
TYPE Original Research

PUBLISHED 12 March 2025

DOI 10.3389/fnbot.2025.1537673

OPEN ACCESS

EDITED BY

Alois C. Knoll,

Technical University of Munich, Germany

REVIEWED BY

Bo You,

Harbin University of Science and Technology,

China

Wenzheng Chi,

Soochow University, China

*CORRESPONDENCE

Fusheng Zha

zhafusheng@hit.edu.cn

Mantian Li

limtsz@szpu.edu.cn

RECEIVED 01 December 2024

ACCEPTED 24 February 2025

PUBLISHED 12 March 2025

CITATION

Zhang S, Zha F, Wang X, Li M, Guo W, Wang P,

Li X and Sun L (2025) High-e�ciency sparse

convolution operator for event-based

cameras. Front. Neurorobot. 19:1537673.

doi: 10.3389/fnbot.2025.1537673

COPYRIGHT

© 2025 Zhang, Zha, Wang, Li, Guo, Wang, Li

and Sun. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The

use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

High-e�ciency sparse
convolution operator for
event-based cameras

Sen Zhang1, Fusheng Zha1,2*, Xiangji Wang1, Mantian Li3*,

Wei Guo1, Pengfei Wang1, Xiaolin Li3 and Lining Sun1

1State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China, 2Lanzhou

University of Technology, Lanzhou, China, 3Institute of Intelligent Manufacturing Technology,

Shenzhen Polytechnic University, Shenzhen, China

Event-based cameras are bio-inspired vision sensors that mimic the sparse and

asynchronous activation of the animal retina, o�ering advantages such as low

latency and low computational load in various robotic applications. However,

despite their inherent sparsity, most existing visual processing algorithms are

optimized for conventional standard cameras and dense images captured

from them, resulting in computational redundancy and high latency when

applied to event-based cameras. To address this gap, we propose a sparse

convolution operator tailored for event-based cameras. By selectively skipping

invalid sub-convolutions and e�ciently reorganizing valid computations, our

operator reduces computational workload by nearly 90% and achieves almost

2× acceleration in processing speed, while maintaining the same accuracy as

dense convolution operators. This innovation unlocks the potential of event-

based cameras in applications such as autonomous navigation, real-time object

tracking, and industrial inspection, enabling low-latency and high-e�ciency

perception in resource-constrained robotic systems.

KEYWORDS

event-based camera, sparse convolution, convolution operator, high-e�ciency,

low-latency

1 Introduction

Low-computation and low-latency visual perception are crucial for robotic systems.

Compared to the highly efficient visual processing capabilities of advanced biological

systems such as humans, robotic vision often requires significantly greater computational

resources (Wu et al., 2022; Meng et al., 2025). This inefficiency imposes substantial

constraints on a wide range of robotic applications. A notable example can be seen in small

micro aerial vehicles (MAVs). To maximize flight endurance, MAVs are typically designed

to be lightweight, which restricts them to carrying low-power embedded computing

devices. As a result, their visual processing capabilities are often limited to basic visual

functions or extremely slow in high-level 3D vision (Guo et al., 2024; Cheng et al., 2024),

frequently making timely and effective obstacle avoidance difficult. The challenge becomes

even more pronounced in autonomous driving. Ensuring safety and robustness demands

the simultaneous execution of multiple perception sub-tasks (Qian et al., 2022; Wang et al.,

2019; Jiang et al., 2019). Moreover, integrating information across spatial, color, temporal,

and multi-camera dimensions significantly increases the computational burden, making

real-time perception increasingly difficult. Consequently, autonomous driving systems

often struggle to meet stringent latency requirements. Their typical perception update rates

reach only around 30 Hz (Yu et al., 2023), which falls far short of the ideal requirements.

Frontiers inNeurorobotics 01 frontiersin.org

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2025.1537673
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2025.1537673&domain=pdf&date_stamp=2025-03-12
mailto:zhafusheng@hit.edu.cn
mailto:limtsz@szpu.edu.cn
https://doi.org/10.3389/fnbot.2025.1537673
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnbot.2025.1537673/full
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Zhang et al. 10.3389/fnbot.2025.1537673

An event-based camera is a bio-inspired vision sensor designed

based on the working principles of the animal retina. Drawing

inspiration from the transient visual pathway, it replicates

the sparse activation and asynchronous transmission of retinal

ganglion cells. Unlike conventional cameras that capture visual

information by recording entire image frames, event-based

cameras encode visual data through discrete “event”, as illustrated

in Figure 1. This approach offers a finer and more dynamic

representation of visual information, akin to how visual neurons in

the animal nervous system respond selectively to changes in their

environment. To achieve this, the pixels of an event-based camera

remain continuously exposed, much like the human eye’s constant

reception of light. When the perceived light intensity fluctuates

beyond a certain threshold, the corresponding pixel generates a

signal. Depending on whether the intensity increases or decreases,

this signal can be positive or negative. These signals, known as

“event”, serve as the fundamental units of visual information in an

event-based camera. An “event” captures and encodes significant

changes in light intensity from the environment, selectively

highlighting the most essential visual information. This biologically

inspired strategy results in a highly sparse output, with visual

information at any moment far less than that of conventional

cameras (Rebecq et al., 2019; Miao et al., 2019). As shown in

Figure 2, sparsity often reaches 99%, enabling efficient processing

by reducing computational complexity and inference time.

