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High-speed walking is fundamental for humanoid robots to quickly reach

the work site in emergency scenarios. According to biological studies, the

coordinated motion of the arms and waist can significantly enhance walking

speed and stability in humans. However, existing humanoid robot walking

control frameworks predominantly focus on leg control, often overlooking the

utilization of upper body joints. In this paper, a novel walking control framework

combining the improved footstep planner and the whole-body coordination

controller is proposed, aiming to improve the humanoid robot’s tracking

accuracy of desired speeds and its dynamic walking capability. First, we analyze

the issues in traditional footstep planners based on Linear Inverted Pendulum and

Model Predictive Control (LIP-MPC). By reconstructing the footstep optimization

problem during walking using the Center-of-Mass (CoM) position, we propose

an improved footstep planner to enhance the control accuracy of the desired

walking speed in humanoid robots. Next, based on biological research, we

define a coordinated control strategy for the arms and waist during walking.

Specifically, thewaist increases the robot’s step length, while the arms counteract

disturbance momentum and maintain balance. Based on the aforementioned

strategy, we design a whole-body coordination controller for the humanoid

robot. This controller adopts a novel hierarchical design approach, in which the

dynamics and motion controllers for the upper and lower body are modeled

and managed separately. This helps avoid the issue of poor control performance

caused by multi-task coupling in traditional whole-body controllers. Finally, we

integrate these controllers into a novel walking control framework and validate

it on the simulation prototype of the humanoid robot Dexbot. Simulation results

show that the proposed framework significantly enhances themaximumwalking

capability of the humanoid robot, demonstrating its feasibility and e�ectiveness.

KEYWORDS
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1 Introduction

Walking serves as the foundation for humanoid robots

to operate stably in various environments, its dynamics and

robustness directly affect the robot’s work efficiency. With

the significant advancement of humanoid robot structures and

actuators, many researchers have conducted in-depth studies

on leg control and stable walking control methods. Although

numerous impressive results have been achieved, these methods

still struggle to support high-speed walking for humanoid robots

in emergency scenarios (Xiaobin and Aaron, 2022; Yu-Ming et al.,

2024). Therefore, further enhancing the dynamic performance and

disturbance rejection capability of humanoid walking has become

a key objective in humanoid robot research. According to bionic

studies, humans primarily counteract self-induced or external

disturbances during walking by adjusting footstep placement and

coordinating whole-body limb movements (Horak and Nashner,

1986; Thierry et al., 2001). Inspired by humans, enhancing the

dynamic walking capability of humanoid robots requires motion

control systems that not only incorporate highly effective footstep

planning to regulate the CoM velocity but also enable coordinated

control of all joints to maintain stability. Consequently, the

development of efficient footstep planning methods and the

incorporation of whole-body coordination strategies involving the

waist and arms have become key priorities for future humanoid

robot research.

The Linear Inverted Pendulum (LIP) and the Spring-Loaded

Inverted Pendulum (SLIP) are the most effective simplified models

derived from the characteristics of CoM motion in biological

movements (George et al., 2023; Xiaolong et al., 2024). The SLIP

model, due to its dynamic properties, is commonly applied in the

dynamic motion control of quadruped robots, including diagonal

trotting, jumping, and galloping gaits (Dominic et al., 2018;

Sovukluk et al., 2024). However, its dynamic characteristics pose

challenges for humanoid robots with distributed mass, particularly

in state estimation and joint impedance control, making it difficult

to apply in real-world systems (Hong et al., 2022; Stéphane et al.,

2020). The LIP model is widely utilized in the walking planning

and control of humanoid robots across complex terrains, such as

flat surfaces, slopes, and stairs. A pioneering study combined MPC

with the Zero Moment Point (ZMP) approach, using the cart-

table model to plan the robot’s CoM trajectory, and designed an

online controller to track the desired ZMP for stable walking of

the humanoid robot (Kajita et al., 2003). However, these methods

require high-precision foot sensors to accurately sense contact

forces, which are impractical for real-world environments with

complex terrains. Additionally, the ZMP stability criterion is not

applicable to humanoid robot systems equipped with point or line-

shaped feet, which limits its applicability. The MPC algorithm,

due to its feedback correction and rolling optimization features,

has been widely applied in footstep trajectory generation tasks.

Nicola et al. (2020) proposed the Inherently StableModel Predictive

Control (IS-MPC) framework, which uses the LIP dynamics model

as the prediction model and ZMP velocity as the control input.

This method generates a gait, including time frames, in real-time

to achieve omnidirectional motion commands. Elham et al. (2021)

implemented stable walking for the small bipedal robot Blot using

a hierarchical MPC framework. Guiyang et al. (2021) combined

MPC and the LIP dynamics model to create an efficiently computed

footstep prediction planner for quick response to disturbances

during walking. TheMPC controller has become a powerful tool for

humanoid robot walking control (Patrick et al., 2023). However, in

current applications, there are often issues with large CoM velocity

tracking errors and limited iterations, making it difficult to meet the

accuracy requirements for tracking desired average speed during

humanoid robot walking.

After the robot obtains the optimal footstep positions, the

desired CoM trajectory and swing leg trajectory can be obtained

through integration of the LIP dynamics equations and polynomial

fitting. The primary task of the motion control system is to input

optimal joint drive commands to effectively track the specified

task trajectory. When a humanoid robot is performing high-speed

dynamic walking, the control system faces two main challenges.

The first challenge is that, during walking, the robot’s step length

increases with the desired speed. If the step length is too long, it

may cause the robot to reachmechanical limits or result in a smaller

adjustable range for foot placement. The swing leg may fail to reach

the desired footstep position, preventing the robot from effectively

controlling the CoM motion, which could lead to a fall. To address

this issue, related biological studies have found through human gait

motion capture data that the waist rotates with the swinging of the

legs during walking, and its range of rotation increases with the step

length. Some robotic researchers have innovatively incorporated

this characteristic into motion control systems. Beomyeong et al.

(2020) analyzed the impact of the waist on the kinematics of

humanoid robots and concluded that the introduction of the waist

can enhance the range of motion of the robot’s legs. Based on this

conclusion, they designed an optimization problem to generate the

waist motion trajectory, thereby improving the walking capability

of the robot Dyros-Jet. Jehwi et al. (2021) compared the energy

consumption and joint torque between fixed waist and coordinated

waist motion walking strategies. The results indicated that the

coordinated waist walking method could reduce the robot’s energy

consumption during movement, particularly alleviating the load

torque on the knee joints. Hyobin and Inho (2022) introduced

the waist into the kinematics of humanoid robot standing tasks,

significantly enhancing its flexibility and operational range. Based

on the findings from the above studies, it is evident that the

effective control of waist motion can improve the range of motion

of the robot’s legs while reducing energy consumption during

walking. The second challenge arises from the fact that as the

robot’s walking speed increases, the legs need to perform high-

frequency, large-amplitude swings to track the desired footstep

positions. The reaction forces and torques generated during the

swinging motion can cause significant disturbances to the robot’s

body posture, affecting the stability of the walking process. To

address this challenge, some studies have proposed using the waist

to drive body rotation in order to compensate for the momentum

during walking. However, using torso rotation to balance the

disturbance angular momentum leads to large-scale body rotations,

which increases the non-linearity of the robot’s dynamics. This not

only complicates the control but also affects the role the waist must

play during the swing leg phase. Since the arms have no external

contact forces or specified trajectory tasks during walking, they
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can swing freely over a wide range. Therefore, using the arms to

counteract disturbance momentum is an effective solution. Zhifa

et al. (2023) planned the arm swing trajectory, using the arm

swing to counteract the disturbances caused by the swinging leg,

thereby improving the stability of the bipedal robot during dynamic

walking. Dragomir and Ryo (2022) focused on the issue of robotic

angular momentum and inherent redundant degrees of freedom,

using the angular momentum generated by the swinging arms to

counteract external disturbances, thereby enhancing the robot’s

ability to resist external perturbations. Beomyeong et al. (2020) used

the swinging of arms to compensate for the robot’s yaw angular

momentum during walking, achieving stable walking for the robot.

