
TYPE Original Research

PUBLISHED 01 April 2025

DOI 10.3389/fnbot.2025.1544694

OPEN ACCESS

EDITED BY

Shude He,

Guangzhou University, China

REVIEWED BY

Mario Versaci,

Mediterranea University of Reggio Calabria,

Italy

Federica Nenna,

University of Padua, Italy

*CORRESPONDENCE

Lin Wenbo

15101207316@163.com

RECEIVED 13 December 2024

ACCEPTED 17 February 2025

PUBLISHED 01 April 2025

CITATION

Wenbo L, Tingting L and Xiao L (2025)

ModuCLIP: multi-scale CLIP framework for

predicting foundation pit deformation in

multi-modal robotic systems.

Front. Neurorobot. 19:1544694.

doi: 10.3389/fnbot.2025.1544694

COPYRIGHT

© 2025 Wenbo, Tingting and Xiao. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

ModuCLIP: multi-scale CLIP
framework for predicting
foundation pit deformation in
multi-modal robotic systems

Lin Wenbo1*, Li Tingting2 and Li Xiao3

1School of Geology, Gansu Industrial Vocational and Technical College, Tianshui, Gansu, China,
2School of Electronic Information, Gansu Industrial Vocational and Technical College, Tianshui, Gansu,

China, 3Guangdong Nonferrous Industry Building Quality Inspection Co., Ltd., Guangzhou,

Guangdong, China

Introduction: Foundation pit deformation prediction is a critical aspect of

underground engineering safety assessment, influencing construction quality

and personnel safety. However, due to complex geological conditions and

numerous environmental interference factors, traditional prediction methods

struggle to achieve precise modeling. Conventional approaches, including

numerical simulations, empirical formulas, and machine learning models, su�er

from limitations such as high computational costs, poor generalization, or

excessive dependence on specific data distributions. Recently, deep learning

models, particularly cross-modal architectures, have demonstrated great

potential in engineering applications. However, e�ectively integrating multi-

modal data for improved prediction accuracy remains a significant challenge.

Methods: This study proposes a Multi-Scale Contrastive Language-Image

Pretraining (CLP) framework,ModuCLIP, designed for foundation pit deformation

prediction in multi-modal robotic systems. The framework leverages a

self-supervised contrastive learning mechanism to integrate multi-source

information, including images, textual descriptions, and sensor data, while

employing a multi-scale feature learning approach to enhance adaptability

to complex conditions. Experiments conducted on multiple foundation pit

engineering datasets demonstrate that ModuCLIP outperforms existingmethods

in terms of prediction accuracy, generalization, and robustness.

Results and discussion: The findings suggest that this framework provides an

e�cient and precise solution for foundation pit deformation prediction while

o�ering new insights into multi-modal robotic perception and engineering

monitoring applications.

KEYWORDS

foundation pit deformation prediction, multi-modal robotics, contrastive learning,

multi-scale features, deep learning

1 Introduction

Foundation pit deformation prediction is a pivotal aspect of ensuring both the

safety and efficiency of construction projects, particularly in densely populated urban

environments (Hu et al., 2023). The development of highly accurate predictive models is

essential not only for mitigating catastrophic structural failures but also for optimizing

construction workflows and reducing overall costs (Wei et al., 2023). However,

traditional prediction methods often struggle to accommodate the complexity of multi-

modal data generated by robotic systems operating in heterogeneous environments
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(Zong et al., 2023). Modern robotic sensing systems collect

data across multiple spatial and temporal scales, posing

significant challenges in effectively integrating and leveraging

multi-scale information (Xu et al., 2023a). To overcome these

limitations, researchers have investigated a range of computational

methodologies, spanning from symbolic AI and data-driven

machine learning to the latest advancements in deep learning

frameworks such as CLIP (Peng et al., 2022). The convergence of

these techniques with multi-modal data fusion and multi-scale

modeling presents a transformative opportunity to enhance the

accuracy and robustness of foundation pit deformation prediction

(Figure 1).

To address the limitations of early empirical and physics-based

models, researchers initially focused on traditional approaches

such as numerical simulations (Xu et al., 2022), finite element

methods (FEM) (Song et al., 2023), and empirical formulas

(Yao et al., 2023). These methods provide valuable theoretical

insights into soil-structure interactions, offering interpretability

and physical consistency. However, they are often constrained

by high computational costs, difficulties in modeling complex

boundary conditions, and sensitivity to parameter settings

(Zhou et al., 2023a). Furthermore, these methods rely on

predefined assumptions, making them less adaptable to real-

world conditions where uncertainties and external factors, such

as groundwater variations and excavation sequences, significantly

influence deformation behavior (Zhang et al., 2023).

To overcome the limitations of physics-based models, machine

learning (ML) techniques have been introduced, leveraging

data-driven methodologies to enhance predictive accuracy and

adaptability (Shi et al., 2022). Models such as support vector

machines, decision trees, and ensemble learning methods have

demonstrated their ability to capture nonlinear relationships in

deformation data (Hao et al., 2022), reducing the dependency on

explicit geotechnical formulations (Joseph et al., 2023). ML-based

approaches enable automated feature extraction and parameter

tuning, improving their applicability to diverse engineering

conditions (Zhou et al., 2023b). However, these models still

face challenges, including sensitivity to data quality, difficulty

in handling long-term temporal dependencies, and reliance on

extensive labeled datasets for training (Zhang et al., 2022).