However, despite event-based cameras have the characters

of low latency and high sparsity, vision processing algorithms

that fully leverage this sparsity are still relatively rare. Current

robotic vision algorithms are primarily designed for conventional

dense vision systems. Since event-based cameras operate on

fundamentally different principles than standard cameras, applying

traditional vision algorithms to event-based camera data often

disregards their inherent sparsity. This leads to high computational

complexity and increased latency, resulting in inefficient use of

computational resources and longer inference times, ultimately

hindering the potential benefits of sparse, low-latency processing.

Therefore, a critical challenge lies in how to effectively utilize

the sparse nature of event-based camera data and design sparse

processing algorithms specifically tailored for event-based data.

Some research efforts have focused on leveraging the

sparsity of event-based cameras and reducing redundant

computations. One approach processes events sequentially

in real-time (Brosch et al., 2015), eliminating zero-padding

and improving efficiency, but requiring extensive manual

design, limiting generalization to complex tasks. CNNs remain

dominant in visual perception, with studies showing improved

accuracy for event-based data. To optimize convolutions, some

methods use hash tables (Messikommer et al., 2020) to manage

sparse computations efficiently. However, hash lookups disrupt

computational continuity (Sorin et al., 2022), leading to increased

inference latency despite reduced computation. Similarly, Graph

Convolutional Networks (GCNs) (Schaefer et al., 2022) reduce

computational load but also suffer from discontinuous processing,

preventing latency improvements. Spiking Neural Networks

(SNNs) (Cordone et al., 2021; Orchard et al., 2015b; Bing et al.,

2018; Jiang et al., 2017), inspired by biological neurons, align well

with event-based data due to sparse activation and asynchronous

updates. However, they struggle with accuracy compared to CNNs

and often require specialized hardware, limiting their practical use.

Despite progress, no existing method fully resolves the balance

among computational efficiency, low latency, and high accuracy in

event-based vision.

To achieve the goal of low-latency visual perception with

minimal computational resources while maintaining high accuracy,

this paper proposes a sparse convolution operator specifically

designed for event-based cameras. By eliminating redundant

sub-convolutions, the computational load is significantly reduced.

Meanwhile, the valid sub-convolutions are efficiently reorganized

into matrix multiplication operations, greatly enhancing the

computation speed while preserving the same level of accuracy as

conventional convolution operators.

The main contributions of this paper are as follows: 1. Sparse

Convolution Operator: We propose a novel sparse convolution

operator that significantly reduces the computational load and

accelerates inference for sparse input data. To the best of

our knowledge, this is the first sparse convolution operator

that surpasses the inference speed of conventional convolution

operators when processing event-based camera data. 2. Efficient

Sub-Convolution Detection: We introduce an efficient method

for detecting valid sub-convolutions based on the location

information of active pixels, enabling the computation of sub-

convolution indices without the need for exhaustive traversal.

3. Sparse im2col: We present a sparse im2col technique that

reorganizes sparse convolution input data into a dense matrix

format, allowing for efficient matrix multiplication, protecting

the computational continuity and further accelerating the sparse

convolution operation.

2 Related works

2.1 Sparse convolution

Image-based visual data often encounters sparse input

situations, such as handwritten digits, 3D point clouds, and 3D

voxel data. These types of data contain large areas of empty

space, with meaningful information concentrated in only a small

portion of the region. When using conventional convolutional

neural networks to process this data, a large amount of empty,

invalid computations are generated. Therefore, a class of methods

attempts to modify the convolution operator by discarding invalid

operations to take advantage of this data sparsity, aiming to

reduce computation and accelerate processing. These methods are

called sparse convolutions. The most classic sparse convolution

approach was first proposed by Facebook (Graham and Van der

Maaten, 2017; Graham et al., 2018). The authors, when solving the

handwritten digit recognition problem, noticed the sparsity of the

data and used hash tables to record the elements to be computed

and their computational relationships, reflecting the sparsity. Since

the table only records valid computations and excludes invalid

operations in the empty regions, this method successfully reduces

the computational load. This approach was then applied to the

processing of 3D point clouds and 3D voxels (Yan et al., 2018).

In practical scenarios, 3D point cloud information is generally

Frontiers inNeurorobotics 02 frontiersin.org

https://doi.org/10.3389/fnbot.2025.1537673
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Zhang et al. 10.3389/fnbot.2025.1537673

FIGURE 1

Working principle of event-based cameras. (A) demonstrates working principle of a single pixel, while (B) shows the comparison of imaging results

between event-based cameras and conventional standard cameras.

FIGURE 2

Spatial sparsity of event-based cameras, (A) demonstrates the events in spatial-temporal coordinate. (B–D) shows the 2D histogram image by

accumulating events in time windows of 1 ms, 10 ms, and 100 ms. They shows the great sparsity comparing with dense image captured by

conventional standard cameras.

highly sparse, with large areas of empty space. By extending the

above method to three dimensions, sparse convolution has been

successfully applied in the field of autonomous driving for 3D

point cloud recognition, greatly improving the efficiency of 3D

convolution operations for point clouds and voxels. It is worth

noting that the creation of the hash table itself also consumes

computational resources, and the advantages of this method are

only evident when the input data is sufficiently large. For 3D

point clouds, the computational delay caused by the dimensional

explosion of 3D convolution is very high, highlighting the benefits

of sparsity. However, for ordinary 2D images, the creation cost

of the hash table is generally non-negligible. Therefore, for event-

based cameras, sparse convolution based on hash tables is difficult

to fully realize its potential in terms of computational delay. In

addition to the hash table-based sparse convolution approach, there

are other sparse convolution applications. For example, Parger et al.

(2022b,a) noticed that similar content appears frequently between

consecutive video frames, so the difference between two frames

is used as the input data for each inference. This difference often

exhibits spatial proximity and is likely to satisfy computational

continuity, where sparse convolution can achieve good results

with a simple approach. However, the effective data generated by

event-based cameras is more unevenly distributed, making it less

suitable for simple sparse convolution methods.