Georg et al. (2016) treated the arms of the Atlas robot as a flywheel

system to control the robot’s Centroidal Moment Pivot (CMP)

and enable real-time tracking of the Instantaneous Capture Point

(ICP), achieving walking on a balance beam, a task with extremely

high stability requirements. Based on the above research, it is clear

that the advantage of using arm swing to counteract disturbances

lies in the fact that, during normal walking, the robot’s arms do

not need to engage in force interaction tasks with the external

environment. Moreover, the arm movements are decoupled from

the leg movements, allowing for flexible arm swings based on the

needs. Unfortunately, the aforementioned studies mainly focus on

scenarios such as slowwalking or standing in humanoid robots, and

do not delve into the arm swing control methods in the context of

dynamic walking.

Based on the above analysis, this paper aims to enhance the

walking capability of humanoid robots by integrating relevant

research and conclusions from human gait studies. A walking

control framework consisting of the improved footstep planner

and the whole-body coordination controller is designed, as shown

in Figure 1. In this framework, the improved footstep planner

constructs the MPC optimization problem using the position

component of the solution to the differential equation in the LIP

model. By leveraging the advantages of MPC’s rolling optimization,

the optimal footstep position can be quickly determined based on

the robot’s desired walking speed and current motion state. The

motion trajectory planner in the walking task space is capable

of planning the robot’s CoM trajectory, swing leg trajectory,

and other whole-body movements based on the desired footstep

positions, and then sending these plans to the motion controller

for execution. The whole-body coordination controller, based

on the given task requirements, controls the robot to achieve

stable walking. Compared to existing studies, the walking control

framework proposed in this paper deeply draws from human

walking strategies, fully utilizing all the degrees of freedom of

the humanoid robot, significantly enhancing its dynamic walking

capability. The main contributions of this paper are as follows:

1) This paper proposes an improved footstep planner, which is

based on an enhancement of the traditional LIP-MPC approach.

First, the desired CoM displacement is described using the

desired speed and footstep time. Then, the LIP position

differential equation solution is used to replace the traditional

instantaneous velocity differential for predicting the CoM state.

Finally, a quadratic optimization problem is formulated to

solve for the robot’s optimal footstep position. The improved

planner avoids the average speed tracking errors caused by

the instantaneous velocity iteration optimization in traditional

methods, thereby enhancing the robot’s control accuracy over

the average walking speed.

2) For dynamic walking of the robot, a coordination strategy

for the robot’s arms and waist is planned, based on the

characteristics of humanwalking. The whole-body coordination

controller is then designed according to the established strategy.

The controller adopts a hierarchical WBC design approach,

consisting of two components: the Lower-body WBC and

the Upper-body WBC. The Lower-body WBC coordinates the

robot’s legs and waist, fully utilizing the structural advantages

of the robot to achieve large-step walking. The Upper-body

WBC controller manages the robot’s arms to compensate for

the centroidal angularmomentum. This controller addresses the

issue of poor task control performance caused by the coupling

of multiple control tasks in humanoid robots with redundant

degrees of freedom, significantly enhancing the robot’s dynamic

walking capability.

3) The improved footstep planner and the whole-body

coordination controller are integrated into a humanoid

robot walking control framework, and the proposed framework

is validated through simulation experiments. The simulation

results show that the walking control framework proposed in

this paper significantly enhances the robot’s dynamic walking

ability, demonstrating its feasibility and effectiveness.

The rest of this paper is organized as follows: In Section 2, the

derivation of the LIP dynamics model is presented, and the design

method for the improved footstep planner is proposed. Section 3

describes the walking control strategy proposed in this paper, and

based on this, the design of the whole-body coordination controller

is presented. In Section 4, we integrate the improved footstep

planner and the whole-body coordination controller, and perform

simulation validation. The results demonstrate the advantages of

the proposed control framework. Finally, in Section 5, the paper is

summarized, and future work is discussed.

2 Improved footstep planner

2.1 Motion analysis of the LIP model

The LIP model has been widely applied to humanoid

robot walking control and has demonstrated excellent control

performance. By treating the CoM of a humanoid robot as the CoM

of the LIP model, the complex motion of a humanoid robot can be

simplified to the simple LIP model (Lim et al., 2012, 2004). Assume

that after each footstep, the center of the supporting foot is taken as

the current origin of the coordinate system. The intersection of the

sagittal with the ground forms the x-axis of the coordinate system,

and the intersection of the coronal with the ground forms the y-

axis. In the motion process, it is assumed that the CoM of the LIP

model has no deviation in the z-axis direction from the desired

height and is subjected to a constant thrust of mg. Taking the x-

axis as an example, in the coordinate system of the contact foot, the

dynamics equations can be expressed as:

ẍcom =
g

zcom − pz

(

xcom − px
)

(1)
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FIGURE 1

Humanoid robot walking control framework.

Where g is the gravitational acceleration, zcom is the constant

height of the robot’s CoM, and px represents the x-axis footstep

coordinates in the current coordinate system. The LIP dynamics

model can be treated as a differential equation, and its solution can

be obtained as:

x(t) = A(t)X0 + B(t)px (2)

Where X = [xcom ẋcom]
T
represents the CoM state vector, and

X0 denotes the initial state of the CoM. The coefficients A (t) and

B (t) are defined as:

A (t) =

[

cosh(ωt) ω−1 sinh(ωt)

ω sinh(ωt) cosh(ωt)

]

(3)

B (t) =

[

1− cosh (ωt)

−ω sinh (ωt)

]

(4)

ω =

√

g

zcom − pz
(5)

From the above equations, the future CoM motion state of the

robot satisfying the LIP dynamics model at a specific time can

be quickly calculated based on the current CoM state X0, without

requiring complex iterative calculations of the dynamic equations.