Moreover, feature engineering remains a critical yet labor-

intensive process, requiring domain expertise to ensure meaningful

input representations.

To address the constraints of ML-based models, researchers

have turned to deep learning (DL) and pre-trained models,

which leverage hierarchical feature extraction and multi-scale

learning to improve predictive performance (Liu et al., 2023).

Convolutional neural networks (CNNs) (Lian et al., 2022)and

recurrent neural networks (RNNs) (Du et al., 2022) have been

applied to analyze spatial-temporal deformation patterns, while

transformer-based models have further enhanced long-range

dependency modeling (Lin et al., 2023). Pre-trained frameworks,

such as contrastive learning models, have enabled efficient multi-

modal data fusion by integrating geotechnical parameters, remote

sensing imagery, and sensor data. However, despite their improved

accuracy, existing DL approaches often require significant

computational resources, suffer from limited interpretability,

and may not fully exploit multi-scale information critical for

capturing deformation evolution at different spatial-temporal

resolutions (Yan et al., 2022).

Building on the limitations of traditional, data-driven, and

deep learning methods, ModuCLIP proposes a novel multi-scale

CLIP framework tailored to predicting foundation pit deformation

in multi-modal robotic systems. By addressing challenges such

as multi-scale data fusion, real-time adaptability, and resource

efficiency, this framework leverages the strengths of contrastive

pre-training while introducing innovative hierarchical structures.

ModuCLIP combines the interpretability of symbolic AI with

the scalability of machine learning and the representational

power of deep learning. This integration not only fills gaps

left by prior methodologies but also opens new possibilities for

accurate, robust, and adaptive deformation prediction in complex

robotic environments. ModuCLIP introduces a hierarchical

feature representation mechanism that effectively fuses multi-

scale information across spatial and temporal domains. It is

optimized for diverse construction scenarios, ensuring robust

performance while reducing computational overhead in multi-

modal robotic systems. ModuCLIP achieves state-of-the-art

accuracy in foundation pit deformation prediction, significantly

outperforming traditional and contemporary approaches.

The next section reviews related work, providing an overview

of existing methodologies and their limitations in addressing

foundation pit deformation prediction. Following this, the

methodology section presents the proposed framework, including

its theoretical underpinnings, novel model design, and adaptive

strategies tailored to geotechnical challenges. The subsequent

section describes the experimental setup and results, highlighting

the effectiveness of the proposed approach through comprehensive

evaluations and comparisons with baseline methods. Finally, the

conclusion summarizes the key findings and discusses potential

future research directions.

2 Related work

2.1 Vision-language models in robotics

Vision-language models such as CLIP have demonstrated

remarkable potential in enabling robotic systems to comprehend

and interpret visual and textual data (Fan et al., 2022). Thesemodels

are trained on extensive image-text pairs, providing a robust

framework for understanding multi-modal information (Chango

et al., 2022). In the context of robotics, vision-language models

facilitate tasks such as object recognition, scene understanding,

and contextual decision-making (Yu et al., 2023). Studies have

explored integrating CLIP into robotic systems for tasks like robotic

grasping, autonomous navigation, and human-robot interaction

(Steyaert et al., 2023). By leveraging the ability of these models to

align visual and textual features, robotic systems can achieve higher

adaptability in dynamic environments (Cui et al., 2025). Recent

advancements focus on refining these models for domain-specific

applications, such as construction and geotechnical engineering,

where understanding complex, domain-specific visual data is

crucial (Gao et al., 2024). These developments underscore the

potential of vision-language models in enabling multi-modal

capabilities for foundation pit deformation prediction.
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FIGURE 1

Conceptual diagram of the foundation pit deformation monitoring and prediction framework.

2.2 Multi-scale feature extraction
techniques

Multi-scale feature extraction has emerged as a critical

approach in analyzing complex visual data (Ektefaie et al., 2022).

In robotic applications, capturing information across varying scales

enhances the understanding of structural details and contextual

relationships (Daunhawer et al., 2023). Techniques such as pyramid

networks, multi-level attention mechanisms, and scale-aware

convolutional architectures have been widely adopted in tasks like

object detection and semantic segmentation (Cao et al., 2024).

In the domain of geotechnical engineering, multi-scale analysis is

crucial for accurately modeling the deformation of foundation pits,

as it involves both micro-level material properties and macro-level

structural behaviors (Mizuho et al., 2024). Recent works emphasize

combining multi-scale visual features with temporal data to

enhance predictive accuracy (He et al., 2023). These techniques

have paved the way for integrating multi-scale capabilities into

CLIP-based frameworks, where visual and textual features are

jointly analyzed across scales to improve deformation prediction

performance in robotic systems.