2.2 Data processing for event-based
cameras

Due to the significant differences in the working principles

and information representation between event-based cameras and

standard cameras, corresponding visual perception algorithms

also exhibit significant differences. Generally speaking, event-

based camera data processing algorithms can be divided into

two categories: one is event-based processing, and the other is

to aggregate events into groups for processing (Gallego et al.,

2020). In general, event-based processing better leverages the

high event resolution and low latency advantages of event-based

cameras, as there is little waiting time between event generation

and processing. One typical application of this approach is in

SLAM systems. By utilizing methods like Kalman filtering or

particle filtering, robot pose tracking can be efficiently and quickly

performed from event data. Event-based processing can also be

applied to other vision tasks, such as feature extraction (Brosch

Frontiers inNeurorobotics 03 frontiersin.org

https://doi.org/10.3389/fnbot.2025.1537673
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Zhang et al. 10.3389/fnbot.2025.1537673

et al., 2015) and image reconstruction (Munda et al., 2018).

These tasks combine past event information with current data

to accomplish high-level visual tasks, which to some extent align

with the asynchronous nature of event-based cameras. However,

a drawback of event-based processing is that it cannot provide

enough effective information at once and is susceptible to noise

interference, often limiting its application range and performance,

particularly in high-level semantic reasoning. Aggregating events

into groups allows for the simultaneous consideration of more

information, making the information extraction and reasoning

process more convenient. The methods of event aggregation and

representation are diverse, mainly including event frames (Liu

and Delbruck, 2018), Time Surface, Voxel Grid, 3D Point Sets,

and others. The event frame representation allows for the reuse

of conventional image processing methods, such as convolutional

neural networks (CNNs), to process event-based camera data, and

such methods have been proven to be highly effective in various

tasks. Time Surface is a representation sensitive to motion direction

and scene edges, making it particularly effective in applications

such as optical flow estimation (Benosman et al., 2013). Many

studies now use this approach as the foundation for dynamic

feature extraction, feeding it into CNNs and other neural networks

for perceptual reasoning, achieving promising results (Zhu et al.,

2018). Voxel Grid and 3D Point Set representations extend the

information into the spatiotemporal domain. On one hand, they

retain more information; on the other hand, they demand higher

computational resources. These representations can generally be

input into various ANN models (e.g., CNNs) for better processing

results. From this, it can be seen that convolutional neural networks

are foundational modules in event-based camera data processing

methods, and convolution operators play an important role in

event-based camera perception and reasoning. Moreover, there are

still relatively few approaches that focus on the sparsity of event

data in convolutional inference.

3 Methods

This paper is primarily inspired by the GEMM (General

Matrix Multiply) method in traditional dense convolutions.

By transforming the sparse convolution for processing event-

based camera data into dense matrix multiplication, it reduces

the computational load while preserving the continuity of

the computations, thus achieving efficient sparse convolution

operations. The following section provides a detailed explanation

of the specific approach.

3.1 Converting events to tensor

The main difference in working principles between event-

based cameras and standard cameras lies in the fact that in an

event-based camera, each pixel unit operates independently and

asynchronously. The data generation process of each pixel unit is

not controlled by a unified clock cycle, but rather by the changes

in the ambient light information. The basic perceptual output of

each pixel unit is called an event. An event is triggered when the

logarithmic intensity of the light stimulus received by a pixel unit

exceeds a preset threshold c compared to the previousmoment, that

is:

|log(I)− log(Ilast)| > c (1)

It will then generate and output eventi, which contains the

pixel coordinates (xi, yi) of the pixel, the time ti when the event

occurred, and the polarity pi, which indicates whether the change

in light intensity exceeded the threshold in an upward or downward

direction. That is:

eventi = (xi, yi, ti, pi) (2)

As the ambient light information changes, the event-based

camera can output a continuous asynchronous event stream over

time. A single event contains very little information, making it

difficult to achieve the desired results through processing individual

events. However, by recording all events that occur within a small

time window 1t, a set of events, S1t , can be obtained. This event

set S1t carries more information and provides a more meaningful

representation for further processing.

S1t = {(xi, yi, ti, pi)|ti ∈ 1t} (3)

When the ambient light source remains constant, the changes

in brightness within an image are typically caused by the movement

of objects. Specifically, movement at the edges of objects tends to

result in more significant changes in intensity. Therefore, the event

set S generally contains information about object edges, which is

crucial for visual tasks such as object detection. By using a sliding

window, the contents of S can be continuously updated to acquire

new perceptual data. Additionally, by controlling1t, one can adjust

the temporal receptive field and the amount of spatiotemporal

information processed in each instance.

Modern AI algorithms typically use tensors as the fundamental

data structure. Considering the scalability and compatibility of

the proposed convolution operator, event-based camera data S is

expressed here in the form of an image tensor, similar to traditional

images. Based on the definitions above, each eventi contains

information in four dimensions. First, for the time t-dimension,

when1t is sufficiently small, it can be approximated that the events

in S occur simultaneously. In this case, the time-axis information

of visual events within the 1t time window is compressed. For

the polarity dimension, the polarity p of an event has only two

possible values, and events with the same polarity p are spatially and

logically closely related. Therefore, events with different polarities p

can be treated as information in different channels of the image,

i.e., using polarity as the channel dimension. Finally, for the width

and height dimensions, the x and y coordinates of eventi represent

the pixel positions where the event occurs, which is consistent with

traditional images. Thus, an event eventi can be represented as

a multi-dimensional vector Ti, similar to a pixel in a traditional

image.

