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PoseRL-Net: human pose
analysis for motion training
guided by robot vision

Bin Liu and Hui Wang*

Department of Physical Education, College of Education, Shanghai Jianqiao University, Shanghai,

China

Objective: To address the limitations of traditional methods in human pose

recognition, such as occlusions, lighting variations, and motion continuity,

particularly in complex dynamic environments for seamless human-robot

interaction.

Method: We propose PoseRL-Net, a deep learning-based pose recognition

model that enhances accuracy and robustness in human pose estimation.

PoseRL-Net integratesmultiple components, including a Spatial-Temporal Graph

Convolutional Network (STGCN), attention mechanism, Gated Recurrent Unit

(GRU) module, pose refinement, and symmetry constraints. The STGCN extracts

spatial and temporal features, the attention mechanism focuses on key pose

features, the GRU ensures temporal consistency, and the refinement and

symmetry constraints improve structural plausibility and stability.

Results: Extensive experiments conducted on the Human3.6M and MPI-INF-

3DHP datasets demonstrate that PoseRL-Net outperforms existing state-of-the-

art models on key metrics such as MPIPE and P-MPIPE, showcasing superior

performance across various pose recognition tasks.

Conclusion: PoseRL-Net not only improves pose estimation accuracy but also

provides crucial support for intelligent decision-making and motion planning in

robots operating in dynamic and complex scenarios, o�ering significant practical

value for collaborative robotics.

KEYWORDS

human pose estimation, 3D skeleton modeling, spatial-temporal graph convolution,

attention mechanism, robot-assisted motion analysis

1 Introduction

In collaborative robotics and intelligent systems, the accuracy of human pose
recognition significantly impacts the naturalness and safety of human-machine
interactions, establishing it as a core technology for automation systems (Hernández et al.,
2021; Liu and Wang, 2021). With the rapid advancement of deep learning and computer
vision, pose recognition applications have expanded beyond robot control and monitoring
to include augmented reality, sports analysis, and intelligent surveillance (Fan et al., 2022;
Desmarais et al., 2021). Additionally, human pose analysis encompasses both external
sensing technologies, such as vision-based systems, and internal sensing technologies, such
as wearable sensor-based approaches. These two paradigms offer complementary strengths
and enable a wide range of applications.
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Vision-based pose recognition aims to precisely predict
the position and relative relationships of various keypoints by
analyzing skeletal information in videos or images (Kim et al.,
2023; Liu et al., 2022). However, this task presents numerous
challenges, including lighting changes (Lee and Ahn, 2020),
partial occlusions (Hernández et al., 2021), diverse poses (Wang
et al., 2021), and continuous motion. With the widespread
adoption of deep learning, models based on Convolutional Neural
Networks (CNN) (Desmarais et al., 2021), Graph Convolutional
Networks (GCN) (Li et al., 2021), and Recurrent Neural Networks
(RNN) (Zhang et al., 2020) have become mainstream. Methods
such as OpenPose (Cao et al., 2017), AlphaPose (Fang et al.,
2022), and PoseNet (Kendall et al., 2015) have shown promising
results in single and multi-person settings, but they still face
limitations in handling complex, dynamic scenes. Moreover,
motion continuity and robustness remain challenging due to the
inherent nature of visual occlusions, scene clutter, and real-time
processing requirements.

Meanwhile, wearable sensor-based approaches, which
use biosignals captured from devices such as smart bands,
smartphones, or knee bandages, offer a privacy-preserving
and unobtrusive alternative for pose analysis. These methods
are particularly effective for tasks like gait parameter
estimation (Hartmann et al., 2024), high-level human activity
recognition (Hartmann et al., 2022), and feature space
reduction for efficient classification (Hartmann et al., 2021).
For example, Hartmann et al. introduced motion units for
generalized sequence modeling of human activities, which address
challenges such as motion continuity and robustness (Hartmann
et al., 2023). Additionally, frameworks such as ASK have
shown how multimodal data fusion can improve activity
recognition performance, combining wearable sensor data with
contextual information (Hartmann et al., 2020). Furthermore, the
development of real-time wearable HAR systems demonstrates
the feasibility of meeting strict latency requirements in dynamic
environments (Hartmann et al., 2024). Wearable sensors excel in
capturing fine-grainedmotion data, enabling accurate classification
of activities such as standing, sitting, walking, jogging, and other
locomotion patterns.

While vision-based approaches excel in capturing spatial and
contextual information, sensor-based systems are highly robust to
occlusions and lighting variations, making them complementary
solutions for human pose analysis (Bai et al., 2024). For
example, insights from wearable sensor technologies, such as
motion continuity modeling and high-level feature extraction,
could inspire the development of robust temporal models for
vision-based systems. Similarly, multimodal systems that integrate
visual and biosignal data hold promise for enhancing robustness,
accuracy, and generalization across diverse scenarios. Combining
these paradigms offers an opportunity to leverage the strengths of
both approaches and address their respective limitations.

Human pose recognition, encompassing both external and
internal sensing technologies, has broad applications in modern
human-machine interaction, intelligent monitoring, and health
management. In collaborative robotics, precise pose recognition
enhances robots’ understanding and responsiveness to human
behavior, enabling them to better adapt to dynamic collaborative

environments and achieve more natural interactions. In intelligent
surveillance, pose recognition supports anomaly detection, crowd
flow analysis, and public safety management. Additionally, in
healthcare, pose recognition assists in motion assessment, posture
correction, and rehabilitation training, while wearable sensors
enable early detection of gait impairments or fall risks in elderly
individuals (Hartmann et al., 2024). These technologies also find
applications in interactive sports coaching and personalized activity
tracking.