2.3 Multi-modal predictive frameworks

Multi-modal frameworks integrating data from heterogeneous

sources have shown significant promise in predicting complex

phenomena. These frameworks combine visual, textual, and

sensory data to provide a comprehensive understanding of

the environment (Chai and Wang, 2022). In geotechnical

and construction robotics, multi-modal approaches have been

employed to model soil behavior, structural dynamics, and

environmental interactions (Yang et al., 2022). Techniques like

sensor fusion, multi-modal attention mechanisms, and adversarial

learning have been utilized to improve the robustness of predictions

(Bayoudh et al., 2021). Recent advancements focus on designing

end-to-end architectures that align and process multi-modal inputs

effectively, ensuring better feature representation and prediction

accuracy (He et al., 2022). Integrating such frameworks with vision-

language models like CLIP enhances their ability to reason over

diverse data sources, making them particularly suitable for tasks

like foundation pit deformation prediction (Zhou et al., 2024).

These frameworks also facilitate real-time analysis, crucial for

deploying robotic systems in dynamic construction environments.

2.4 Application of fuzzy method in
deformation prediction

The ModuCLIP framework proposed in this study achieves

high-precision prediction of foundation pit deformation in a

multimodal robot system, but the computational load remains

a key challenge in real-time applications (Versaci et al., 2024).

Previous studies have proposed fuzzy similarity and divergence

methods, which have obvious advantages in computational

complexity and can reduce the real-time computational burden

and improve the computational efficiency of the prediction

model (Versaci et al., 2022). Although these methods were
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originally applied to two-dimensional civil engineering problems,

their mathematical framework has strong versatility and can be

directly applied to the foundation pit deformation prediction

involved in this study. Future optimization directions include

combining these fuzzy computational methods to further enhance

the real-time adaptability of ModuCLIP in dynamic environments,

and reduce the consumption of computational resources while

maintaining high accuracy to meet the needs of large-scale

engineering monitoring.

3 Method

3.1 Background

The prediction of foundation pit deformation is a critical

task in geotechnical engineering, ensuring structural stability

and safety during excavation processes. This subsection provides

an outline of the methodological framework developed for

this study, focusing on the modeling and analysis approaches

employed to enhance prediction accuracy. The section begins

by introducing the key challenges and requirements inherent in

foundation pit deformation prediction, including the dynamic

and complex nature of geotechnical systems, data sparsity, and

environmental uncertainties.

The prediction of foundation pit deformation requires a

formalized framework that captures the inherent complexities

of soil-structure interactions, dynamic loading conditions, and

environmental influences. This section provides the mathematical

and physical foundations necessary for constructing such a

framework, focusing on the governing principles, spatial-temporal

relationships, and critical parameters defining the problem.

Let � ⊂ R
3 denote the spatial domain of the foundation pit,

with Ŵ representing its boundary. The deformation field, u(x, t), at

spatial location x ∈ � and time t, is governed by the following

equilibrium equation derived from continuum mechanics:

∇ · σ + f = 0, x ∈ �, (1)

where σ is the stress tensor, and f represents body forces such

as gravity.

The stress-strain relationship is described using Hooke’s law for

linear elasticity:

σ = C : ε, (2)

where ε = 1
2

(

∇u+ ∇u⊤
)

is the strain tensor, and C is the

fourth-order elasticity tensor determined by material properties.

Boundary conditions are imposed as:

u = uD on ŴD,

σ · n = tN on ŴN ,
(3)

where ŴD and ŴN are the Dirichlet and Neumann boundaries,

respectively, uD specifies prescribed displacements, and tN denotes

external tractions.

To incorporate time-dependent behavior, the deformation

process is modeled as a quasi-static system influenced by excavation

activities and environmental variations. This dynamic interaction is

described by coupling the equilibrium equation with an evolution

equation for soil settlement:

∂u

∂t
+∇ · (vu) = q, (4)

where v is the excavation velocity field, and q represents sources

or sinks of deformation due to material removal or water

table changes.

The environmental influence, including water table

fluctuations, is integrated through Terzaghi’s effective

stress principle:

σ eff = σ − αpI, (5)

where α is the Biot coefficient, p is the pore water pressure, and I is

the identity tensor. Pore pressure evolution is governed by Darcy’s

law and the continuity equation:

∇ ·

(

k

µ
∇p

)

−
∂p

∂t
= 0, (6)

where k is the permeability tensor, and µ is the dynamic viscosity

of water.

The problem is further complicated by nonlinearity in soil

behavior, which can be captured using a constitutive model such

as the Mohr-Coulomb criterion:

f (σ ) = τ − c− σn tanφ ≤ 0, (7)

where τ is the shear stress, σn is the normal stress, c is cohesion, and

φ is the angle of internal friction.

To enable numerical solutions, the equations are discretized

using the finite element method (FEM). The weak form of the

equilibrium equation is:

∫

�

δε : σ d� −

∫

ŴN

δu · tN dŴ = 0, (8)

where δu represents test functions. Time integration schemes, such

as the backward Euler method, are employed for transient analyses.

3.2 Dynamic geotechnical learning
Network

To accurately predict foundation pit deformation under

complex geotechnical and environmental conditions, we propose

a novel modeling framework, termed dynamic geotechnical

learning network (DGL-Net). This model integrates physical

domain knowledge with data-driven machine learning to

improve prediction fidelity, scalability, and adaptability. The

foundation of DGL-Net lies in its hybrid structure, comprising

a physics-constrained deep neural network and a dynamic state

representation module. The following subsections describe the

core components of DGL-Net, including the architecture, the

integration of domain knowledge, and the mechanisms for

handling multi-scale spatial-temporal data (Figure 2).