Ti = [N, pi, hi,wi] (4)

In this representation, pi, hi, and wi belong to eventi, where N

represents the batch dimension, pi is the channel dimension, and

hi and wi represent the height and width dimensions, respectively.

The tensor Ti obtained from all events that occurred within the

Frontiers inNeurorobotics 04 frontiersin.org

https://doi.org/10.3389/fnbot.2025.1537673
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Zhang et al. 10.3389/fnbot.2025.1537673

time window 1t can be stacked to form the real-valued part

of the image tensor. However, there are many pixel positions

within the time window 1t where no visual events occurred. For

these positions where no event has taken place, zeros are used

to fill the corresponding locations. In this way, we obtain a data

representation in the form of a tensor ET, which is compatible with

modern computer vision techniques. This tensor ET provides a

structured representation of event-based camera data that can be

processed using standard AI algorithms.

ET = 0+
∑

Ti (5)

The xi and yi in eventi record the positions of valid pixels

in ET. We will denote the set of all valid pixel positions in ET

as Valid_pix. These are the positions where events have occurred

and contain meaningful visual information, distinguishing them

from the positions that remain empty (where no event has been

triggered).

Valid_pix = {(xi, yi)|xi, yi ∈ eventi, eventi ∈ S1t} (6)

Since the ET tensor contains a large number of zero elements,

performing operations such as convolution directly would result in

a significant amount of meaningless redundant computation. The

design of an efficient sparse convolution algorithm that leverages

data sparsity will be discussed in detail below.

3.2 Valid sub-convolution detection

Convolutional neural networks (CNNs) are an important

method of information processing in robotic vision, with the

convolution operator being the core of the network. The

convolution operation with an image is performed by convolving

the kernel with data from a specific window in the input image,

which is then traversed across the image using a sliding window.

Due to the sparsity of the input image data, the sub-convolution

operation at specific windows may contain a certain number of

zero computations. When a sub-convolution still contains valid

computations, it is called an valid sub-convolution. When a

sub-convolution contains only invalid zero computations, it is

called an invalid sub-convolution. We denote the index set of

valid sub-convolution as Valid_subconv. valid sub-convolutions

are operations that have an impact on the inference results and

cannot be ignored. The challenge in achieving efficient sparse

convolution lies in how to organize and transform valid sub-

convolutions into efficient computations. Before this, it is necessary

to first detect the specific locations of the valid sub-convolutions.

Thanks to the efficiency of the event-based camera’s raw data

representation, we can easily obtain the positions of valid pixels in

the ET tensor, denoted as Valid_pix, as described in Equation 6.

There is a strong correspondence between the positions of valid

pixels and the positions of valid sub-convolutions. A window

containing an valid sub-convolution must necessarily include valid

pixels, and each valid pixel corresponds to a specific valid sub-

convolution. Therefore, the locations of the valid sub-convolutions

can be directly inferred from Valid_pix. Specifically, except at the

image edges, each valid pixel corresponds to K sub-convolution

operations, where K is the size of the sub-convolution window. By

matching this pixel with the elements at different positions in the

convolution kernel, we can determine the positions of the K sub-

convolutions. At the image edges, the number of sub-convolution

operations corresponding to each pixel will be fewer than K, and

additional checks are required to verify whether the positions of

the sub-convolutions are correct and valid. Since the positions of

all valid pixels are recorded in Valid_pix, we can traverse Valid_pix

and take the union of all the positions of the valid sub-convolutions

to obtain the complete set of valid sub-convolution positions. This

approach greatly improves time efficiency compared to the method

of detecting valid sub-convolutions by directly traversing according

to their definition.

3.3 Sparse Im2col

The convolution operation with an image is essentially a series

of logically parallel multiplication and addition operations, forming

a very regular computational structure. In practice, however,

this often transforms into a more computer-friendly format for

parallel computation, specifically general matrix multiplication

(GEMM). By converting the convolution operation into GEMM

form, the computation speed can be significantly accelerated.

To facilitate the introduction of the computational organization

involved in this invention, let’s first explain the general principle

of conventional dense convolution operations. In typical image

convolution, the convolution kernel is unfolded into a row vector,

and the convolution kernel vectors of different channels form a

convolution kernel matrix. The image data in the convolution

operation is unfolded into column vectors, and the combination

of data from different channels and batches forms an image

matrix. By multiplying the resulting convolution kernel matrix

with the image matrix, a single general matrix multiplication

operation is performed, yielding the result of the image convolution

operation (though the element ordering may differ slightly). The

overall computation process is shown in Figure 3. Since typical

dense image convolution operations do not account for invalid

calculations, i.e., multiplication and addition operations involving

zero elements, processing event-based camera data in this way

would waste considerable computational resources, slowing down

the operation time.

This paper introduces an innovation in the image matrix

processing step. By removing invalid computation data,

the remaining valid operations are transformed into general

matrix multiplication (GEMM) operations to achieve efficient

computation. The specific approach is as follows: First, for each

valid sub-convolution, following the general image convolution

method, the image data of one channel in the convolution window

is unfolded into a column vector in a row-major order. Then, the

column vectors obtained from different channels are concatenated

by columns to form the column vector corresponding to the

current valid sub-convolution. Next, all the valid sub-convolution

operations are traversed in the order defined in Valid_subconv, and

the above steps are repeated to convert all the image data required

Frontiers inNeurorobotics 05 frontiersin.org

https://doi.org/10.3389/fnbot.2025.1537673
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Zhang et al. 10.3389/fnbot.2025.1537673