Based on the solution of the above LIP dynamics differential

equations, the robot’s motion state at future time can be quickly

computed. The illustration of the LIP single-cycle motion is shown

in Figure 2. Given the current contact point coordinates as px0 ,

which is set as the origin of the world coordinate system for the

current walking cycle. At the current time t0, the current CoM

FIGURE 2

The LIP single-cycle motion process.

position and velocity are x0com and ẋ0com, respectively. The position

and velocity of the CoM at the end of the support phase at time t0e
can be expressed as x0,ecom and ẋ0,ecom, respectively. The equations can

be written as:

X
(

t0e
)

=

[

x0,ecom
ẋ0,ecom

]

= A
(

t0e − t0
)

[

x0com
ẋ0com

]

+ B
(

t0e − t0
)

px0 (6)
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When a humanoid robot performs dynamic walking, the

double-support phase is typically neglected. The left and right feet

alternately execute a single-support phase according to the set

motion cycle, generating reaction forces to maintain the robot’s

walking. Assuming no significant collision or energy loss during

the support foot transition, the CoM motion state at the end of the

current support phase and the beginning of the next support phase

can be considered equal, which can be expressed as:

X−
n = X+

n+1 (7)

Where n denotes the future n-th step, the superscript “–”

indicates the end time of the current support phase, and the

superscript “+” indicates the start time of the next support phase.

Equation 7 can be further expressed as:

[

x1
+

com

ẋ1
+

com

]

= X+
1 = X−

0 = A
(

t0e − t0
)

X0 + B
(

t0e − t0
)

px0 (8)

This allows us to obtain the CoM state at the end of the current

support phase and at the beginning of the next step’s support

phase. Expanding the above equation, the motion state of the robot

at the n-th future step in the current coordinate system can be

expressed as:

X2
+ = X1

− = A
(

T1
s

)

X1
+ + B

(

T1
s

)

p∗x1

X3
+ = X2

− = A
(

T2
s

)

X2
+ + B

(

T2
s

)

p∗x2 (9)

...

Xn
+ = Xn−1

− = A
(

Tn−1
s

)

Xn−1
+ + B

(

Tn−1
s

)

p∗xn−1

where Tn
s is the duration of the n-th future support phase, also

referred to as the footstep time.

2.2 MPC framework for footstep
adjustment control

In existing research, the traditional LIP-MPC method typically

constructs an optimization problem by using the velocity of

the CoM state at the end time of each supporting phase as

the prediction variable, thereby determining the optimal foot

placement. However, based on the analysis of the LIP-based walking

process, the CoM velocity exhibits a deceleration followed by

acceleration, with varying velocities at different moments during

the motion. If the velocity at a certain moment during the

walking process is used as the prediction variable, it is difficult

to represent the tracking performance of the reference average

velocity throughout the entire process. This issue is particularly

pronounced when the step frequency is low, as the LIP model

experiences significant velocity fluctuations during the motion,

resulting in more noticeable tracking errors.

To avoid the impact of instantaneous velocity on the tracking

performance, we abandon the traditional optimization method that

uses the CoM velocity at the end of the support phase for tracking.

Instead, we utilize the CoM position at the end of the support phase

as the desired outcome for the optimization problem to improve

the robot’s foot placement. The advantage of this strategy lies in

the fact that, firstly, it maps the LIP motion velocity to the CoM

position and footstep time, enabling more accurate tracking of the

desired velocity. Additionally, the CoM position provides a more

accurate and reliable state estimation compared to the velocity. The

predicted trajectory of the CoMmotion and the foot placement are

illustrated in Figure 3. Based on this illustration, we will describe

the details from both the x-z and the y-z.

2.2.1 x-z plane
In the x-z plane, the LIP model tracks the robot’s desired

walking speed along the x-axis using the foot placement. When

the robot’s desired walking speed is set to ẋdes, and the single-leg

support phase for the future n-th step is Tn
s , the step length for the

FIGURE 3

The footstep placement and CoM trajectory in the prediction process of the LIP model.
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FIGURE 4

The footstep placement and CoM trajectory in the prediction process of the LIP model in x-z plane and y-z plane. (A) x-z plane. (B) y-z plane.

future n-th step can be estimated as:

Ln = ẋdesT
n
s (10)

The x-axis position of the CoM at the end of the support phase

during the n-th step can be expressed as:

xn
−

com,des = x
(n+1)+

com,des
= xn

+

com,des + Ln (11)

It is assumed that after the robot places its foot, there is no

relative displacement between the foot and the ground, and no

adjustment can be made. Therefore, during the current support

phase, the desired CoM state at the end of the phase is the same

as the actual CoM state.

[

x0
−

com

ẋ0
−

com

]

= X−
0 = A

(

t0e − t0
)

X0 + B
(

t0e − t0
)

px0 (12)

x1
+

com,des = x0
−

com (13)

Thus, based on the desired velocity, the expected position at

the end of each support phase can be iteratively calculated. The

illustration of the expected position along the x-axis is shown in

Figure 4A.

x2
+

com,des
= x1

−

com,des
= x1

+

com,des
+ ẋdesT

1
s

x3
+

com,des
= x2

−

com,des
= x2

+

com,des
+ ẋdesT

2
s

...

xn
+

com,des
= x

(n−1)−

com,des
= x

(n−1)+

com,des
+ ẋdesT

n−1
s

(14)

Therefore, the cost function for the optimization problem in the

x-z plane can be constructed as:

min
P∗x

n
∑

i=1

(

∥

∥

∥
xi

+

com,des − xi
+

com

∥

∥

∥

2

Qx

+
∥

∥p∗xi − p∗xi−1

∥

∥

2

Rx

)

(15)

s.t. X+
1 = A

(

t0e − t0
)

X0 + B
(

t0e − t0
)

px0 (15-1)

Xi
+
= A

(

Ti−1
s

)

Xi−1
+
+ B

(

Ti−1
s

)

p∗xi−1
(15-2)

p∗x0 = px0 (15-3)

Lxmin ≤ p∗xi − p∗xi−1
≤ Lxmax, i = 0 . . . k− 1 (15-4)

Where Qx is the weight for the robot’s CoM position in the

x-axis, aiming to minimize the error between the desired CoM

position and the predicted position; Rx is the weight for the footstep

placement, used to optimize the distance between the footstep

placement of the i-th step and the (i−1)-th step. Equations 15-1, 2

represent the robot’s CoM state prediction equation. Equation 15-4

represents the step boundary condition, preventing the foot

placement from exceeding the reachable motion range of the

swing leg. Lxmin and Lxmax represent the minimum and maximum

boundary conditions, which are determined by the design of the

robot’s leg structure. Solving the above optimization problem allows

for the determination of the optimal footstep placement along the

x-axis for the future n-th step based on the current CoM state

in the x-axis. Compared to optimization methods that rely on

instantaneous velocity, this optimization approach uses the CoM

position and footstep time to describe the desired average velocity,

enabling the robot to accurately track the average velocity.