The input to the DGL-Net represents a comprehensive

description of the geotechnical system, incorporating various

Frontiers inNeurorobotics 04 frontiersin.org

https://doi.org/10.3389/fnbot.2025.1544694
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wenbo et al. 10.3389/fnbot.2025.1544694

FIGURE 2

The dynamic geotechnical learning network (DGL-Net) framework for predicting foundation pit deformation under complex geotechnical and

environmental conditions. DGL-Net integrates a hybrid architecture combining physics-constrained deep learning with a dynamic state

representation module to capture spatial-temporal features. The model incorporates multi-scale handling through a hierarchical attention

mechanism, ensuring accurate and physically consistent predictions by enforcing constraints derived from physical laws and domain knowledge.

physical variables that characterize the material behavior, loading

conditions, and state of the system at each time t. These variables

form the vector X, which consists of:

X = {ut , u̇t ,∇ut , σ t , ft , pt , k,φ, c}, (9)

where: ut is the displacement field at time t, u̇t is the velocity field,

or the temporal derivative of the displacement, ∇ut represents the

strain tensor, computed as the gradient of the displacement field, σ t

is the stress tensor, ft corresponds to external loading applied to the

system, pt is the pore pressure, k is the permeability of the material,

φ is the friction angle, c is the cohesion of the material.

DGL-Net integrates these input variables into a hybrid

architecture, merging the strength of traditional physics-based

modeling with the flexibility of data-driven deep learning. This

hybrid structure allows the network to respect physical principles,

while also learning complex patterns from data.

DGL-Net is the physics-informed encoder, which encodes

governing physical laws and principles into the model. This

includes equilibrium equations, constitutive laws, and material

failure criteria. For each input feature X, the encoder ensures that

the output respects the following constraints derived from the

physical laws governing the system:

∇ · σ + f = 0, f (σ ) ≤ 0, (10)

where the first equation represents the equilibrium condition,

and the second ensures that the stress σ satisfies failure criteria

such as the Mohr-Coulomb failure condition. The function f (σ )

characterizes the material’s yield surface, typically dependent on

stress invariants and friction parameters.

the encoded input is passed through a series of convolutional

layers to extract spatial and temporal features from the input data.

The hierarchical feature extraction process begins with the first

convolutional layer C1, which operates on the raw input vector X.

Each successive layer Ci applies convolutions to progressively refine

and extract higher-level features from the previous layer’s output.

The spatial dependencies across the input data are captured by

dilated convolutions, which allow the model to capture multi-scale

dependencies in both space and time:

F = Cn(Cn−1(. . . C1(X))), (11)

where F represents the output of the final

convolutional layer, containing hierarchical

spatial-temporal features.

To model the temporal evolution of the system, DGL-Net

incorporates a Long Short-Term Memory (LSTM) network, which

enables the model to capture long-range temporal dependencies.

Given the feature vector Ft at time t, the LSTM takes the current

input along with the hidden state ht−1 and cell state ct−1 from

Frontiers inNeurorobotics 05 frontiersin.org

https://doi.org/10.3389/fnbot.2025.1544694
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wenbo et al. 10.3389/fnbot.2025.1544694

the previous time step, producing the updated hidden and cell

states ht and ct :

ht , ct = LSTM(Ft , ht−1, ct−1). (12)

The DGL-Net is trained using a multi-objective loss function

that ensures high accuracy, physical consistency, and generalization

capabilities. The training procedure integrates several components

in the loss function, each addressing different aspects of the

model’s performance.

The primary loss term is the prediction loss Lpred, which

ensures that the model’s predictions are close to the ground truth

deformation fields:

Lpred =
1

N

N
∑

i=1

‖u
pred
i − utruei ‖22, (13)

where u
pred
i represents the predicted displacement field, and

utruei denotes the true displacement field for the i-th data point.

ensuring predictive accuracy, the model must also respect the

underlying physical laws. To enforce physical consistency, the term

Lphys is included:

Lphys = λ1‖∇ · σ + f‖22 + λ2 max(0, f (σ )), (14)

where σ is the stress tensor, f is the body force, and ∇ ·

σ represents the divergence of the stress tensor. The first term

ensures that the predicted stress field satisfies the equilibrium

condition. The second term penalizes deviations from material

constraints or failure criteria, controlled by the function f (σ ). The

hyperparameters λ1 and λ2 balance the importance of these terms.

To avoid overfitting and ensure generalization, a smoothness

loss termLsmooth is added to penalize sharp spatial variations in the

predicted displacement fields:

Lsmooth =
1

N

N
∑

i=1

‖∇ui‖
2
2, (15)

where ∇ui is the gradient of the displacement field at

each point.

A boundary condition loss term LBC can also be included to

ensure correct behavior at the domain boundaries:

LBC =
1

M

M
∑

j=1

‖u
pred
j − u

boundary
j ‖22, (16)

whereM is the number of boundary points, and u
boundary
j is the

prescribed displacement at the boundary.

