. The input shape of deep

learning models is structured as [samples, time_steps, channels,

features]. For each sample, the score array generated by the Saliency

non-linear map follows the shape [time_step, channel_score,

feature_score]. In our case, with time_steps, channels, and features

being 60, 21, and 6, respectively, the score array takes the form [60,

21, 6]. Since our focus is on investigating the contribution of each

channel rather than individual features, we calculated the average

score values along the feature dimension. As a result, the final score
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FIGURE 4

(A) Average classification accuracy for LDA, vanilla TCN, and spatio-temporal network when using medium density (21 channels) and low-density (7

channels) settings. (B) Average Confusion matrices for the same two recoding achieved using the spatio-temporal network. (C) Heatmap

visualization of averaged saliency maps across all subjects when deploying the the spatio-temporal network and vanilla TCN.

array for each gesture is [60, 21]. The utilized Saliency method

computes gradient-based saliency maps (Meng et al., 2023).

2.7 Statistical analysis

To investigate the statistical significance of the achieved results,

for the paired comparisons, we utilized the Wilcoxon Signed-Rank

test, which is suitable for dependent samples as a non-parametric

method. In addition, the Friedman test was deployed to compare

multiple conditions. In cases with a significant statistical difference,

we used post-hoc pairwise comparisons using the Nemenyi test.

All statistical analyses were run using the scipy.stats and scikit-

posthocs packages in Python.

3 Results

To evaluate SNR in all 21 channels, an additional participant

(male, 30 years old) wore the armband and performed a power

grasp for one second, followed by a one-second rest period, while

standing in front of a screen. The subject was asked to perform

the activity to the extent that was comfortable over the course

of the data recording. This activity cycle was repeated for a total

recording duration of 30 seconds. SNR calculations were performed

for each ON andOFF state as described above, and then the average

SNR was calculated for each channel over the 30-second recording

period. Figure 1C shows an example of 18 seconds of data recorded

(6 seconds for each grasp, eliminating the rest period in between

two movements) during three different grasps using the medium-

density armband. Figure 1D shows the close-up view of the data

from channel 1, 2 and 3, between times 17 and 17.5 seconds.

Despite the close distance between input contacts, there are small

differences between each channel’s signals. Figure 1E presents the

average SNR for each channel.

Figure 4A demonstrates the mean accuracy achieved for each

of the 10 participants for the LDA, vanilla TCN, and simultaneous

spatio-temporal model for two recording configurations, (1)

medium density, when the 21 EMG channel data was included

and (2) low density, when only the middle EMG channel of each

EMG sensing unit was included, that is, 7 channels. The results

show that increasing the spatial density of the surface EMG sensors

increases the classification accuracy. This finding was confirmed

for statistical significance with a Wilcoxon signed rank test (Z =

27, p = 2× 10−6). Furthermore, we observed a significant effect of

the choice of decoder when classifying medium-density EMG data

(Friedman test, χ2
= 12.2, p = 0.002, df = 2). Post-hoc pairwise

analysis using a Nemenyi test revealed that the spatio-temporal

model outperforms both the vanilla TCN (p = 0.004) and the

LDA model (p = 0.01). The difference between the classification

accuracy with the LDA and vanilla TCNmodels was not statistically

significant (p = 0.97).
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Figure 4B illustrates the averaged confusion matrices for all

subjects, comparing the proposed simultaneous spatio-temporal

network in the medium- and low-density configurations across six

classes, The error distribution across all classes for the proposed

model is lower than that of the Vanila TCN.

As one of the contributions in this study was to evaluate

the effect of spatio-temporal feature learning, we visualized the

contribution of each spatial-temporal pixel as input for both

the proposed spatio-temporal model and the vanilla TCN. The

heatmap representation of the saliency method used for the

proposed spatio-temporal model and vanilla TCN, in the medium-

density configuration, is shown in Figure 4C on the left and

right, respectively. The proposed model can successfully increase

the contribution of all channels simultaneously at most times,

effectively addressing the spatio-temporal aspects of the EMG

signals.

4 Discussion

This study presents a compact medium-density EMG system

that improves the accuracy and usability of the decoding

for myoelectric control applications. Through the development

of a novel 21-channel EMG armband and deployment of

spatio-temporal convolutional networks, our system achieves

better performance compared to conventional low-density EMG

approaches. By leveraging simultaneous spatio-temporal feature

learning, our model captures long-range temporal dependencies

within the EMG signals and that between different channels. The

high SNR for the medium-density EMG electrodes was comparable

to that obtained in previous study (Aghchehli et al., 2024) showing

the quality of the proposed system. The proposed medium-density

EMG system requires less complexity compared to the high-density

systems that have been used for research (Jiang et al., 2021;

Varghese et al., 2024), where the armband is lightweight (100g)

and user-friendly, facilitating simple data collection. These findings

underscore the potential of medium-density EMG systems as an

alternative to traditional low- and high-density configurations for

gesture recognition.

An important contribution of this study is demonstrating

that increasing the number of electrodes from a low-density to

a medium-density setup can improve accuracy. Saliency map

interpretation reveals that this improvement is not a pure data-

driven achievement and is rooted in how spatially distributed

components can be extracted from a medium number of electrodes

if a spatio-temporal model is well implemented. The activation of

more spatio-temporal components from the input by the spatio-

temporal model, compared to the vanilla TCN, which can be

visually seen in Figure 4C, proves that spatial resolution may

be as important as the temporal aspect for EMG-based gesture

classification.

This study is a proof of concept. We acknowledge that a larger

dataset is necessary to fully establish its benefits and generalisability.

The observed inter-subject variability in Figure 4A highlights the

need for further investigation, which we are actively pursuing

in ongoing studies. Although the current sample size (N = 10)

limits the statistical robustness, it serves as an essential step toward

validating the approach. Future work will explore larger data sets,

addressing machine learning performance and variability factors to

refine the applicability of the method on diverse subjects.

5 Concluding remarks

Our findings align with emerging trends in muscle sensing

technologies, particularly magnetomyography (MMG) (Zuo et al.,

2020; Ghahremani Arekhloo et al., 2023, 2024). MMG measures

magnetic fields generated by muscle contractions, offering several

advantages over EMG, including lower susceptibility to noise

and greater signal stability. The spatial resolution advancements

demonstrated with our medium-density EMG system suggest

that similar enhancements in MMG technology could yield even

greater improvements in decoding accuracy. Studies on MMG-

based decoding (e.g., Yun et al., 2024) support this perspective,

indicating the potential for MMG to complement or surpass EMG

in future assistive technologies (Klotz et al., 2023).
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