Despite significant progress, pose recognition technology
still faces challenges in handling occlusions in complex scenes,
enhancing motion continuity and robustness, and meeting real-
time requirements. For instance, wearable sensing technologies
have made strides in addressing motion continuity and real-
time processing, yet their reliance on sensor placement limits
generalization across datasets. Vision-based approaches, while
strong in spatial feature extraction, require innovations in
temporal modeling and multimodal data integration to match the
robustness of sensor-based systems. Therefore, developing precise,
stable, and efficient models that combine external and internal
sensing modalities remains a critical research direction. Further
innovations in multimodal data fusion, spatial-temporal feature
extraction, and cross-domain adaptability will drive advancements
in pose recognition and human activity analysis, ultimately
enabling more reliable and interpretable systems for real-world
applications.

PoseRL-Net is structured with key components to enhance
performance: (1) A Spatial-Temporal Graph Convolutional
Network (STGCN) module, which extracts spatiotemporal features
from the skeletal structure by representing joints as graph nodes
and skeletal connections as edges. Through graph convolution, this
module learns the temporal relationships between joints, effectively
capturing dynamic changes during movements, and improving
pose estimation accuracy in complex, real-world scenarios,
particularly in environments with occlusion or unpredictable
actions. (2) An Attention Mechanism, which dynamically adjusts
the weights of each joint, enabling the model to focus on the
most critical joints during an action. This mechanism not only
enhances recognition robustness in complex, dynamic scenes but
also improves model interpretability by highlighting the most
important joints in real-time, allowing the model to better handle
occlusions and interactions between multiple individuals. (3)
A Pose Refinement module with Symmetry Constraints, which
refines predictions by enforcing symmetry between left and right
joints, ensuring the physical plausibility of the predicted poses.
This module reduces errors caused by asymmetric pose predictions
and guarantees that the generated poses align with the natural
movement patterns of the human body, enhancing both the
accuracy and realism of pose estimations.

Contributions of this paper are as follows:

• This paper designs a convolutional network based
on spatiotemporal graphs, which effectively extracts
spatiotemporal features from the skeletal structure,
addressing the challenges of dynamic, collaborative, and
occluded environments, thereby enhancing recognition
performance in complex real-world scenes.
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• The introduction of an attention mechanism allows the model
to dynamically focus on the most critical joints, improving
the robustness of pose recognition in highly dynamic and
interactive scenarios while offering better interpretability by
emphasizing key features.

• Through the integration of a posture optimization module
with symmetry constraints, the model ensures physically
plausible and accurate pose predictions, significantly
improving stability and generalization ability in posture
recognition tasks, even in challenging environments.

2 Related work

2.1 Robot vision system structure

In collaborative environments, machine vision systems enable
robots to perceive their surroundings comprehensively, assisting
them in accurately recognizing poses and understanding actions
in dynamic and complex scenarios (Turaga et al., 2008), which
in turn allows for more precise decision-making and proactive
planning (Narneg et al., 2024). Robot vision systems typically
integrate various types of sensors, including monocular cameras,
stereo cameras, depth cameras, and RGB-D cameras, each with
its own advantages and limitations suited to different application
contexts.

Monocular cameras are low-cost and easy to set up,
making them suitable for basic visual functions in simple
environments (Zhang et al., 2021). However, due to limitations
in viewing angles and sensitivity to lighting changes, monocular
cameras may struggle with robustness and accuracy in complex
collaborative scenes. Stereo cameras, on the other hand, provide
richer stereo vision information and have higher robustness,
though their feature matching and calibration are challenging,
computationally intensive, and prone to motion blur.

Depth cameras offer real-time 3D depth information and are
highly resilient to lighting and shadow variations, allowing for
stable detection under various lighting conditions, albeit with
relatively low resolution (Dong et al., 2022; Hao et al., 2024). In
comparison, RGB-D cameras (such as Kinect and TOF cameras),
which combine color and depth information, achieve high-
precision recognition even in complex backgrounds, making them
particularly effective in collaborative scenarios with uneven lighting
andmultiple occlusions (Ning et al., 2024). RGB-D cameras excel in
environmental adaptability and real-time performance, effectively
discerning occlusion relationships between objects and identifying
key features.

In complex collaborative environments, researchers have
explored various sensor applications. For instance, Abdelsalam
et al. (2024) employed a ZED stereo camera to capture 3D point
cloud data in collaborative spaces, constructing unlabelled voxel
grids and marking key elements using joint position information,
achieving stable pose recognition in complex backgrounds.
D’Antonio et al. (2021) utilized a Kinect camera to capture
human joint information and employed a bounding circle method
to correct joint displacements, enabling accurate recognition in
motion. These studies highlight the potential of different vision
sensors in collaborative robotic settings, demonstrating how

adapting to sensor characteristics enables efficient and accurate
human pose recognition in dynamic environments.

2.2 Appearance features

Appearance features primarily refer to visual attributes such
as color, texture, and shape, which play essential roles in
image processing. Robot vision systems analyze appearance
features in images to recognize key parts of the human
body (Kocabas et al., 2021), thereby enabling understanding of
poses and capturing actions. However, in complex collaborative
environments, recognition based on appearance features is easily
affected by lighting changes, shadows, and skin color differences,
which can degrade recognition performance.

Color features are a core component of appearance features
and are commonly extracted through color histograms or color
moments. However, variations in lighting conditions often distort
color features, impacting recognition accuracy. To address this,
Al Naser et al. (2022) proposed a new algorithm combining
the Otsu method and the YCrCb color space, fusing thermal
and color information for body part detection. Compared to the
traditional OpenPose method, this approach significantly improves
recognition speed and reduces the impact of lighting and skin tone
variations. Additionally, Zabalza et al. (2019) developed a vision
module based on low-cost cameras that uses color detection in
the HSV color space, enabling robots to perceive environmental
changes more accurately and detect nearby obstacles, thereby
enhancing recognition precision under varying lighting andmotion
conditions.