FIGURE 3

Conventional dense convolution is usually transformed into general matrix multiplication (GEMM) when executed on actual chips. This

transformation helps maintain computational continuity and significantly improves processing speed compared to a naive implementation that

strictly follows the definition. It can also be observed that when the input is a sparse tensor, a significant number of redundant computations occur in

the GEMM operation. If these redundant computations are eliminated, the overall computation speed can be further improved. The asterisk (*)

denotes the “convolution operator,” that is, the convolution in convolutional neural networks.

for valid operations into several column vectors. Finally, all the

column vectors corresponding to the valid sub-convolutions are

placed into adjacent memory spaces and concatenated by rows to

obtain an image matrix. This matrix is then used for general matrix

multiplication. In typical dense image convolution operations,

the process of converting the image into a matrix for GEMM

is called im2col. Therefore, in this paper, the process described

above is referred to as sparse im2col. As for processing the

convolution kernel matrix, it remains consistent with the general

image convolution algorithm. Compared to the im2col in typical

image convolution, sparse im2col does not require traversing the

entire input tensor directly. It only needs to traverse the smaller,

valid convolution portion, bringing two main benefits. On one

hand, the computational load for the conversion process is greatly

reduced, enabling faster conversion from convolution to GEMM.

On the other hand, the resulting matrix is smaller, reducing the

computer’s memory consumption, and a smaller matrix also means

a significant reduction in the computational load for subsequent

matrix multiplication operations.

Figure 4 provides a visual representation of the process

described above. For simplicity, only the single-channel

convolution is shown, though the actual process is more complex.

In the case of typical dense image convolution operations,

the matrix size corresponding to the convolution kernel is

[channel_out, kernel_size × kernel_size × channel_in], and the

matrix size corresponding to the image data is [kernel_size ×

kernel_size × channel_in,Valid_subconv]. In general image

convolution operations, the matrix size corresponding to the image

data is [kernel_size×kernel_size×channel_in,N×h_out×w_out].

Therefore, the computational cost ratio of the proposed oprator

to that of standard image convolution can be calculated as

η = Valid_subconv/(N × h_out × w_out). That is the key

reason behind the high efficiency of the method. This paper

examines the computational sparsity at the sub-convolution

level, retains only the valid sub-convolutions, and organizes

the remaining valid sub-convolutions into general matrix

multiplication operations. This approach not only greatly reduces

the computational load but also ensures hardware friendliness

in computation.

3.4 Converting the result as regular
convolution

The general image convolution operation completed by general

matrix multiplication yields a matrix product result Pd, which

is equivalent to the theoretical convolution result. However, the

general matrix multiplication operation completed in section

above, which focuses only on the non-zero elements, results in

a product Ps that differs from the typical image convolution

operation. It is a subset of the full convolution result that contains

only the valid information. To be compatible and adaptable with

other computational components in modern neural networks,

Frontiers inNeurorobotics 06 frontiersin.org

https://doi.org/10.3389/fnbot.2025.1537673
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Zhang et al. 10.3389/fnbot.2025.1537673

FIGURE 4

We first eliminate redundant computations in the GEMM to reduce the overall computational cost. Then, we organize the remaining valid operations

into a GEMM format again to preserve computational continuity. The combination of eliminating redundant computations and preserving

computational continuity is the key distinction that sets our method apart from traditional dense convolutions and other sparse convolution

approaches. The asterisk (*) denotes the “convolution operator,” that is, the convolution in convolutional neural networks.

such as max pooling and batch normalization, it is necessary to

further transform Ps into a form identical to that of a typical

image convolution. The specific approach is as follows: first, fill

the corresponding positions in the resulting product matrix Ps

with zero elements, expanding it to the same size and shape as

the matrix multiplication result Pd in typical image convolution.

This can be achieved by utilizing Valid_subconv again. Based on

the above description, the following relationship exists between Ps

and Pd:

Ps = {pi ∈ Pd|i ∈ Valid_subconv} (7)

That is, the result obtained by combining the columns of Pd

at the index positions of the elements in Valid_subconv is Ps. This

can be easily explained, as in matrix multiplication, the columns

of the product correspond one-to-one with the columns of the

operand matrix. Therefore, by using the above relationship in

reverse, we can remap the elements in Ps to new positions based on

Valid_subconv, and fill the complement positions of Valid_subconv

with zero to obtain the desired result, denoted as Pds. Next,

Pds needs to be further transformed into the format of a typical

image convolution. The result Pds, obtained from general matrix

multiplication, has a data layout format of [CNHW], whereas

modern neural networks typically use the [NCHW] format. Thus,

by swapping the axes, the final required image convolution result

can be obtained.

4 Results

To verify the correctness and effectiveness of the proposed

method, we designed a neural network with a single convolution

layer and evaluated the proposed sparse convolution operator

from three dimensions: computational accuracy, computational

complexity, and actual inference time. For the input data, we

selected the N-Caltech101 dataset (Orchard et al., 2015a), which

is derived from real event-based camera recordings. This dataset

captures images from the Caltech101 dataset using an event-based

camera, generating corresponding event data. It contains 8,246

samples across 101 categories, with each sample comprising 300

ms of event-based camera data. The image resolution is 180× 240.

The experimental platform utilized an Intel i7-12700KF CPU as the

computing unit, with 16GB of memory and running Ubuntu 20 as

the operating system. The code was compiled using gcc with the

-O3 optimization option enabled.

The primary factor influencing the inference performance of

a sparse convolution operator is the sparsity level of the input

data. In theory, the higher the sparsity, the more evident the

advantages of the sparse convolution algorithm. In the extreme

case where the sparsity level is zero, the algorithm degenerates

into a dense convolution. To investigate the performance of the

proposed sparse convolution operator under varying sparsity levels,

we generated input data with different sparsity by extracting

event data from time windows of different lengths within the

samples.