A regularization term Lreg can be introduced to prevent

overfitting by penalizing large weights in the model:

Lreg = λ3

K
∑

k=1

‖θk‖
2
2, (17)

where θk represents the model parameters, and λ3 is a

regularization hyperparameter.

a symmetry loss term Lsym can be added to enforce the

symmetry of the stress tensor:

Lsym =
1

N

N
∑

i=1

‖σ i − σ
T
i ‖

2
2, (18)

where σ
T
i is the transpose of the stress tensor at point i.

Combining all these terms, the total loss function for training

the DGL-Net is:

Ltotal = Lpred + Lphys + Lsmooth + LBC + Lreg + Lsym. (19)

The hierarchical attention mechanism for multi-scale handling

plays a crucial role in addressing the challenges posed by variations

in geotechnical conditions across different spatial scales. In

practice, geotechnical data often exhibit heterogeneous features

that vary across scales, such as soil properties at different depths

or spatial variations in soil behavior. To effectively capture these

variations, the proposed method combines features extracted from

multiple resolutions, leveraging a hierarchical attentionmechanism

to weigh the importance of each scale.

The multi-scale feature extraction process involves generating

features at different resolutions. Let the set of features from L

different resolutions be denoted as {F1, F2, . . . , FL}, where each

Fi represents the feature map at the i-th resolution. These

feature maps capture information at different granularities of the

geotechnical space, and combining them effectively is essential for

robust performance. To achieve this, the proposed mechanism

utilizes a weighted sum of the features from each resolution.

Fmulti =

L
∑

i=1

αiFi,

L
∑

i=1

αi = 1, (20)

where Fmulti is the multi-scale feature representation. The

weights αi are learnable and are determined through an attention

mechanism. The attention mechanism dynamically adjusts these

weights during training, allowing the model to focus on more

informative resolutions for the given task.

To further refine the importance of each scale, the hierarchical

attention mechanism is designed to operate at multiple levels. At

each level, the model learns to assign higher weights to feature

maps that contain more relevant information for the task, such as

areas with high variability in geotechnical properties. This adaptive

weighting ensures that the model effectively handles spatially

varying features in the data.

The attention weights αi are computed by a separate attention

module that processes the features from each resolution. The

attention mechanism can be modeled as a softmax function applied

to the compatibility scores between the feature maps and a learned

query vector. Let qi be the query vector associated with the i-

th resolution and Fi be the corresponding feature map. The

compatibility score si between qi and Fi is computed as:

si = q⊤i Fi, (21)

Frontiers inNeurorobotics 06 frontiersin.org

https://doi.org/10.3389/fnbot.2025.1544694
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wenbo et al. 10.3389/fnbot.2025.1544694

where qi ∈ R
d is the learned query vector, and Fi ∈ R

d×n is

the feature map at resolution i, where d is the dimensionality of the

feature vector and n is the number of elements in the feature map.

The attention weight αi for each resolution is computed by

applying the softmax function to the compatibility scores across

all resolutions:

αi =
exp(si)

∑L
j=1 exp(sj)

. (22)

This softmax function ensures that the attention weights are

non-negative and sum to 1, enforcing a normalized contribution

from each resolution.

After calculating the attention weights, the multi-scale features

are fused by taking the weighted sum of the feature maps

as described earlier. However, the combination of features at

different resolutions requires additional refinement to handle

the misalignment between feature maps at different scales. This

refinement is achieved through a convolutional layer that processes

the combined features Fmulti and further enhances the spatial

coherence across different resolutions:

Frefined = Conv(Fmulti), (23)

where Conv(·) denotes a convolution operation applied to the

multi-scale feature representation.

The final representation Frefined is then passed to downstream

tasks, such as classification or regression, depending on the specific

geotechnical problem being addressed. By leveraging multi-scale

information with hierarchical attention, the model can adapt to

variations in geotechnical conditions at different spatial scales,

providing more accurate predictions and insights.

To prevent overfitting and ensure that the model generalizes

well across different scales, regularization techniques are

introduced. One common approach is to apply an entropy

regularization term to the attention weights, encouraging

the model to distribute attention in a more uniform manner

across resolutions:

Lreg = −

L
∑

i=1

αi log(αi). (24)

This entropy term penalizes highly skewed attention

distributions, encouraging the model to learn more balanced

attention weights. The total loss function, combining the

task-specific loss and the regularization term, becomes:

Ltotal = Ltask + λLreg, (25)

where λ is a regularization hyperparameter controlling the

strength of the entropy penalty (Figure 3).

3.3 Adaptive multi-scale integration
strategy

To address the challenges in accurately predicting foundation

pit deformation under complex geotechnical conditions, we

propose the adaptive multi-scale integration strategy (AMIS).

This strategy leverages domain-specific insights, dynamic feature

aggregation, and efficient computational techniques to optimize the

predictive capabilities of our model, DGL-Net. AMIS is specifically

designed to handle spatial-temporal variability, dynamic excavation

processes, and heterogeneous environmental factors (Figure 4).