2.2.2 y-z plane
During the y-axis motion of the LIP, the trajectory energy is

typically less than zero, with both feet cyclically making contact
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with the ground on either side of the CoM. Based on the robot’s

desired velocity along the y-axis, ẏdes, and the footstep time for the

future n-th step, Tn
s , the step length for the future n-th step can be

estimated as:

Wv
n = ẏdesT

n
s (16)

The derivationmethod is similar to that in the x-z plane, and we

can obtain the initial expectation and iterative formula as follows:

[

y0
−

com

ẏ0
−

com

]

= Y−
0 = A(t0e − t0)Y0 + B(t0e − t0)py0 (17)

y1
+

com,des = y0
−

com (18)

yn
+

com,des = y
(n−1)−

com,des
= y

(n−1)+

com,des
+Wv

n−1 (19)

Where Equation 17 is used to calculate the robot’s motion state

at the end of the current support phase, and Equation 18 sets the

motion state obtained from Equation 17 as the initial expected state

for the future first step. The subsequent desired position along

the y-axis can then be iteratively calculated using Equation 19.

The illustration of the desired position along the y-axis is shown

in Figure 4B. Thus, the objective function for the optimization

problem in the y-z plane can be constructed as:

min
P∗x

n
∑

i=1

(

∥

∥

∥
yi

+

com,des − yi
+

com

∥

∥

∥

2

Qy

+

∥

∥

∥
p∗yi − pwi

∥

∥

∥

2

Ry

)

(20)

s.t. Y+
1 = A

(

t0e − t0
)

Y0 + B
(

t0e − t0
)

py0 (20-1)

Yi
+
= A

(

Ti−1
s

)

Yi−1
+
+ B

(

Ti−1
s

)

p∗yi−1
(20-2)

p∗y0
= py0 (20-3)

When the right foot is in contact with the ground:

Ls < (−1)i(p∗xi − p∗xi−1
) ≤ Lxmax (20-4)

pwi = Y+

i, des
+ (−1)iWsafe cosh(

Tsω

2
) (20-5)

When the left foot is in contact with the ground:

Ls < (−1)i−1
(

p∗xi − p∗xi−1

)

≤ Lxmax (20-6)

pwi = Y+

i, des
+ (−1)i−1Wsafe cosh(

Tsω

2
) (20-7)

Where Qy is the weight for the robot’s CoM position in the

y-axis; pwi represents the predicted footstep placement, derived

from Equations 20-5, 7, which are used to constrain the footstep

placement and prevent the distance between the foot placement

in the y-z plane and the CoM position from becoming too short

during walking; Ry is the weight for the foot placement position.

Equations 20-1, 2 represent the robot’s CoM state prediction

equations along the y-axis. Equations 20-4, 6 define the boundary

constraints for the reachable motion range of the swing leg. Unlike

in the x-z plane, the optimization problem here introduces a safety

margin Ls to prevent interference between the thigh or both feet.

This parameter is related to the feasible motion range of the robot’s

design.Wsafe is the set safety distance between the foot and the CoM

when the velocity along the y-axis is zero.

Based on the optimization problem outlined above, the robot’s

optimal footstep placement in the X-Y plane can be obtained.

The robot’s motion follows the LIP dynamic model. Based on

the desired footstep placement, the desired CoM acceleration can

be calculated, and further integration yields the desired velocity

and position.

3 Whole-body coordination controller

After obtaining the desired CoM trajectory for the robot, the

primary task of the control system is to effectively track this

trajectory. If we consider each frame during the walking process

of a humanoid robot, the robot as a whole can be viewed as a large

rigid body in each frame, as shown in Figure 5. The force driving

this rigid bodymotion is the reaction force between the foot and the

ground, which is applied only on the support plane formed by the

supporting foot. The LIP model describes the relationship between

FIGURE 5

The contact force during the walking process of humanoid robot.
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the robot’s supporting foot and the CoM. In the control systems of

many bipedal robots, it can be observed that the system effectively

controls the robot’s CoM by coordinating the movement of the

body. However, due to the limited degree of freedom configuration,

the centroidal angle momentum generated during the swing foot’s

movement toward the desired position is difficult to control. As

the robot’s walking speed increases, the interference momentum

caused by the leg swing becomes more pronounced, significantly

affecting the stability of the robot’s walking process. In biological

studies related to human walking, it has been observed that the

arms play a crucial role in maintaining stability during walking.

From a robotics perspective, the arms do not need to interact

with the external environment during walking, and they have a

large and flexible range of motion. Therefore, how to effectively

introduce coordinated arm swinging in the motion control system

to counteract the disturbance momentum during dynamic walking

is a key issue in enhancing the dynamic walking stability of

the robot.

Furthermore, in existing research, the waist is typically used

to enhance the degrees of freedom of the upper limbs for tasks

such as grasping or transporting, while its role in walking is often

overlooked. During walking, the waist serves as the pivotal link

between the torso and the lower limbs, playing an essential role

in driving the leg swing. However, its advantages in coordination

with the lower limbs are seldom discussed. In related research,

scholars have analyzed the advantages of utilizing the waist during

humanoid robot walking from a kinematic perspective, proving

that it can significantly increase the leg swing range, thereby

benefiting the improvement of walking speed. However, this

research is limited to the kinematic level. Therefore, the key issue

in enhancing the robot’s walking ability lies in how to effectively

integrate waist motion into dynamic walking control, fully utilizing

the active driving capability and kinematic advantages of the waist.

In traditional WBC, control tasks are introduced through

methods like weighting or null-space projection, which

demonstrate good control performance. As the robot’s degrees of

freedom and control tasks increase, traditional WBC becomes less

effective due to the coupling of expected signals between multiple

tasks. For instance, the waist joints are involved in various control

tasks, such as robot body posture, swing foot position, foot contact

position, and centroidal angle momentum. The coupling of the

desired angles in the above tasks can lead to trade-offs in the waist

joint between different tasks, making it difficult to achieve effective

control. To address this issue, and in combination with the roles

of the arms and waist during the walking process, a hierarchical

framework-based whole-body coordination controller is proposed

to control the dynamic walking of a humanoid robot.

3.1 Humanoid robot hierarchical dynamic
modeling

Humanoid robot is a typical floating-base robotic system with

a complex distribution of degrees of freedom. For the humanoid

robot system used in this paper, each arm has 7 joints, each leg

has 6 joints, and the waist has 2 joints. Considering the floating

base, the robot has a total of 34 degrees of freedom. To prevent

the coupling of multiple tasks during humanoid robot walking

control from causing interference between joint control signals, a

reasonable distribution of the robot’s degrees of freedom and the

tasks it performs is essential.

In this framework, we treat the torso and arms as the Upper-

body of the robot, while the waist and legs are considered the

Lower-body, as shown in Figure 6. According to the hierarchical

principle, during the dynamic modeling of the floating base of the

Lower-body, the entire Upper-body of the robot is treated as a large

rigid body. The mass of this rigid body is the total mass of all the

structures in the Upper-body, while the moment of inertia and

CoM position are defined by the CoM position of the Upper-body

at the initial state and the moment of inertia at that position. The

specific dynamic model is as follows:

Md

(

qd
)

q̈d + Cd

(

qd, q̇d
)

q̇d + Gd

(

qd
)

= Bdτd + JTc λ (21)

qd =

[

qT
fd

qTjd

]T
(22)

Where qfd ∈ R
6 represents the pose of the floating base in the

world coordinate system, qjd ∈ R
Nd is the generalized position of

the Nd driving joints in the Lower-body, Md ∈ R
(Nd+6)∗(Nd+6) is

the inertia matrix of the Lower-body, Cd ∈ R
(Nd+6)×(Nd+6) is the

matrix accounting for the Coriolis and centrifugal effects in the

Lower-body, Gd ∈ R
Nd+6 is the gravitational term of the Lower-

body, Bd ∈ R
(Nd+6)×Nd is the selection matrix for the driving

degrees of freedom in the Lower-body, τd ∈ R
Nd represents the

torque vector of the driving joints in the Lower-body, λ ∈ R
6×nc

is a vector of stacked contact wrenches, Jc ∈ R
(6×nc)×(Nd+6) is a

matrix of stacked contact Jacobians, and nc is the number of contact

feet with the ground.