Frontiers inNeurorobotics 07 frontiersin.org

https://doi.org/10.3389/fnbot.2025.1537673
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Zhang et al. 10.3389/fnbot.2025.1537673

To more clearly demonstrate the advantages of the proposed

sparse convolution operator, we conducted comparative

experiments with both dense convolution and the classical

SCN sparse convolution method. For the dense convolution

implementation, we selected the standard dense convolution

operator from Intel’s MKL library, which offers the highest

inference efficiency for convolutional neural networks on Intel

CPU products. This is due to extensive engineering optimizations

specifically tailored to the characteristics of Intel CPUs.

In the N-Caltech101 dataset, each 300 ms sample is recorded by

moving the camera in three different directions relative to a static

image, with each movement lasting 100 ms. Therefore, the first 100

ms of data can be considered representative of the entire sample.

To generate data with varying sparsity levels, we extracted time

windows of different sizes from this 100 ms segment, starting from

0 ms, with a time step of 1 ms, resulting in 100 sets of event-based

camera data with different densities. The raw event data is then

converted into a tensor following the previously described method,

yielding an input tensor with the shape [8, 2, 180, 240]. When the

time window is set to 100 ms, the maximum density of the input

tensor reaches approximately 3%.

First, we validate the computational accuracy. Theoretically,

the proposed convolution operator only eliminates redundant

multiplications and additions involving zeros, so its results should

be identical to those of standard dense convolution. We randomly

initialize the weights for the dense convolution and assign the

same weights to the proposed sparse convolution operator. Using

PyTorch’s allclose function, we verify whether the results are

identical. The relative and absolute tolerance values are set to 10−3

and 10−5, respectively. The statistical results show that the outputs

of both methods fall within the tolerance range, consistent with

theoretical expectations, confirming the correctness and reliability

of the proposed sparse convolution operator.

Next, we conduct a comparative experiment on computational

cost. Since the primary operations in the convolution process are

multiplications and additions, we use the number of multiply-

add operations as the basis for comparison. To clearly illustrate

the differences in computational cost between the operators, we

normalize the computational cost using the dense convolution as

the baseline. The results are shown in the Figure 5.

It can be observed that the proposed sparse convolution

operator has the same computational cost as the classical SCN

sparse convolution algorithm, both of which are significantly lower

than that of dense convolution. Even when the time window is set to

100ms, where the input tensor contains themajority of the effective

information, the computational cost is only about 25% of that of

dense convolution.

Next, we conducted an experiment to measure the actual

inference time. The 100 input tensors mentioned above were

fed into the standard dense convolution operator, the SCN

sparse convolution operator, and the proposed sparse convolution

operator, respectively. By evaluating the samples from the N-

Caltech101 test set, we obtained the inference performance of the

three operators under different input sparsity levels, as shown in

Figure 6.

The experiment shows that as sparsity increases, the inference

time of the SCN algorithm quickly surpasses that of dense

convolution, performing better only when the data density

FIGURE 5

Comparison of the computational complexity of di�erent

convolution operators. The computational complexity of the

method in this paper is the same as that of the SCN method. The

line represents the average complexity, and the shaded envelope

represents the standard deviation of the complexity.

FIGURE 6

Comparison of the actual inference speed of di�erent convolution

operators. For each time window setting, the N-Caltech101 test set

is traversed once to ensure multiple experiments for each sparsity

level. The line represents the average inference time, and the shaded

envelope represents the standard deviation of the inference time.

is extremely low. However, once the density rises to around

1%–corresponding to a time window of approximately 10 ms–the

inference speed of SCN falls behind dense convolution, limiting its

practical applicability. In contrast, the proposed sparse convolution

operator maintains competitive performance until the sparsity

decreases to around 2.2%, with a corresponding time window

of approximately 65 ms. Moreover, the proposed operator

consistently outperforms the SCN convolution operator in terms

of inference time, demonstrating superior inference efficiency.

Frontiers inNeurorobotics 08 frontiersin.org

https://doi.org/10.3389/fnbot.2025.1537673
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Zhang et al. 10.3389/fnbot.2025.1537673

In summary, the experimental results demonstrate that the

proposed sparse convolution operator not only significantly

reduces computational cost but also effectively translates this

reduction into shorter inference time, while maintaining the

accuracy of the inference results. This achieves efficient and

accurate sparse convolution inference.

5 Discussion

The sparse convolution operator proposed in this paper

strikes a good balance between computational complexity and

actual inference time, breaking the previous situation where

sparse convolution operators designed for event-based camera

data achieved significant computational advantages but showed

no clear benefits in practical inference. This is mainly because

the sparse convolution operator proposed in this paper not only

ensures sparsity but also aligns with the computational continuity

characteristics of computing devices, generating only minimal

additional computational overhead during the organization

of operations.

Furthermore, the method proposed in this paper has an

additional advantage over other sparse convolution algorithms,

such as SCN: the input and output of the sparse convolution

operator proposed here are consistent with conventional

convolution operators, allowing for interchangeability without

the need for specialized conversion between sparse and dense

representations. This provides more flexibility in building neural

networks.

However, the sparse convolution operator proposed in

this paper also has certain drawbacks. Specifically, as the

sparsity of the input data decreases, its computational efficiency

advantage over conventional convolution operators gradually

diminishes and eventually disappears. This is mainly because

conventional convolution operators also utilize a large number

of engineering optimization techniques. In contrast, the sparse

convolution operator presented here is a preliminary prototype.