In practical applications, to maintain high appearance feature
recognition performance in environments with significant lighting
and shadow changes, researchers typically enhance system
robustness through various preprocessing and feature fusion
methods. With advancements in machine vision technology,
appearance feature processing techniques are continually
optimized, enabling robots to capture human poses more
efficiently in dynamic environments.

2.3 Local features

Local features play a crucial role in robotic vision systems,
especially in complex environments with varying lighting
conditions or occlusions, where local features are often more
robust than appearance features (Bazzani et al., 2013). Local
features describe specific details in an image, typically including
edges, corners, and texture information, which help robots
accurately recognize and locate key parts of the human body.

Common local feature extraction methods include Scale-
Invariant Feature Transform (SIFT) (Lowe, 1999), Histogram of
Oriented Gradients (HOG) (Dalal and Triggs, 2005), and Oriented
FAST and Rotated BRIEF (ORB) (Bansal et al., 2021). SIFT
identifies key points in images at different scales and orientations,
providing good resistance to occlusion, making it suitable for
dynamic scenes. In contrast, ORB combines the FAST feature
detection with the BRIEF descriptor, significantly enhancing
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FIGURE 1

Overview of the proposed PoseRL-Net architecture. (A) Skeleton embedding. (B) GCN+MLP layer. (C) Spatial-temporal graph construction layer.

computational speed and making it ideal for real-time applications.
In environments with significant lighting and viewpoint variations,
HOG extracts feature information by calculating the gradient
direction distribution across different regions of an image, offering
high invariance to lighting changes.

In complex collaborative environments, researchers have
further improved local feature extraction and matching methods.
For instance, Vinay et al. (2015) proposed an interactive face
recognition framework based on ORB, incorporating kernel
principal component analysis to address nonlinear factors,
significantly enhancing recognition accuracy under occlusion
conditions. Wu et al. (2017) utilized HOG to extract skeleton
feature matrices and proposed a Rotational and Projective Skeleton
Signature (RPSS), which demonstrated good real-time performance
and robustness, even when spatiotemporal information in action
sequences was insufficient.

3 Method

In this paper, we propose a PoseRL-Net-based robot vision-
guided method for recognizing and analyzing human posture and
movement in training scenarios, with the experimental architecture
shown in Figure 1. By constructing a Spatial-Temporal Graph
Convolutional Network (GCN), we treat each human joint as a
graph node, with edges representing spatial (skeletal) and temporal

(action frame sequence) connections. This method combines the
features of Multi-Layer Perceptron (MLP) and the structure of
GCN, enabling efficient feature extraction and aggregation of
posture data across both spatial and temporal dimensions. The
model includes a posture encoding module, spatial-temporal graph
convolution layer, motion prediction module, and a posture
optimization step, ultimately generating guidance for robot-
assisted motion training.

3.1 Spatial-temporal graph construction

In the spatial-temporal graph construction, human posture is
modeled as a graph structure G = (V ,E). Nodes (V) represent
the positions of human joints, with each node corresponding to a
specific joint. Assuming the human body hasM joints, and given an
action sequence of T frames, the model contains T×M nodes. The
edges (E) are categorized into two types, describing the spatial and
temporal relationships between joints. Spatial edges connect related
joints within each frame, reflecting the skeletal structure, such as the
connection between the knee and hip. Temporal edges connect the
same joint across consecutive frames to capture motion trajectories
and temporal continuity. This structured graph allows information
transfer between nodes, enabling each joint to perceive information
from its neighboring joints and capture temporal action changes.
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FIGURE 2

(A) Physical and symmetrical connections in the human skeletal graph. (B) Adjacency matrix used in the GCN module of PoseRL-Net, where di�erent

colors represent di�erent types of bone connections.

The spatial-temporal graph construction can be expressed using the
graph Laplacian operator as follows:

G = (V ,E,W) (1)

where V = {vti | t = 1, . . . ,T; i = 1, . . . ,M} represents the set
of all nodes, with each vti denoting the i-th joint node at frame t.
E = {eij} denotes the set of edges, defining the connections between
nodes. W = (wij)N×N is the adjacency matrix, where N = T ×M

represents the total number of nodes in the graph.
The adjacency matrixW is defined as:

wij =

{
1, if (i, j) ∈ E

0, if (i, j) /∈ E
(2)

We split the edge set E into spatial and temporal edges. Within
each frame t, the skeletal structure is viewed as a static graph,
with all adjacent joint nodes connected according to the skeletal
relationship. For each joint i, a temporal edge is created between
the nodes vti and v(t+1)i across consecutive frames t and t + 1,
representing the joint’s positional change over time. To enhance the
feature extraction capabilities of the graph convolution, we apply a
normalized graph Laplacian matrix:

L = IN − D− 1
2WD− 1

2 (3)

where IN is the N × N identity matrix, and D is the degree
matrix with diagonal elements Dii =

∑
j wij, representing the

degree of node i. This spatial-temporal graph construction method
enables the model to efficiently aggregate spatial and temporal
information of joints in the graph convolution layer, providing a
more accurate and comprehensive feature representation for 3D
posture prediction.

3.2 Graph convolution layer

The Graph Convolution Layer (GCN) is a type of neural
network layer designed to process graph-structured data by
aggregating information within each node’s neighborhood. This
allows the central node to integrate information from its adjacent
nodes, thereby enhancing the feature representation of each node.
In PoseRL-Net, the joint graph structure is constructed through
the spatial-temporal graph, after which the feature of each joint is
enriched through the GCN layer. This process not only preserves
the overall structural information of human joints but also captures
temporal action patterns. During graph convolution, each node’s
features are propagated andmerged using the adjacency and degree
matrices, capturing complex spatial and temporal relationships.
For human pose estimation, this operation enables information
propagation between nodes, linking local joint features with the
global human skeletal structure, thereby enhancing the model’s
expressive power and prediction accuracy.