The Upper-body is modeled separately with its own dynamic

model, which is as follows:

Mu

(

qu
)

q̈u + Cu

(

qu, q̇u
)

q̇u + Gu

(

qu
)

= Buτu (23)

qu =

[

qT
fu

qTju

]T
(24)

In this stage of modeling, we choose the torso as the

base. Unlike the floating base dynamic modeling used for the

Lower-body, there are no external contact forces involved in the

Upper-body modeling. However, in contrast to traditional fixed

base modeling, the Upper-body model continuously provides the

posture and position of the base through state estimation data

during the robot’s movement. Where qfu ∈ R
6 represents the

pose of the base in the world coordinate system, qju ∈ R
Nu is the

generalized position of the Nu driving joints in the Upper-body,

Mu ∈ R
(Nu+6)∗(Nu+6) is the inertia matrix corresponding to the

Upper-body, Cu ∈ R
(Nu+6)×(Nu+6) is the matrix accounting for the

Coriolis and centrifugal effects in the Upper-body, Gu ∈ R
Nu+6 is

the gravitational term of the Upper-body, Bu ∈ R
(Nu+6)×Nu is the

selection matrix for the driving degrees of freedom in the Upper-

body, and τu ∈ R
Nu is the torque vector of the driving joints in

the Upper-body.
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FIGURE 6

Hierarchical dynamic modeling of humanoid robot.

In the above two dynamic models, the kinematic and

dynamic parameters can be obtained through measurement and

identification methods. The robot’s components can be simplified

as equivalent links, and the centroid coordinates of each link can be

obtained using the D-H transformation. The CoM position can be

calculated from the centroid positions of each link.

rc =
m1p

1
com +m2p

2
com . . . +mnLp

nL
com

m1 +m2 . . . +mnL

(25)

Where rc represents the robot’s CoM coordinates, nL is the

number of equivalent links in the humanoid robot, pnLcom is the CoM

coordinates of component nL, and mnL is the mass of component

nL. The robot’s centroid Jacobian matrix Jcom can be derived based

on the CoMposition formula. The centroidal angle momentum can

be derived using the following equation:

hc = Ac(q)q̇ (26)

Where hc ∈ R
6 represents the centroidal momentum. Ac is the

centroidal momentum matrix, which describes the contribution of

each link and the floating base to the centroidal momentum.

3.2 Lower-body WBC

The Lower-body is responsible for maintaining contact with

the ground and supporting the robot’s walking during the walking

process. Unlike most existing control frameworks, we introduce a

two-degree-of-freedomwaist joint in our framework. Based on this,

we list the Lower-body WBC tasks as shown in Table 1.

TABLE 1 Lower-body WBC tasks.

Task

1 CoM position

2 Swing foot pose

3 Torso posture

4 Waist joint angle

The CoM position and swing leg pose tasks are the focus of

the Lower-body WBC. Its control accuracy will directly determine

the robot’s ability to track the planned footstep placement and

CoM trajectory described in Section 2. The torso posture task

ensures that the robot can effectively adjust its torso angle to

prevent excessive deviation and tipping over. The waist joint angle

task is assigned the lowest priority, allowing the robot’s pelvis

to move flexibly according to higher-priority tasks. Based on the

above description, the optimization problem for constructing the

Lower-body WBC is formulated as follows:

min
q̈cmd
d

,λ,τ

e
∑

i=1

(

∥

∥

∥
Jdi q̈

cmd
d + J̇di q̇d − ẇd, i

∥

∥

∥

2

Qw

)

+

∥

∥

∥
q̈cmd
d

∥

∥

∥

2

Qa

(27)

Mdq̈
cmd
d + Cdq̇d + Gd = Bdτd + JTc λ (27-1)

Jcq̈
cmd
d + J̇cq̇d = 0 (27-2)
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Afλ ≤ 0 (27-3)

Azmpλ ≤ 0 (27-4)

0 ≤ Sλ ≤ Fmax
c,z (27-5)

Imin(qd, q̇d) ≤ q̈cmd
d ≤ Imax(qd, q̇d) (27-6)

τmin ≤ τ ≤ τmax (27-7)

Cost function: the cost function is divided into two parts.

The first part is the summation of the cost functions for each

designed task, which aims to control the robot’s effective tracking

of the desired tasks. Here, e is the total number of tasks, Jdi is the

Jacobian matrix of task i in the task space, ẇd, i is the target task

acceleration command, and Qw is the task execution weight. ẇd, i

is the task execution acceleration, which is obtained through the

desired acceleration and a PD controller.

ẇd, i = ẇdes
d, i + K i

p

(

xdesd, i − xd, i

)

+ K i
d

(

wdes
d, i − wd, i

)

(28)

Where xdes
d, i

, wdes
d, i

, and ẇdes
d, i

represent the desired position,

velocity, and acceleration of the i-th task for the Lower-body,

respectively; xd, i and wd, i represent the actual position and velocity

of the i-th task; K i
p and K i

d
are the proportional and derivative

feedback coefficients for the i-th task. In this optimization problem,

we can adjust the priority of multiple tasks by tuning the weight

parameters, and integrate the desired angular acceleration for each

task, thereby obtaining the optimal motion trajectory for the robot.

The second part of the cost function aims to minimize the

acceleration of the driving joints in order to fully activate the waist’s

role during the walking process. This allows the waist to seek

the optimal coordinated motion trajectory during the stance and

swing leg movements, thereby maximizing the robot’s maximum

stride length.

Dynamic constraints: the Equation 21 is used as the constraint

(Equation 27-1) in the optimization problem, ensuring that the

optimization results satisfy the floating base dynamic equation of

the lower body constructed in Section 3.1.

Contact constraints: during the walking process of the

humanoid robot, we assume that the foot in contact with the

ground does not experience relative displacement with respect to

the ground. Therefore, constraint (Equation 27-2) is defined to

restrict the robot’s motion.

Friction constraints: in constraint (Equation 27-2), we assume

that the foot in contact with the ground does not experience relative

displacement with respect to the ground. From the perspective of

contact mechanics, the contact force at the foot must adhere to

friction constraints. These friction constraints can be approximated

by a pyramid, as shown in Figure 7. In this optimization problem,

FIGURE 7

Illustration of the foot contact friction constraints. (A) 3-D space. (B)

2-D space projection.

the friction constraint is given by Equation 27-3, where Af is the

friction constraint matrix.