Foundation pit deformation prediction is influenced by several

factors that interact across multiple scales. The deformation process

exhibits complex behaviors that span spatial and temporal domains,

which can be categorized as follows. Multi-scale dependencies,

where deformation patterns exhibit relationships across both

localized and large-scale spatial areas, as well as varying temporal

resolutions. This involves capturing fine-grained details of local

soil failure while also accounting for long-term settlement or

global deformation patterns. The dynamic excavation impact,

where the excavation process itself is a dynamic, time-varying

process that alters stress distributions and pore pressure in the

soil, creating complex spatiotemporal interactions that must be

accounted for over time. Heterogeneity, where soil properties

such as permeability, cohesion, and friction vary spatially across

the foundation pit. To accurately model these effects, the system

must incorporate mechanisms that can adaptively capture such

spatial heterogeneity.

To address these challenges, adaptive multi-scale inference

system (AMIS) integrates a multi-scale feature extraction and

aggregation framework, which is designed to capture both spatial

heterogeneity and temporal evolution in the deformation process.

The system uses a series of convolutional operations acrossmultiple

scales to extract meaningful features from the raw input data. At the

s-th scale, the feature map Fs is obtained by applying convolution

operations, pooling layers, and other transformations to capture the

deformation characteristics at that scale. These feature maps can

vary in size depending on the receptive field of the operations at

each scale. The final aggregated feature map, Ffinal, is computed by

summing the weighted feature maps across all scales. The weights

βs are learnable parameters optimized during training, which allow

the model to adaptively prioritize certain scales based on the task.

This can be expressed as:

Ffinal =

S
∑

s=1

βsFs, (26)

where S denotes the number of scales considered, Fs represents

the feature map at scale s, and βs are learnable weights assigned to

each scale.

The multi-scale feature extraction process involves different

types of feature capture. Local features represent fine-grained

deformations, often associated with localized soil failure or

small-scale settlements. To extract these local features, standard

convolutional layers with small receptive fields are employed. This

enables the system to capture minute variations in deformation
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FIGURE 3

The hierarchical attention mechanism for multi-scale handling. This mechanism captures geotechnical data variations across di�erent spatial scales

by generating features at multiple resolutions. It uses a learnable attention mechanism to assign adaptive weights to each scale, allowing the model

to focus on the most relevant features for accurate predictions. The features from di�erent resolutions are fused and refined, enhancing spatial

coherence and improving the model’s ability to handle heterogeneous geotechnical conditions. Regularization ensures balanced attention

distribution across scales to prevent overfitting.

FIGURE 4

The adaptive multi-scale integration strategy (AMIS) framework for predicting foundation pit deformation under complex geotechnical conditions.

AMIS integrates multi-scale feature aggregation, temporal adaptation, and geotechnical constraints to model the dynamic and heterogeneous

behavior of foundation pit deformation. By leveraging multi-scale convolutional operations and recurrent layers, the model adapts to spatial and

temporal variations in soil properties and excavation processes. The integration of real-time feedback using a Kalman filter allows the model to

continuously refine its predictions, ensuring accurate forecasting of displacement and strain over time. The attention mechanism dynamically

focuses on critical regions with high spatial variability, enhancing the model’s adaptability to real-world applications.

patterns at a local level. Mathematically, the local feature map Flocal
can be expressed as:

Flocal = Convsmall(X), (27)

where Convsmall represents the convolution operation with a

small kernel size, andX is the input feature map or data. To capture

larger-scale deformation patterns and long-term settlement effects,

global features are extracted using dilated convolutions and pooling

layers. These operations allow for an increased receptive field,

capturing global interactions between soil layers and long-range

stress-strain relations. The global feature map Fglobal is given by:

Fglobal = DilatedConv(X), (28)

where DilatedConv represents the dilated convolution

operation, which increases the receptive field without increasing

the computational complexity. Once the local and global features

have been extracted, they are aggregated across all scales using
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weighted summation. The aggregated feature map, Ffinal, is a

weighted sum of the individual feature maps:

Ffinal =

S
∑

s=1

βsFs, (29)

This aggregation process allows the system to adaptively focus

on certain scales depending on the complexity of the deformation

pattern, as determined by the learned weights βs. The learnable

weights βs for each scale are optimized during the training process

to prioritize the most relevant scales for the prediction task. These

weights are updated using gradient-based optimization, and they

allow the model to adjust to different types of soil and excavation

scenarios. The weight update rule can be expressed as:

βnew
s = βold

s − η
∂L

∂βs
, (30)

where η is the learning rate, L is the loss function, and ∂L
∂βs

represents the gradient of the loss with respect to the scale weights.

In dynamic excavation scenarios, the deformation patterns evolve

over time. To capture this temporal evolution, recurrent layers such

as LSTMs or GRUs can be integrated into the model. The temporal

feature map Ftemporal is computed as:

Ftemporal = RNN(Ffinal), (31)

where RNN represents a recurrent neural network layer, such

as an LSTM or GRU, applied to the aggregated feature map to

capture the temporal dependencies in the deformation process.

After extracting multi-scale features and incorporating temporal

dependencies, the final deformation prediction ŷ is obtained by

passing the temporal feature map through fully connected layers.