But this also highlights the superiority of the idea of sparse

convolution approach proposed in this paper. The author believes

that the method proposed in this paper is not in conflict

with other optimization techniques in conventional convolution

operators, and that the performance advantage will become even

greater once these engineering optimizations are incorporated in

the future.

6 Conclusion

In this paper, we present an efficient sparse convolution

operator tailored for event-based cameras and validate its

advantages through extensive experiments. Unlike traditional

methods, our approach harnesses matrix multiplication

to maintain operational continuity, effectively transforming

reduced computational complexity into a substantial decrease

in inference time. Remarkably, our operator reduces the

computational workload by nearly 90% while nearly doubling

processing speed, all while preserving the accuracy of dense

convolution operators.

Thus far, our research has primarily focused on optimizing

the implementation of a single convolution operator. Given

that our operator maintains compatibility with conventional

convolution operators in terms of input/output formats and

computational processes, we will next extend its application to

complete convolutional neural networks, which will enhance

robotic perception and responsiveness in high-speed, emergency

scenarios, providing a robust safety guarantee for large-scale real-

world applications.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Author contributions

SZ: Writing – original draft, Writing – review & editing. FZ:

Funding acquisition, Resources, Writing – review & editing. XW:

Writing – review & editing. ML: Writing – review & editing. WG:

Visualization, Writing – review & editing. PW: Writing – review &

editing. XL: Writing – review & editing. LS: Supervision, Writing –

review & editing.

Funding

The author(s) declare that financial support was received for

the research and/or publication of this article. This work was

supported in part by the National Key R&D Program of China

(2022YFB4601800), National Natural Science Foundation of China

(U2013602, 52075115, 51521003, 61911530250, and 52105307),

Self-Planned Task (SKLRS202001B and SKLRS202110B) of

State Key Laboratory of Robotics and System (HIT), Shenzhen

Science and Technology Research and Development Foundation

(JCYJ20190813171009236), Basic Scientific Research of

Technology (JCKY2020603C009), School Enterprise Joint

R&D Center for Cemented Carbide Cutting Tools of Shenzhen

Polytechnic University (602431003PQ), and The Key Talent

Project of Gansu Province.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation

of this manuscript.

Frontiers inNeurorobotics 09 frontiersin.org

https://doi.org/10.3389/fnbot.2025.1537673
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Zhang et al. 10.3389/fnbot.2025.1537673

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Benosman, R., Clercq, C., Lagorce, X., Ieng, S.-H., and Bartolozzi, C. (2013).
Event-based visual flow. IEEE trans. Neural Netw. Learn. Syst. 25, 407–417.
doi: 10.1109/TNNLS.2013.2273537

Bing, Z., Meschede, C., Huang, K., Chen, G., Rohrbein, F., Akl, M., et al. (2018).
“End to end learning of spiking neural network based on R-STDP for a lane keeping
vehicle,” in 2018 IEEE International Conference on Robotics and Automation (ICRA)
(Brisbane, QLD: IEEE), 4725–4732.

Brosch, T., Tschechne, S., and Neumann, H. (2015). On event-based optical flow
detection. Front. Neurosci. 9:137. doi: 10.3389/fnins.2015.00137

Cheng, Y., Liu, S., Zha, F., Guo, W., Du, H., Wang, P., et al. (2024). A2G: Leveraging
intuitive physics for force-efficient robotic grasping. IEEE Robot. Automat. Lett. 9,
6376–6383. doi: 10.1109/LRA.2024.3401675

Cordone, L., Miramond, B., and Ferrante, S. (2021). “Learning from event cameras
with sparse spiking convolutional neural networks,” in 2021 International Joint
Conference on Neural Networks (IJCNN) (Shenzhen: IEEE), 866–880.

Gallego, G., Delbrück, T., Orchard, G., Bartolozzi, C., Taba, B., Censi, A., et al.
(2020). Event-based vision: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44,
154–180. doi: 10.1109/TPAMI.2020.3008413

Graham, B., Engelcke, M., and Van Der Maaten, L. (2018). “3D semantic
segmentation with submanifold sparse convolutional networks,” in Proceedings of the
IEEE Conference on Computer Vision And Pattern Recognition (Salt Lake City, UT:
IEEE), 9224–9232.

Graham, B., and Van der Maaten, L. (2017). Submanifold sparse
convolutional networks. arXiv [preprint] arXiv:1706.01307. doi: 10.1109/CVPR.20
18.00961

Guo, H., Zheng, Y., Zhang, Y., Gao, Z., and Zhao, S. (2024). Global-
local mav detection under challenging conditions based on appearance and
motion. IEEE Trans. Intellig. Transp. Syst. 25, 12005–12017. doi: 10.1109/TITS.202
4.3381174

Jiang, Z., Bing, Z., Huang, K., Chen, G., Cheng, L., and Knoll, A. (2017). “Event-
based target tracking control for a snake robot using a dynamic vision sensor,” inNeural
Information Processing: 24th International Conference, ICONIP 2017 (Guangzhou:
Springer).

Jiang, Z., Xia, P., Huang, K., Stechele, W., Chen, G., Bing, Z., et al. (2019). “Mixed
frame-/event-driven fast pedestrian detection,” in 2019 International Conference on
Robotics and Automation (ICRA) (Montreal, QC: IEEE), 8332–8338.

Liu, M., and Delbruck, T. (2018). Adaptive Time-Slice Block-Matching Optical Flow
Algorithm for Dynamic Vision Sensors. Glasgow: BMVC.