In the GCN module of our PoseRL-Net, Figure 2A shows the
joint positions of the human body, while the adjacency matrix in
Figure 2B represents the skeletal connections between each pair of
joints. The primary operation in the GCN layer is to aggregate and
transform each node’s features with those of its neighboring nodes.
Given a graph G = (V ,E):

H(l+1) = σ

(
D̃− 1

2 ÃD̃− 1
2H(l)W(l)

)
(4)

where: H(l): Node feature matrix at the l-th layer, with dimensions
N × Cl, where N is the number of nodes, and Cl is the feature
dimension at layer l. H(l+1): Node feature matrix at the l + 1-th
layer.̃A = A + IN : Adjacency matrix with self-connections, where
A is the original adjacency matrix, and IN is the identity matrix,
representing each node’s self-connection. D̃: Degree matrix, where
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the diagonal elements are defined as D̃ii =
∑

j Ãij.W(l): Learnable
weight matrix for the l-th layer, used for linear transformation,
mapping features from Cl to Cl+1.σ : Activation function, using
ReLU as the activation function.

The GCN layer leverages graph convolution to extract spatial
and temporal information between nodes. The spatial-temporal
graph construction stage generates an adjacency matrix Ã that
contains both spatial and temporal relationships, which the
GCN layer then uses to aggregate features within each node’s
neighborhood. Within the same frame, spatial edges in the GCN
layer connect joint nodes to learn the spatial relationships between
joints, aiding the model in understanding the spatial structure
of the human body. Between adjacent frames, temporal edges
connect the same joint’s positions across time, capturing the joint’s
motion trajectory and dynamic characteristics. This design helps
the model learn the continuity and evolution of actions. By stacking
multiple GCN layers, the model gradually aggregates spatial and
temporal features at different scales, enabling a comprehensive
understanding of human pose.

3.3 Hierarchical local-global feature
extraction

The purpose of local-global feature extraction is to
progressively aggregate local joint information into global
pose features through a hierarchical approach. This process is
achieved via graph pooling and graph upsampling. Specifically,
the model begins with fine-grained joint-level features, gradually
pooling them to form holistic information about the human
body. Then, based on the global information, the model performs
upsampling to recover detailed features, leading to more accurate
pose predictions.

Initially, starting from the skeleton graph, we use pooling
operations to aggregate information from individual joints into
more abstract local features, representing different parts of the
body. After several layers of pooling, the model obtains a low-
resolution global feature map that captures the overall structure
of the human body. Based on this global feature, the model
progressively upsamples and incorporates lower-level details to
generate more precise pose predictions. The features at each layer
are integrated during upsampling, enabling collaborative learning
of both local and global information.

Through this series of operations, the model can accurately
understand the overall structure of the human body while
preserving local details, thereby enhancing the accuracy of 3D pose
estimation.

In the graph pooling operation at layer l, we aggregate fine-
grained features into coarse-grained features. Assuming the input
feature is H(l) and the pooled feature is H(l+1), the pooling process
can be defined as:

H(l+1) = P(l)H(l) (5)

where H(l) is the node feature matrix at layer l, with dimensions
N(l)×C(l), whereN(l) is the number of nodes, and C(l) is the feature
dimension at layer l. P(l) is the pooling matrix that controls the

aggregation of features from layer l to layer l+1.H(l+1) is the feature
matrix at layer l+ 1, with dimensions N(l+1) × C(l+1).

During the upsampling process, we progressively restore low-
resolution features to higher resolutions to retain local detail
information. Assuming the upsampled feature at layer l is H(l):

H(l−1) = U(l)H(l) +H(l−1) (6)

where H(l) is the feature matrix at layer l, with dimensions N(l) ×

C(l). U(l) is the upsampling matrix that maps features from layer l
to layer l − 1. H(l−1) is the upsampled feature, which is fused with
the pre-pooled feature at layer l− 1 to restore details.

The hierarchical local-global feature extraction significantly
enhances the model’s understanding of human poses. The pooling
operation allows the model to capture the overall structure of joints
at a coarse-grained level, while the upsampling process retains
fine-grained details, enabling the model to accurately capture
subtle differences in movements during 3D pose prediction. This
local-global feature extraction mechanism not only improves the
model’s expressive capability but also increases its adaptability and
robustness to complex human actions.

3.4 Motion prediction and pose refinement

Through motion prediction, the model extends a given
sequence of actions over time, capturing pose variations at different
time steps. Pose refinement, on the other hand, adjusts pose
parameters to ensure that the predicted results conform to natural
human movement patterns, thereby enhancing both the accuracy
and stability of the model.

The task of motion prediction involves temporally extending
the observed sequence of poses to generate future pose information.
To achieve this, the model first predicts the next frame’s pose
based on several past frames. This process utilizes a sequence-based
deep learning network, such as a Gated Recurrent Unit (GRU), as
illustrated in Figure 3. GRU enables the extension of short-term
motion dynamics into long-term predictions. The core idea of
motion prediction is to model the trend of joint position changes
over time to forecast future joint positions:

8̂t+1 = f (8t ,8t−1, . . . ,8t−k; θ)

where 8̂t+1 represents the predicted pose at time t + 1,
8t ,8t−1, . . . ,8t−k are the historical poses from time t − k to
t, f is the motion prediction function, and θ denotes the model
parameters. This approach allows the model to make long-term
predictions of future poses based on historical data.