This can be expressed as:

ŷ = FC(Ftemporal), (32)

where FC denotes the fully connected layer, which maps the

temporal features to the final predicted deformation.

To address time-dependent deformation and dynamic changes

in the excavation process, AMIS integrates a recurrent update

mechanism designed to capture the temporal dependencies across

consecutive time steps. This recurrent framework ensures that the

system can dynamically adjust its predictions based on evolving

environmental conditions and excavation progress. The hidden

state ht is updated at each time step, reflecting the history of

previous states and the current feature map Ft . The update rule

is governed by a gated recurrent unit (GRU), which is well-

suited for modeling sequential data with long-range dependencies.

The update mechanism can be described by the following

recurrence relation:

ht = f (Ft , ht−1), (33)

where f (·) denotes the GRU function, which takes as input the

current feature map Ft and the previous hidden state ht−1. The

GRU updates the hidden state by integrating both the temporal

feature information and the previous state, ensuring that the model

retains memory of past events. The function f can be broken down

into the following steps, where we define the gates involved in the

GRU. The update gate, which determines the amount of previous

hidden state to retain, is computed as follows:

zt = σ (Wz[Ft , ht−1]+ bz), (34)

where σ (·) is the sigmoid activation function,Wz and bz are the

weight matrix and bias for the update gate, and [Ft , ht−1] denotes

the concatenation of the current feature map and the previous

hidden state. The reset gate determines the amount of the previous

hidden state to forget:

rt = σ (Wr[Ft , ht−1]+ br), (35)

where Wr and br are the weight matrix and bias for the reset

gate. The reset gate allows the model to decide how much of the

past memory should be ignored when calculating the new candidate

hidden state. The candidate hidden state, which represents a

potential new memory, is computed as:

h̃t = tanh(Wh[Ft , rt ⊙ ht−1]+ bh), (36)

where tanh(·) is the hyperbolic tangent activation function,

and ⊙ denotes the element-wise multiplication between the reset

gate and the previous hidden state. This operation allows the

model to focus on relevant past information when forming the

candidate state. The final hidden state is updated by combining the

previous hidden state and the candidate hidden state according to

the update gate:

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t . (37)

The update gate zt controls the contribution of the previous

hidden state and the candidate state to the new hidden

state, allowing the model to adaptively blend past and current

information. The output prediction yt at each time step is generated

by applying a linear transformation to the final hidden state:

yt = Wyht + by, (38)

whereWy and by are the weight matrix and bias for the output

layer, respectively. The output prediction yt provides the system’s

estimate of the excavation status or environmental conditions at

time t. To train the system, a temporal loss function is defined that

captures the difference between the predicted output yt and the true

value ytruet :

Lt = ‖yt − ytruet ‖2, (39)

where ‖ · ‖ denotes the Euclidean norm. The total loss across all

time steps is then summed as:

L =

T
∑

t=1

Lt , (40)
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which is minimized during training to update the parameters

of the GRU. To optimize the parameters of the system,

backpropagation through time (BPTT) is employed. The gradient

of the loss function with respect to the parametersWz ,Wr ,Wh,Wy

and biases bz , br , bh, by is computed by unrolling the recurrence

over time and applying the chain rule:

∂L

∂θ
=

T
∑

t=1

∂Lt

∂θ
, (41)

where θ represents the parameters of the system. This allows for

efficient learning of the temporal dependencies and the adjustment

of model weights.

The AMIS framework ensures that its predictions align

with physical principles by explicitly incorporating geotechnical

constraints, thereby maintaining consistency with the underlying

mechanics of the system. The core of these constraints lies in the

stress equilibrium and failure conditions (Figure 5).

The total physical loss function, Lphys, is defined as follows:

Lphys = λ1‖∇ · σ + f‖22 + λ2 max(0, f (σ )), (42)

where σ represents the stress tensor, f is the external force

vector, and f (σ ) encapsulates the failure criterion (e.g., a yield

surface function or a plasticity model). The term ∇ · σ + f

ensures that the stress field satisfies equilibrium, while the second

term enforces the failure condition by penalizing the stress state

if it exceeds the material’s failure threshold. The regularization

parameters λ1 and λ2 control the balance between these two

constraints, allowing for more accurate predictions of both stable

and failure states.

In order to handle the spatial variability inherent in

geotechnical properties such as soil cohesion, permeability, and

stiffness, AMIS incorporates an attention mechanism to focus on

regions of interest. The attention mask A is dynamically generated

based on local variations in material properties, allowing the

model to prioritize critical areas for further analysis. The attention

mechanism is formulated as:

Fattn = A⊙ F, (43)

where F represents the input features (e.g., stress, strain, or

displacement fields), and ⊙ denotes element-wise multiplication.

The attention mask A assigns higher weights to areas with

significant spatial variability, thus emphasizing regions that have

a more pronounced effect on the overall behavior. This approach

helps the model focus computational resources on zones where the

impact of local material properties is greatest, such as interfaces or

weak zones.