Contact foot ZMP constraint: the ZMP is the point where the

horizontal component of the robot’s foot contact force andmoment

balance are zero on a flat surface. To prevent the robot’s foot from

tipping due to excessive torque, we set constraint (Equation 27-4)

to ensure that the robot’s ZMP remains within the support region

of the robot’s foot. Here, Azmp is the ZMP constraint matrix.

Unilateral contact force constraint: during walking, the foot is

subject to unilateral contact forces from the ground. The constraint

is given by Equation 27-5, where S is the selection matrix and Fmax
c, z

is the maximum contact force in the z-axis at the foot.

Joint motion constraints: constraint (Equation 27-6) is

imposed to restrict joint accelerations, preventing the robot’s joints

from exceeding position or velocity limits.

Joint torque constraints: constraint (Equation 27-7) is applied

to limit the joint driving torques, where τmin and τmax represent

the minimum and maximum torque vectors for the driving

joints, respectively.

Through the above optimization problem, we can obtain the

optimal driving acceleration, driving torque for each Lower-body

joint, and the optimal contact force between the foot and the

ground. The desired joint positions qcmd
d

and velocities q̇cmd
d

can

be obtained through the integration of the accelerations. The

centroidal momentum generated during the walking process can

be estimated using the desired joint angles and velocities of the

Lower-body joints:

hc
∗
= Ad

c (qd
cmd)q̇cmd

d (29)

ḣ∗c = Ȧd
c (qd

cmd)q̇cmd
d + Ad

c (qd
cmd)q̈cmd

d (30)

In the equation, hc
∗ represents the centroidal momentum

calculated using the desired signals during the walking control

of the Lower-body WBC, and ḣ∗c is the time derivative of the

centroidal momentum. To further align with the ideal LIP model,

the desired centroidal angle momentum during the walking process
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TABLE 2 Upper-body WBC tasks.

Task

1 CoM position

2 Centroidal angle momentum

3 Swing hand pose

is zero. We will compensate for this by utilizing the swing of the

arms, driven by the Upper-body WBC.

3.3 Upper-body WBC

Compared to the Lower-body WBC, which interacts with the

environment during walking tasks, the primary task of the Upper-

body is to drive the swinging of arms to enhance the stability of the

robot during walking. Based on this, we list the Upper-body WBC

tasks as shown in Table 2.

In the Lower-body dynamics modeling process in Section 3.1,

we set the overall CoM position of the Upper-body. Therefore,

one of the most important tasks in the Upper-body WBC

is to control the set CoM position, as failure to do so will

affect the estimation of the overall CoM trajectory during the

control process. Task 2 is to compensate for the centroidal

angular momentum deviation hc
∗ caused by the Lower-body

WBC during the walking control by controlling the arm’s angular

momentum. Compared to some existing studies that design arm

swinging to counteract the CoM’s yaw-axis angular momentum, we

independently construct a controller to simultaneously compensate

for the angular momentum along all three axes of the centroid.

Task 3 is to design a default swinging trajectory for the robot’s arm

end, and this task is assigned the lowest priority to maintain the

arm’s regular swinging motion. Based on the above description,

the optimization problem for the Upper-body WBC is constructed

as follows:

min
q̈u ,τ

u
∑

i=1

(

∥

∥

∥
Jui q̈

cmd
u + Jui q̇u − ẇu, i

∥

∥

∥

2

Qv

)

(31)

Muq̈u + Cuq̇u + Gu = Buτu (31-1)

B(qu, q̇u, q̈
cmd
u ) < 0 (31-2)

Imin(qu, q̇u) ≤ q̈u ≤ Imax(qu, q̇u) (31-3)

τmin ≤ τ ≤ τmax (31-4)

Cost function: the cost function is relatively simple. Jui is the

Jacobian matrix for the i-th task in the task space, ẇu, i is the target

task acceleration command, and Qv is the task execution weight.

By adjusting the weight parameters, the priorities of multiple tasks

are adjusted, and the expected angular accelerations of the tasks are

integrated to derive the optimal motion trajectory for the robot.

Tasks 1 and 3 are constructed similarly to the Lpper-body WBC.

The feedback function for Task 2 can be formulated as:

ẇu,2 = −ḣ∗c − Khh
∗
c (32)

Task 2’s Jacobian matrix is the same as the angular

momentum matrix:

Ju2 = Au
c (qu) (33)

Based on the task setup above, the arm swinging can

compensate for the angular momentum generated during the

Lower-body control process.

Dynamics constraints: the Equation 23 is used as a constraint

(Equation 31-1) in the optimization problem to ensure the results

satisfy the Upper-body dynamics model presented in Section 3.1.

Arm swing collision constraint: upon observation of the

robot’s arm swinging process, it is found that when the forearm

does not collide with the body, the entire arm will not collide with

the body. Therefore, the forearm is selected as the constraint target.

Four marker points are placed on both left and right forearms.

The positions, velocities, and accelerations of these points are

computed using kinematics. The boundary of the body shape is set

as the boundary condition for the marker point motion, creating

inequality constraints to prevent collisions between the robot’s arms

and body during integration of position and velocity.

Joint motion constraints: constraint (Equation 31-3) is set to

limit the joint acceleration values to prevent the robot’s joints from

exceeding position or velocity limits.

Joint torque constraints: constraint (Equation 31-4) is set to

limit the joint torques, where τmin and τmax are the minimum and

maximum torque vectors for the driving joints, respectively.

4 Simulation experiments

4.1 Software framework and robot platform

The humanoid robot control system is primarily developed

using a C++ multithreading framework. Control algorithms are

constructed with the Drake robotics library, and the robot’s

dynamics and motion parameters are described uniformly using

URDF files. For solving optimization problems within the control

system, the SNOPT solver is called through the API in Drake.

Additionally, C++ is integrated with RaiSim to communication,

serving as the simulation environment and physics engine for robot

walking control.

The robot used in the simulation is the Dexbot humanoid robot

system, developed by Harbin Institute of Technology. The robot

stands at a height of 175 cm and weighs approximately 58 kg. It

has a total of 28 active joints, excluding the dexterous hands. Each

leg features 6 joints, the waist has 2 joints, and each arm has 7

joints. Since the three degrees of freedom at the arm’s end mainly

control hand posture and do not participate in the walking process,

each arm is simplified to 4 degrees of freedom for simulation. The

robot and its degree-of-freedom distribution is shown in Figure 8.
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FIGURE 8

The Dexbot humanoid robot simulation prototype. (A) Rendered image. (B) Robot joint distribution.

TABLE 3 Mass of links.

Rigid part Mass (kg)

Torso 22.7

Pelvic 8.05

Thigh 5.6

Shank 4.2

Foot 1.01

Upper arm 1.82

Forearm 1.57

The robot’s innovative humanoid design ensures efficient energy

utilization, and its high power-to-weight ratio custom electric

actuators enable high dynamic movement potential. For clarity in

the simulation, all external body casing is removed. The robot’s

mass of links is listed in Table 3. The joint limit angles are also

provided in Table 4.

4.2 CoM trajectory numerical simulation

To validate the improved footstep planner proposed in Section

2 of this paper, we designed a numerical simulation to visually

TABLE 4 Joint limit angles.