After motion prediction, pose refinement is applied to adjust
the predicted 3D poses to align with realistic human motion
and symmetry constraints. The goal of pose refinement is to
optimize the prediction to ensure that themovements are physically
plausible and conform to natural human structures, avoiding
abrupt or anatomically inaccurate poses. This optimization
typically uses specific loss functions, such as joint symmetry
loss and smoothness loss, to constrain the predicted pose. Pose
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FIGURE 3

GRU module.

refinement effectively reduces the noise in predictions, thus
improving the accuracy of motion forecasting.

Pose refinement primarily involves two aspects: smoothness
constraint and symmetry constraint. The smoothness constraint
ensures that joint movement remains consistent over time,
minimizing sudden jumps, while the symmetry constraint
maintains similar length and structure between symmetric joints,
preserving human body symmetry.

To quantify these objectives, we design three loss functions:
pose loss, smoothness loss, and symmetry loss. Each loss function
targets a different aspect of model optimization, working in tandem
to improve the quality of pose predictions. The specific formulas are
as follows:

Pose loss Lp: This loss function measures the error between the
predicted 3D joint coordinates and the ground-truth coordinates,
ensuring the accuracy of the predicted pose:

Lp =

T∑

t=1

M∑

i=1

∥∥∥φ̂t,i − φt,i

∥∥∥
2

Smoothness loss Ld: This loss function constrains the change
in joint positions between consecutive frames, ensuring temporal
smoothness of the pose:

Ld =

T∑

t=2

M∑

i=1

∥∥∥φ̂t,i − φ̂t−1,i

∥∥∥
2

Symmetry loss Ls: This loss function ensures consistent relative
positions and structure between symmetric joints (e.g., left and
right hands, left and right legs), increasing the physical plausibility
of human movement:

Ls =

T∑

t=1

∑

b∈B

∥∥∥
∥∥∥B̂t,b

∥∥∥ −

∥∥∥B̂t,C(b)
∥∥∥
∥∥∥
2

where T represents the number of time steps, M is the number
of joints, and φ̂t,i and φt,i denote the predicted and ground-truth
positions of joint i at time t, respectively. In the smoothness loss,
φ̂t,i and φ̂t−1,i represent the predicted positions of joint i at times t
and t − 1. In the symmetry loss, B̂t,b and B̂t,C(b) represent the bone
vectors of symmetric joint pairs.

These loss functions work together to improve the model’s
capability to capture realistic and stable poses, ensuring that
PoseRL-Net produces accurate and natural motion predictions
across various scenarios.

4 Experiment

4.1 Datasets

The Human3.6M dataset (Ionescu et al., 2013) is one of the
most commonly used 3D human pose datasets, primarily for
research in 3D human pose estimation and action recognition.
This dataset includes 11 different activity categories, such
as walking, running, eating, and talking on the phone.
These activities are performed by seven different subjects
and captured from multiple camera views (a total of four
cameras), providing a rich set of perspectives and fields of
view. Human3.6M offers over 3.6 million annotated frames,
with each frame containing 3D positions (in millimeters) of
17 joints.

The MPII Human Pose dataset (Mehta et al., 2017) is a
standard 2D human pose estimation dataset containing over 25,000
images. Each image is annotated with 16 keypoints (including head,
shoulders, elbows, knees, etc.). This dataset covers a wide range
of everyday activities, including sports, daily tasks, and complex
dance movements. Each image includes 2D joint positions for
16 joints, with poses captured from various scenes and diverse
activity types.
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4.2 Implementation details

In the experimental setup, we systematically trained and
evaluated the model to verify the performance of PoseRL-Net.
During training, we used the Stochastic Gradient Descent (SGD)
optimizer with an initial learning rate of 0.001, a momentum of
0.9, and a batch size of 32. The learning rate was reduced by a
factor of 10 every 10 epochs. The training was conducted over
100 epochs, with early stopping applied to monitor the MPJPE
metric on the validation set to prevent overfitting. The weights
of the loss functions were set as follows: the weight for the pose
loss Lp was 1, the weight for the smoothness loss Ld was 1,
and the weight for the symmetry loss Ls was 0.01 to balance
the contributions of each loss component. The input data was
preprocessed with normalization, specifically using OpenCV and
Numpy to scale-normalize the 3D joint data from the Human3.6M
dataset. Model training and ablation experiments were conducted
in the PyTorch framework, with TensorBoard used to log changes
in loss and evaluation metrics in real time. The final evaluation
metrics included MPJPE, P-MPJPE, MPJVE, parameter count, and
Floating Point Operations (FLOPs) to provide a comprehensive
analysis of themodel’s performance and computational complexity.

4.3 Evaluation metrics

In the experimental evaluation, we employed multiple metrics
to comprehensively analyze the performance of PoseRL-Net.
Specifically, two standard evaluation protocols were used on the
Human3.6M dataset (Ionescu et al., 2013). Protocol #1 involves
training the model on five subjects (S1, S5, S6, S7, S8) and testing on
two unseen subjects (S9, S11) to evaluate the model’s generalization
to new individuals. This protocol reports the Mean Per Joint
Position Error (MPJPE), which measures the average Euclidean
distance between predicted and ground-truth 3D joint positions
without any alignment. Protocol #2 applies rigid alignment using
Procrustes analysis to remove differences in translation, rotation,
and scale between the predicted and ground-truth 3D poses, using
the same train-test split as Protocol #1. This protocol reports the
Pose-processing MPJPE (P-MPJPE), which specifically evaluates
the accuracy of pose reconstruction by focusing on the shape
similarity of poses rather than their absolute position.

In addition to these metrics, the Mean Per Joint Velocity
Error (MPJVE) was utilized in the MPI-INF-3DHP dataset
evaluation to assess temporal smoothness by calculating the error
in joint velocities between consecutive frames. Lower MPJVE
values indicate better continuity and stability in motion sequences.
MPJVE was not applied to the Human3.6M dataset, as its
evaluation primarily focuses on pose accuracy rather than motion
dynamics. Furthermore, computational efficiency was evaluated
through the model’s parameter count (Parameters, P) and floating-
point operations (FLOPs).