Meng, Y., Bing, Z., Yao, X., Chen, K., Huang, K., Gao, Y., et al. (2025). Preserving
and combining knowledge in robotic lifelong reinforcement learning. Nature Mach.
Intellig. 7, 256–269. doi: 10.1038/s42256-025-00983-2

Messikommer, N., Gehrig, D., Loquercio, A., and Scaramuzza, D.
(2020). “Event-based asynchronous sparse convolutional networks,” in
Computer Vision-ECCV 2020: 16th European Conference (Glasgow: Springer),
23–28.

Miao, S., Chen, G., Ning, X., Zi, Y., Ren, K., Bing, Z., et al. (2019). Neuromorphic
vision datasets for pedestrian detection, action recognition, and fall detection. Front.
Neurorobot. 13:38. doi: 10.3389/fnbot.2019.00038

Munda, G., Reinbacher, C., and Pock, T. (2018). Real-time intensity-image
reconstruction for event cameras using manifold regularisation. Int. J. Comput. Vis.
126, 1381–1393. doi: 10.1007/s11263-018-1106-2

Orchard, G., Jayawant, A., Cohen, G. K., and Thakor, N. (2015a). Converting static
image datasets to spiking neuromorphic datasets using saccades. Front. Neurosci. 9:437.
doi: 10.3389/fnins.2015.00437

Orchard, G., Meyer, C., Etienne-Cummings, R., Posch, C., Thakor, N., and
Benosman, R. (2015b). HFIRST: a temporal approach to object recognition. IEEE
Trans. Pattern Anal. Mach. Intell. 37, 2028–2040. doi: 10.1109/TPAMI.2015.2392947

Parger, M., Tang, C., Neff, T., Twigg, C. D., Keskin, C., Wang, R., et al. (2022a).
Motiondeltacnn: sparse cnn inference of frame differences in moving camera videos.
arXiv [preprint] arXiv:2210.09887. doi: 10.1109/CVPR52688.2022.01217

Parger, M., Tang, C., Twigg, C. D., Keskin, C., Wang, R., and Steinberger,
M. (2022b). “DeltaCNN: end-to-end cnn inference of sparse frame differences in
videos,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 12497–12506.

Qian, R., Lai, X., and Li, X. (2022). 3D object detection for autonomous driving: a
survey. Pattern Recognit. 130:108796. doi: 10.1016/j.patcog.2022.108796

Rebecq, H., Ranftl, R., Koltun, V., and Scaramuzza, D. (2019). High speed and high
dynamic range video with an event camera. IEEE Trans. Pattern Anal. Mach. Intell. 43,
1964–1980. doi: 10.1109/TPAMI.2019.2963386

Schaefer, S., Gehrig, D., and Scaramuzza, D. (2022). “AEGNN: Asynchronous event-
based graph neural networks,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 12371–12381.

Sorin, D., Hill, M., and Wood, D. (2022). A Primer on Memory Consistency and
Cache Coherence. Cham: Springer Nature.

Wang, Y., Chao, W.-L., Garg, D., Hariharan, B., Campbell, M., and Weinberger,
K. Q. (2019). “Pseudo-lidar from visual depth estimation: Bridging the gap in 3D
object detection for autonomous driving,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (Long Beach, CA: IEEE), 8445–8453.

Wu, Y.,Wang, D.-H., Lu, X.-T., Yang, F., Yao,M., Dong,W.-S., et al. (2022). Efficient
visual recognition: a survey on recent advances and brain-inspired methodologies.
Mach. Intellig. Res. 19, 366–411. doi: 10.1007/s11633-022-1340-5

Yan, Y., Mao, Y., and Li, B. (2018). Second: Sparsely embedded convolutional
detection. Sensors 18:3337. doi: 10.3390/s18103337

Yu, B., Tang, J., and Liu, S.-S. (2023). “Autonomous driving digital twin
empowered design automation: an industry perspective,” in 2023 60th ACM/IEEE
Design Automation Conference (DAC) (IEEE), 1–4.

Zhu, A. Z., Yuan, L., Chaney, K., and Daniilidis, K. (2018). EV-FLOWNET:
Self-supervised optical flow estimation for event-based cameras. arXiv [preprint]
arXiv:1802.06898. doi: 10.15607/RSS.2018.XIV.062

Frontiers inNeurorobotics 10 frontiersin.org

https://doi.org/10.3389/fnbot.2025.1537673
https://doi.org/10.1109/TNNLS.2013.2273537
https://doi.org/10.3389/fnins.2015.00137
https://doi.org/10.1109/LRA.2024.3401675
https://doi.org/10.1109/TPAMI.2020.3008413
https://doi.org/10.1109/CVPR.2018.00961
https://doi.org/10.1109/TITS.2024.3381174
https://doi.org/10.1038/s42256-025-00983-2
https://doi.org/10.3389/fnbot.2019.00038
https://doi.org/10.1007/s11263-018-1106-2
https://doi.org/10.3389/fnins.2015.00437
https://doi.org/10.1109/TPAMI.2015.2392947
https://doi.org/10.1109/CVPR52688.2022.01217
https://doi.org/10.1016/j.patcog.2022.108796
https://doi.org/10.1109/TPAMI.2019.2963386
https://doi.org/10.1007/s11633-022-1340-5
https://doi.org/10.3390/s18103337
https://doi.org/10.15607/RSS.2018.XIV.062
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

	High-efficiency sparse convolution operator for event-based cameras
	1 Introduction
	2 Related works
	2.1 Sparse convolution
	2.2 Data processing for event-based cameras

	3 Methods
	3.1 Converting events to tensor
	3.2 Valid sub-convolution detection
	3.3 Sparse Im2col
	3.4 Converting the result as regular convolution

	4 Results
	5 Discussion
	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References