Joint name Range of motion

Hip roll −0.34-0.26

Hip pitch −1.29-0.26

Hip yaw −0.17-0.17

Knee 0-1.92

Ankle pitch −1.1-0.43

Ankle roll −0.29-0.29

demonstrate the advantages of our method over traditional

approaches. The input to the numerical simulation is a step input

of the desired walking velocity. At the 4th second of the simulation,

the desired velocity changes from 0 m/s to 1 m/s, with a footstep

time Ts = 0.8. The simulation results are shown in Figure 9.

In the simulation, we compare the traditional LIP-MPCmethod

with the footstep planning method proposed in this paper.

Traditional methods often use the instantaneous velocity at the

end of each walking phase as the prediction model for the MPC,

which only ensures that the velocity at the final time of each step

reaches the desired speed, but fails to guarantee the average velocity

during the entire support phase. As shown in the Figure 9, after

the motion reaches a stable state, the average velocity of traditional

LIP-MPC is 0.632 m/s, with a tracking error of 0.368 m/s, resulting

Frontiers inNeurorobotics 12 frontiersin.org

https://doi.org/10.3389/fnbot.2025.1538979
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wang et al. 10.3389/fnbot.2025.1538979

FIGURE 9

Average velocity tracking data curve in numerical simulation.

in a tracking accuracy of only 63.2%. In contrast, the method

proposed in this paper avoids using the instantaneous velocity

formula for predicting the centroid motion. Instead, we derive

and iterate the displacement over a single support phase, which

ensures proper displacement of the centroid within each cycle and

consequently achieves good average velocity control performance.

In the numerical simulation, ourmethod exhibits no tracking error.

The improved footstep planner proposed in Section 2 of this

paper effectively eliminates tracking errors in the planning phase of

the desired velocity, thereby enhancing the accuracy of the robot’s

actual speed tracking during the walking process.

4.3 Acceleration walking control simulation

To validate the improvement in the humanoid robot’s

maximum walking ability and dynamic stability using the walking

control framework proposed in this paper, three conditions were

designed for comparison: (1) no arm and waist swinging, (2)

with waist swinging, and (3) with both waist and arms swinging.

Walking data for each condition were compared and analyzed.

During the walking process, the footstep time Ts = 0.8s. A walking

command was sent to the robot at the 10th second, and the desired

walking speed was incremented by 0.15 m/s every subsequent 10

seconds. The simulation snapshots and data for each condition are

shown below.

(1) No arm and waist swinging

In this experiment, the footstep planner proposed in Section 2

and the lower-body WBC (with the waist control part temporarily

disabled) were used to track and control the desired walking speed

input by user. For this condition, the humanoid robot’s waist joints

and arms were set to fixed angles and did not participate in the

walking process.

In Figure 10A shows the tracking performance of the robot’s

CoMwith respect to the desired walking speed, Figure 10B displays

the joint angles of the left leg during the walking process. From

Figure 10A, it is evident that the humanoid robot starts from 0

m/s and accelerates stably to 0.45 m/s with each step increase of

0.15 m/s, achieving stable tracking of the desired speed. However,

when the robot accelerates from 0.45 m/s to 0.6 m/s, the robot

initially achieves stable acceleration and quickly reaches effective

tracking of the desired speed. But as the walking process continues,

the robot struggles to control its speed effectively, leading to a fall.

Referring to Figure 10B, we observe that as the robot’s walking

speed increases, the range of motion for the hip, knee, and ankle

joints also increases. When the speed reaches 0.6 m/s, the knee

joint’s range of motion is approximately 0.6 to 1.3 rad, the hip

pitch angle ranges from −0.83 to 0.2 rad, and the ankle pitch

angle ranges from −0.88 to −0.17 rad. These motion ranges are

close to the limits of the robot’s joint movement. Additionally,

the robot’s instability at an average walking speed of 0.6 m/s

causes significant speed fluctuations, and the footstep positions

need frequent large adjustments to control the robot’s speed. In

summary, during dynamic walking, the insufficientmargin for joint

movement, combined with large adjustments in the swinging leg,

leads to joint overextension, eventually causing the robot to fall.

From this scenario, it can be observed that, with a fixed footstep

time Ts, the maximum step length is a key parameter influencing

the robot’s maximumwalking speed. The longer the maximum step

length, the greater the effective working range for both the swinging

and supporting legs, which increases the range of adjustments that

can be made during walking. At the same time, enhances the robot’s

ability to handle external disturbances such as the impact force

between the foot and the ground, as well as inertial forces.

(2) With waist swing

Based on the conclusions from scenario (1) and the analysis in

Section 3 of the paper, introducing waist motion can increase the

effective movement range of the robot’s foot, thereby enhancing

the robot’s maximum walking speed. Therefore, in this scenario,

waist control is introduced compared to scenario (1) to verify the

advantages and effectiveness of incorporating waist motion into

the Lower-body WBC in the hierarchical coordination controller

proposed in this paper. The walking control data for the humanoid

robot with waist swing is as follows:

In Figure 11A shows the robot’s CoM tracking of the desired

walking speed, Figure 11B represents the angle values of key joints

in the left leg during walking, and Figure 11C shows the motion

trajectory of the waist joints during walking. From Figure 10A,

it can be seen that the humanoid robot accelerates steadily from

0 m/s to 0.75 m/s by increasing the desired speed by 0.15 m/s

at each step and achieves stable tracking. However, it falls when

further accelerated to 0.9 m/s. Compared to scenario (1), where

waist control was not introduced, the robot’s stable tracking

speed improved from 0.45 m/s to 0.75 m/s, increasing the robot’s

maximum walking speed by 0.3 m/s. Referring to the waist motion

trajectory in Figure 10C, it can be observed that as the walking

speed increases, the robot’s waist Yaw angle swing increases, while

the pitch angle is used to coordinate the pelvis and torso posture,

thus better utilizing the Yaw angle to contribute to the walking
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FIGURE 10

Humanoid robot acceleration walking data without arm and waist swinging. (A) CoM velocity. (B) Leg joint angles.

stride length. Comparing Figure 11Bwith Figure 10B from scenario

(1), it can be seen that the robot’s leg motion range is smaller at the

same speed. This is because the waist joints, through the rotation

of the pelvis, significantly increase the movement boundaries of the

robot’s foot, allowing it to cover a greater distance with a smaller leg

swing range. This directly proves that the coordinated waist swing

can increase the humanoid robot’s maximum stride length during

walking, thereby enhancing its walking capabilities.

Based on this scenario, it can be observed that by introducing

coordinated waist motion, the robot’s maximum stride length can

be increased while keeping the footstep time Ts constant. At

the same walking speed, the robot’s leg joint swing amplitudes

are smaller, leaving more motion margin to maintain stable

walking. However, when the robot is walking at higher speeds,

its centroidal angle momentum increases rapidly. This causes

difficulties in adjusting the robot’s desired motion states effectively

within the ZMP constraint, ultimately leading to walking failure.