4.4 Experimental results

We compare PoSER-NET with the most advanced 3D pose
estimation models. The results are summarized in Table 1 and

visualized in Figure 4 with the drawing of the reference (Li
et al., 2023, 2024). This comparison highlights PoseRL-Net’s
superior predictive accuracy and stability in 3D pose estimation,
as demonstrated by key metrics such as MPJPE. Table 1 details the
performance of PoseRL-Net across various actions and benchmark
models. PoseRL-Net consistently achieved lower MPJPE values
across multiple actions, particularly in complex poses such as
direction, eating, sitting, and walking. The model achieved an
average MPJPE of 35.2, the lowest among all evaluated models,
showcasing its exceptional ability to accurately capture human
poses across diverse scenarios. The improved performance of
PoseRL-Net is attributed to its critical components, including
the Spatial-Temporal Graph Convolutional Network (STGC)
for efficient spatio-temporal feature extraction, the attention
mechanism for focusing on relevant pose features, and the
symmetry constraint for maintaining structural consistency in pose
predictions. These design choices collectively enabled PoseRL-Net
to achieve precise and stable 3D pose estimations, as reflected in the
reduced error metrics.

In Table 2 and Figure 5, PoseRL-Net outperformed other
models across various actions, achieving the best average P-
MPJPE of 34.9, indicating its superior accuracy and reliability
in pose estimation tasks. For specific actions such as direction
(Dir), eating (Eat), and sitting (Sit), PoseRL-Net demonstrated
significant advantages over other models. For instance, it
achieved P-MPJPE values of 32.5 for direction and 32.6 for
eating, highlighting its ability to generalize across diverse poses
and movements.

To evaluate the contribution of each component in PoseRL-
Net, a series of ablation studies were conducted, systematically
removing or replacing specific modules (e.g., STGC, GRU,
pose refinement). These experiments, summarized in Table 3,
aimed to quantify the impact of each module on the model’s
performance. The ablation results underscore the importance of
every component, including STGC, attention mechanism, GRU,
pose refinement, and symmetry constraint, in enhancing the
accuracy of 3D pose estimation. MPJPE was used as the primary
evaluation metric, with lower MPJPE values indicating better
model accuracy. Additionally, model complexity was analyzed
through parameters (in millions) and floating-point operations
(FLOPs, in millions), offering insights into the computational cost
associated with each variation.

To ensure the reliability of the ablation study results, a statistical
evaluation was conducted. For each ablation experiment, the model
was trained and tested 5 times with different random seeds, and the
mean and standard deviation of MPJPE were reported. A paired
t-test was performed to determine the statistical significance of
the differences between the complete PoseRL-Net model and each
ablated variant.

The complete PoseRL-Net model, incorporating all
modules, achieved the lowest MPJPE of 48.6 (mean ± std:
48.6 ± 0.3) with 8.91M parameters and 894M FLOPs. This
result validates the effectiveness of combining all components
for accurate 3D pose estimation. Removing individual
modules resulted in notable increases in MPJPE, emphasizing
their significance:

Model 1 excluded the STGC module, resulting in an MPJPE
of 52.1 ± 0.4 (p < 0.01 compared to the full model), highlighting
STGC’s critical role in capturing spatio-temporal features.
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TABLE 1 Quantitative comparison of Protocol #1 (MPJPE) on the Human3.6M dataset.

Protocol #1 Dir Dise Eat Greet Phone Photo Pose Purch Sit SitD SMoke Wait WalkD Walk WalkT Average

STGC-GNNs (He et al., 2023) 47.2 48.3 53.2 54.7 64.5 72.3 53.6 58.4 71.2 91.1 63.5 55.4 61.5 47.8 52.8 63.4

HiSSTGNN (Ma et al., 2023) 44.6 46.8 43.4 46.3 48.5 54.3 44.5 44.6 57.4 65.8 47.5 44.1 49.1 32.4 33.5 46.7

STGCN (Yu et al., 2017) 33.5 43.5 44.2 44.1 45.7 58.3 43.6 43.8 52.8 61.4 48.5 43.6 47.8 35.6 38.4 44.8

GAT (Veličković et al., 2017) 46.3 47.2 45.2 42.1 45.6 48.3 46.3 45.2 53.6 62.3 47.3 43.6 44.5 32.6 33.5 44.2

CNN-LSTM (Mutegeki and Han,
2020)

43.5 45.2 45.7 48.5 45.3 47.2 54.6 42.6 51.7 58.4 48.6 43.5 48.6 35.4 38.2 41.9

ResNet 18 (He et al., 2016) 44.2 41.5 48.6 47.5 45.7 48.3 54.2 45.2 52.1 57.5 48.2 42.3 48.7 35.5 38.3 44.5

ResNet 50 (He et al., 2016) 41.2 44.5 47.3 48.2 43.5 47.3 52.5 47.6 51.6 53.6 48.1 44.5 48.4 35.6 38.8 44.6

FCN (Martinez et al., 2017) 48.3 43.3 45.2 48.5 44.7 42.9 48.6 46.8 52.1 52.5 47.3 42.6 48.3 33.5 34.1 41.5

TCN (Pavllo et al., 2019) 47.2 44.1 42.6 47.2 45.1 47.2 47.3 48.6 53.3 54.7 45.6 42.5 42.6 38.6 41.5 46.3

SemGCN (Zhao et al., 2019) 45.5 48.3 45.8 42.6 44.6 42.8 48.9 45.9 57.6 51.6 42.6 47.3 49.1 34.6 48.6 47.6

GraphSH (Xu and Takano, 2021) 47.1 42.6 46.3 43.6 48.9 48.2 41.6 48.2 48.7 47.6 42.6 42.6 47.8 38.6 42.6 37.5

MGCN (Zou and Tang, 2021) 41.3 41.6 41.2 37.4 41.5 48.2 38.6 42.6 46.5 42.8 34.6 41.8 42.6 38.4 41.8 44.5

RS-Net (Hassan and Hamza, 2023) 38.5 39.6 42.6 41.6 42.5 41.6 35.8 39.4 50.4 54.2 47.1 38.6 48.2 36.4 39.5 41.7

MSS-Former (Zhao et al., 2024) 40.6 41.1 42.7 42.6 48.2 50.1 40.6 44.5 51.5 58.2 36.8 48.2 44.1 33.1 31.2 41.4

PoseRL-Net(Ours) 35.7 41.6 40.5 41.7 42.6 51.3 40.5 41.6 52.4 56.5 42.3 41.1 42.1 32.5 30.6 35.2

The best is in bold, the second is underlined.
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FIGURE 4

Protocol #1: MPJPE comparison across all models and metrics.

Model 2 removed the Attention Mechanism, leading to an
MPJPE of 61.6 ± 0.5 (p < 0.01), indicating the importance of
focusing on relevant pose features for accuracy. The substantial
difference in MPJPE demonstrates that the attention mechanism
has the most significant impact on the model’s performance.

Model 3 excluded the GRU module, yielding an MPJPE of
53.6± 0.3 (p < 0.05), revealing the GRU’s importance in modeling
temporal dynamics for sequential pose prediction.

Model 4 omitted the pose refinement module, resulting in an
MPJPE of 52.8 ± 0.4 (p < 0.05), demonstrating the module’s
contribution to noise reduction and structural consistency.

Model 5 excluded symmetry constraints, achieving an MPJPE
of 51.4 ± 0.3 (p < 0.05), indicating its role in maintaining natural
body configurations.

The statistical evaluation underscores that each module in
PoseRL-Net contributes uniquely to improving 3D pose estimation,
with the AttentionMechanism having the most significant effect on
performance. The full model’s superior performance validates the
integration of STGC, attention mechanism, GRU, pose refinement,
and symmetry constraints for achieving state-of-the-art results.

Table 4 presents a comparison of PoseRL-Net with state-of-
the-art models on the MPI-INF-3DHP dataset, focusing on key
metrics for pose estimation accuracy and efficiency. PoseRL-Net
demonstrated significant improvements in accuracy compared to
existing models. Specifically, it achieved the lowest MPJPE of 22.4,
substantially outperforming the second-best model, MSS-Former,
which had an MPJPE of 35.5. This result highlights PoseRL-Net’s
exceptional ability to precisely localize 3D joints. Additionally,
PoseRL-Net achieved the best P-MPJPE score of 33.2 and the
lowest MPJVE of 2.43, showcasing its effectiveness in maintaining
alignment accuracy and smooth joint motion predictions. These
results validate PoseRL-Net’s ability to capture fine-grained pose
details while ensuring temporal consistency in motion sequences.

In contrast, models such as Temporal Convolutional Network
(TCN) and SemGCN, which lack advanced spatio-temporal
and attention mechanisms, achieved higher MPJPE values of
67.2 and 70.1, respectively, demonstrating their limitations in
accurately capturing complex 3D poses. GraphSH and MGCN
leveraged graph-based structures and performed better with
MPJPE values of 52.2 and 48.5, but they still lagged behind
PoseRL-Net, highlighting its superior generalization across poses.
Overall, PoseRL-Net demonstrated outstanding accuracy and
efficiency on the MPI-INF-3DHP dataset, outperforming existing
methods on all evaluation metrics. Its low MPJPE, P-MPJPE, and
MPJVE scores underscore its robustness and applicability to 3D
pose estimation in challenging scenarios. The model’s balance
between complexity and accuracy makes it a promising choice
for real-world applications requiring precise and reliable human
pose estimation.

Figure 4 provides a qualitative analysis of PoseRL-Net’s
performance across various human motion poses, showcasing the
model’s ability to accurately recognize and track human joints
in 3D space. The leftmost column displays the original video
frames with PoseRL-Net predictions overlaid, while the remaining
columns present 3D joint estimations for different body parts
from multiple perspectives. Each row represents a specific motion
type, such as direction, walking, stooping, and appel. In the
visualized 3D plots, the predicted poses (blue) are compared
with the ground truth poses (red), allowing for observation
of joint alignment and accuracy. Zoomed-in areas highlight
critical joints, demonstrating the model’s precision in capturing
fine details and maintaining smooth tracking across frames.
Overall, Figure 6 effectively illustrates PoseRL-Net’s robustness
and high accuracy in handling complex human poses, making
it suitable for applications in motion analysis and human
pose estimation.
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TABLE 2 Quantitative comparison of Protocol #2 (P-MPJPE) on the Human3.6M dataset.

Protocol #2 Dir Dise Eat Greet Phone Photo Pose Purch Sit SitD SMoke Wait WalkD Walk WalkT Avg.