The humanoid robot driven by linear electric actuators, due to

its design mimicking the distribution and force characteristics of

human muscles, has a more dispersed mass. As a result, during

high-speed walking, the momentum shift caused by the swing leg

becomes particularly pronounced. In such cases, compensating for

the center of mass momentum using arm swing is crucial.

(3) With waist and arms swing

Building upon the conclusions from Scenario (2) and the

analysis in Section 3 of this paper, the arm movement during

walking is unconstrained, allowing for flexible swinging. Therefore,

in this scenario, compared to Scenario (2), we introduce control for

coordinated arm swing to validate the advantages and effectiveness

of the upper body WBC in the proposed layered coordination

controller. Simulation snapshots of the humanoid robot’s walking

process are shown in Figure 12.

The walking control data for the humanoid robot with waist

and arms swing is as follows:

In Figure 13A shows the tracking curve of the robot’s desired

velocity during walking, Figure 13B shows the swing trajectory

of the key joints of the left leg, Figure 13C presents the motion

trajectory of the robot’s waist, and Figure 13D depicts the swing

trajectory of the left arm joints during the walking process.

After adopting the walking control framework proposed in this

paper, the robot is able to gradually accelerate to 0.9 m/s with

a regular increase of 0.15 m/s every 10 seconds and maintain

stable walking at this speed. Compared to Scenario (1), where no

waist and arm movements were employed, the maximum stable

walking speed increased from 0.45 m/s to 0.9 m/s, proving the

significant role of the waist and arms in improving the robot’s

walking ability. In contrast to Scenario (2), where no arm swing

was used, the maximum stable walking speed increased from

0.75 m/s to 0.9 m/s, demonstrating that arm swing contributes

to enhancing the robot’s walking stability. From Figure 13B,

comparing with Scenario (2) in Figure 11B, it is evident that

as the walking speed increases, the range of leg movement also

increases. When the arm swing is introduced, the robot’s centroid

momentum can be compensated by the arm swing, resulting in

better overall stability. Therefore, the robot does not lose balance

or fall due to changes in states during acceleration. In Figure 13C,

the waist swing angle increases with walking speed. With the

introduction of the arm swing, which enhances the robot’s overall

stability, the robot no longer needs to make large adjustments

to the foot placement, making the waist movement more stable.

Figure 13D shows that the swing amplitude of each arm joint

increases with the walking speed, with the shoulder pitch angle and

elbow joint exhibiting the largest movement range, similar to the

natural arm swing trajectory in human walking. To highlight the

influence of arm swing on the robot’s state, the centroidal angle

momentum trajectories for Scenario (2) and Scenario (3) are shown

in Figure 14.

In the figure, Figure 14A represents the centroidal angle

momentum along the x-axis, Figure 14B along the y-axis, and

Figure 14C along the z-axis. For convenience, the directions of the

centroid axes are aligned with the world coordinate system. The x-

axis angularmomentum is primarily generated by themotion of the

robot in the y-z plane during walking, and it is mainly influenced

by the foot lifting motion of the swing leg. The fluctuation range of

this angular momentum is positively correlated with the height of
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FIGURE 11

Humanoid robot acceleration walking data with waist swinging. (A) CoM velocity. (B) Leg joint angles. (C) Waist joint angles.

the lifted foot. The y-axis angular momentum originates from the

motion in the x-z plane, and it is primarily affected by the swinging

motion of the leg. As walking speed increases, the required step

length also increases, leading to a greater swing leg range and,

consequently, an increase in y-axis angular momentum. The z-

axis angular momentum arises from the motion in the x-y plane

and is influenced by both the swinging leg and the waist motion.

As walking speed increases, the range of waist and leg motion

increases, resulting in an increase in z-axis angular momentum.

A comparison of the centroidal angle momentum across the

three axes shows that, compared to scenario (2), the introduction

of arm swing coordination reduces the fluctuation range of the

robot’s centroidal angle momentum in all three axes. The most

significant reduction is observed in the z-axis angular momentum.

For instance, during walking at 1 m/s, the arm swing reduces the

angular momentum deviation by 45.8%. In contrast, the x-axis and

y-axis angular momentum deviations are reduced by only 8.43%

and 9.32%, respectively.

This is primarily because our Upper-body WBC controller

prioritizes CoM position control to avoid affecting the position

of the Upper-body CoM during walking. This design ensures that

the robot’s arms remain near the symmetrical position of the

torso in the body coordinate system. As a result, the robot’s arms

can only swing within a small range to compensate for angular

momentum deviations along the x and y axes. However, the z-

axis angular momentum can be more effectively compensated by

the symmetrical forward and backward swing of the arms, which

does not violate the upper-body centroid control task and provides

sufficient range of motion.

It is important to note that the compensatory

effect of arm swing on centroidal angle momentum is

closely related to the robot’s arm weight, moment of
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FIGURE 12

Humanoid robot acceleration walking snapshots with waist and arms swinging.

inertia, CoM position, and other dynamic parameters.

The compensatory effect of arm swing on centroidal

angle momentum varies for robots with different

mass distributions.

5 Conclusion and future work

This paper proposes a dynamic walking control framework

that combines an improved footstep planner and a whole-body

coordination controller. In this framework, we first analyze the

issues with traditional LIP-MPC and replace the conventional

instantaneous velocity-based model with a LIP position-based

analytical model to predict the robot’s future walking states. This

modification avoids the average speed tracking errors introduced

by using instantaneous velocity as an iterative model. While

maintaining the computational efficiency of MPC, it enhances

the effectiveness of footstep planning in tracking the desired

walking speed.

To improve the robot’s dynamic walking capability, we

introduce coordinated control of the robot’s waist and arms during

walking. The control strategy is inspired by human walking,

where the waist increases the effective swing range of the foot,

and the arms compensate for the centroidal angular momentum

during walking. Based on this, we decouple the robot’s upper

and lower body, independently constructing dynamic models

for each. We then design a whole-body coordination controller,

which incorporates both a Lower-body WBC and an Upper-

body WBC, to independently control the robot’s lower and

upper body. The hierarchical design of this controller resolves

the challenge of multi-task coupling in multi-degree-of-freedom

humanoid robots, which often leads to poor control performance

with traditional controllers.

Finally, in our simulation experiments, we first conducted

a comparative analysis between the proposed improved footstep

planner and traditional methods in terms of desired speed tracking

accuracy, proving the effectiveness of our method in improving

speed tracking. Subsequently, we integrated all components into a

complete control framework and validated it through the Dexbot

robot simulation system. The results from three experimental

conditions demonstrate that the introduction of waist and arm

coordination significantly enhances the humanoid robot’s dynamic

tracking ability for the desired walking speed, proving the feasibility

and effectiveness of the proposed framework.
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FIGURE 13

Humanoid robot acceleration walking data with waist and arms swinging. (A) CoM velocity. (B) Leg joint angles. (C) Waist joint angles. (D) Arm joint

angles.

FIGURE 14

Humanoid robot centroidal angle momentum. (A) x-axis. (B) y-axis. (C) z-axis.

In future work, we plan to incorporate a visual

navigation system to control the robot’s rapid

traversal through complex environments and perform

task-specific operations.
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