STGC-GNNs (He et al., 2023) 34.1 35.6 42.6 48.6 36.4 39.5 41.4 42.3 47.2 52.5 48.2 36.8 45.2 39.5 37.3 41.8

HiSSTGNN (Ma et al., 2023) 33.5 41.5 46.4 37.2 45.2 42.6 44.2 33.5 42.3 55.8 37.1 33.0 47.2 38.0 47.2 41.6

STGCN (Yu et al., 2017) 31.0 34.8 38.1 35.6 43.6 43.9 43.6 42.5 41.6 51.2 47.5 36.2 49.5 34.7 47.6 41.4

GAT (Veličković et al., 2017) 36.5 34.5 37.5 37.2 42.6 45.8 42.3 40.6 43.1 57.5 49.2 38.4 47.2 25.6 35.6 40.9

CNN-LSTM (Mutegeki and Han, 2020) 35.5 36.1 36.2 34.4 45.7 56.0 34.4 42.5 45.0 69.4 42.6 33.8 39.1 36.5 43.1 42.0

ResNet 18 (He et al., 2016) 42.7 43.2 64.4 35.2 51.0 51.4 47.3 33.6 46.8 49.0 47.2 38.2 37.8 37.1 41.5 44.4

ResNet 50 (He et al., 2016) 47.5 42.6 54.2 38.2 47.2 52.6 31.6 32.1 42.6 52.6 37.4 34.2 35.8 26.9 31.9 40.5

FCN (Martinez et al., 2017) 41.2 42.6 34.7 35.5 41.6 42.2 38.7 33.6 56.5 35.4 38.2 45.0 42.6 37.6 36.5 40.1

TCN (Pavllo et al., 2019) 39.5 44.2 42.6 47.0 45.7 47.6 48.2 45.3 49.6 41.5 35.4 41.5 43.5 38.4 38.2 43.2

SemGCN (Zhao et al., 2019) 38.4 41.2 36.1 47.2 36.2 42.7 41.6 45.2 44.6 51.8 39.7 42.6 44.7 37.5 36.4 41.7

GraphSH (Xu and Takano, 2021) 41.5 42.6 37.5 48.3 44.5 41.7 42.5 36.5 41.5 47.5 34.1 45.1 47.2 29.4 34.5 41.0

MGCN (Zou and Tang, 2021) 47.2 41.6 35.1 42.8 47.2 45.6 41.2 45.2 44.1 41.2 42.5 41.2 42.4 35.5 34.5 41.8

RS-Net (Hassan and Hamza, 2023) 35.4 45.2 36.1 41.1 44.1 42.5 41.6 44.5 42.5 41.4 42.4 47.5 44.1 31.5 31.5 40.8

MSS-Former (Zhao et al., 2024) 33.6 48.5 39.5 42.5 45.6 42.8 45.6 41.2 47.2 42.6 45.7 43.3 41.5 36.2 34.5 42.0

PoseRL-Net(Ours) 32.5 32.5 32.6 36.2 33.1 42.3 36.7 31.4 42.1 41.3 33.5 32.1 36.5 28.4 31.6 34.9

The best is in bold, the second is underlined.
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FIGURE 5

Protocol #2: MPJPE comparison across all models and metrics.

TABLE 3 Ablation analysis of each module.

Model STGC Attention
mechanism

GRU Pose
refinement

Symmetry
constraint

Parameters
(M)

FLOPs (M) MPJPE

PoseRL-Net X X X X X 8.91 894 48.6

Model 1 X X X X 6.02 472 52.1

Model 2 X X X X 7.62 847 61.6

Model 3 X X X X 8.42 465 53.6

Model 4 X X X X 8.69 731 52.8

Model 5 X X X X 8.82 684 51.4

TABLE 4 Accuracy of di�erent models on the MPI-INF-3DHP dataset.

Method Parameters (M) FLOPs (M) MPJPE P-MPJPE MPJVE

TCN (Pavllo et al., 2019) 88.5 78.3 67.2 39.4 2.96

SemGCN (Zhao et al., 2019) 89.6 80.4 70.1 36.2 2.87

GraphSH (Xu and Takano, 2021) 90.4 81.5 52.2 35.6 2.76

MGCN (Zou and Tang, 2021) 90.1 81.2 48.5 34.4 2.54

RS-Net (Hassan and Hamza, 2023) 90.5 82.5 62.7 33.6 2.64

MSS-Former (Zhao et al., 2024) 90.4 81.1 35.5 34.1 2.56

PoseRL-Net(Ours) 91.5 81.4 22.4 33.2 2.43

5 Discussion and conclusion

This paper proposes a robot posture recognition method
based on machine vision, PoseRL-Net, which aims to improve
the 3D posture recognition performance of robots in complex
collaborative scenarios. By combining key components such
as spatiotemporal graph convolutional network (STGC),
attention mechanism, GRU module, posture optimization
and symmetry constraint, PoseRL-Net can effectively extract

and fuse spatiotemporal features to achieve accurate recognition
of human posture. We have conducted extensive experimental
verification of PoseRL-Net on datasets such as Human3.6M and
MPI-INF-3DHP, and compared it with existing advanced methods.
The experimental results show that PoseRL-Net has achieved
the best performance in multiple indicators, especially in key
indicators such as MPJPE and P-MPJPE, which is significantly
better than other models, demonstrating its excellent performance
in posture estimation tasks.
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FIGURE 6

Examples of MSS-Former, RS-Net, and our 3D pose estimation model. The last column is the 3D pose of the ground truth.

The effectiveness of each module is further verified by ablation
experiments, which proves the importance of modules such
as spatiotemporal feature extraction, posture optimization and
symmetry constraint to improve model accuracy. In addition, we
also analyzed the training and inference efficiency of PoseRL-Net
under different hardware conditions, proving its potential in real-
time applications. In practical applications, PoseRL-Net can adapt
to a variety of postures andmotion types, has strong robustness and
generalization capabilities, and provides reliable technical support
for the intelligent decision-making and action planning of robots in
complex human-machine collaborative environments.

Future research can further explore the lightweight
optimization of models in low computing resource environments
to achieve a wider range of application scenarios. In short, this
study provides an effective solution for posture recognition under
the guidance of robot vision, and lays a solid foundation for the
application of collaborative robots in the field of human-machine
collaboration.
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