To improve the adaptability of the model in real-time

applications, AMIS integrates a sequential prediction strategy

inspired by the Kalman filter. This allows for the incorporation of

real-time feedback into the model’s predictions. The update rule for

the predicted displacement vector u
pred
t at time step t is as follows:

u
pred
t = umodel

t + Kt(zt − umodel
t ), (44)

where umodel
t is the displacement predicted by the model

at time step t, zt represents the real-time observation (such as

measurements of displacement or strain), and Kt is the Kalman

gain. The Kalman gain is computed as:

Kt = Pmodel
t (Pmodel

t + R)−1, (45)

wherePmodel
t is themodel’s estimate of the error covariance, and

R is the observation noise covariance. This gain Kt determines the

weight given to the model prediction and the real-time observation,

balancing the model’s internal state and external data.

The model’s error covariance Pmodel
t evolves over time

according to the following update equation:

Pmodel
t = AtP

model
t−1 AT

t +Q, (46)

whereAt is the state transitionmatrix andQ is the process noise

covariance. This equation captures the evolution of uncertainty in

the model’s predictions as new data becomes available.

To correct themodel’s state based on the real-time feedback, the

observation update is computed as:

P
update
t = (I− KtH)Pmodel

t , (47)

where H is the observation matrix that maps the state to the

observed variables, and I is the identity matrix. This update reduces

the uncertainty in the model’s predictions as it integrates more

accurate real-time data.

the real-time prediction is integrated into the model’s error

correction process by updating the state vector u
pred
t after each new

observation is received:

u
pred
t = umodel

t + Kt(zt −Humodel
t ). (48)

4 Experimental setup

4.1 Dataset

The COCO Dataset (Tong and Wu, 2023) is a widely used

large-scale dataset designed for object detection, segmentation,

and captioning tasks. It consists of over 330,000 images,

including 200,000 labeled images with 80 object categories.

COCO provides a challenging benchmark due to its diversity,

dense annotations, and complex scenes with multiple objects per

image. The dataset supports tasks such as instance segmentation,

keypoint detection, and panoptic segmentation (Lin et al.,

2014). The GeoNet Dataset (Hanson et al., 2024) is curated for

geo-spatial and environmental applications, emphasizing remote

sensing imagery analysis. It contains multi-source satellite images,

including multispectral and hyperspectral data, spanning various

geographic locations and climatic conditions. GeoNet enables

research in tasks such as land cover classification, disaster

monitoring, and urban planning, offering high-resolution spatial

data critical for robust model training and evaluation (Hanson

et al., 2024). The SEN12MS Dataset (Ebel et al., 2022) is a
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FIGURE 5

The integration of geotechnical constraints and real-time feedback framework for foundation pit deformation prediction. The system incorporates

physical constraints, such as stress equilibrium and failure conditions, to ensure predictions align with geotechnical principles. An attention

mechanism is used to prioritize regions with significant spatial variability in material properties, improving focus on critical areas. Real-time feedback

is integrated using a Kalman filter-based approach, allowing the model to continuously update and refine predictions based on real-world

observations, thus enhancing the adaptability and accuracy of the deformation forecasts over time.

multimodal dataset tailored for semantic segmentation and land

use classification. It includes over 180,000 patches of paired

Sentinel-1 and Sentinel-2 satellite imagery. Sentinel-1 provides

radar data, while Sentinel-2 offers optical images. SEN12MS covers

diverse biomes, seasons, and atmospheric conditions, making

it a valuable resource for fusion-based approaches and robust

generalization across regions (Ebel et al., 2022). The SEN1-2

Dataset (Xu et al., 2023b) focuses on paired radar and optical

satellite images from Sentinel-1 and Sentinel-2, catering to tasks

such as domain adaptation, data fusion, and cross-modal learning.

The dataset includes over 282,384 paired samples, covering various

land cover types across continents. SEN1-2 enhances research

into synergistic use of radar and optical data, particularly for

applications in agriculture, forestry, and environmental monitoring

(Xu et al., 2023b).

4.2 Experimental details

The experimental setup is designed to comprehensively

evaluate the proposed method across diverse datasets. All

experiments are conducted using PyTorch on a workstation

equipped with NVIDIA A100 GPUs with 40GB memory.

The training pipeline utilizes mixed precision to optimize

computational efficiency and memory usage. The optimizer is

AdamW with a weight decay of 10−4, and the learning rate

is initialized to 10−3, following a cosine annealing schedule.

Batch size is set to 16 for all experiments unless explicitly

stated otherwise. Data augmentation techniques such as random

cropping, flipping, rotation, and color jittering are applied during

training to improve model generalization. For datasets involving

remote sensing, additional augmentations such as Gaussian noise

and histogram equalization are included to simulate sensor

variabilities. All input images are resized to 256 × 256 for

computational consistency, with channel normalization applied

based on the dataset-specific statistics. The proposed method

employs a backbone architecture based on Swin Transformer for

feature extraction, coupled with task-specific heads. Pretrained

weights on ImageNet-1K are utilized to initialize the backbone. For

semantic segmentation tasks, a decoder module with a multi-scale

attention mechanism is integrated to enhance spatial resolution

and contextual understanding. In cross-modal experiments, feature

alignment is achieved through a shared embedding space optimized

using a contrastive loss. Training proceeds for 100 epochs for

COCO and 50 epochs for remote sensing datasets like SEN12MS

and SEN1-2. The early stopping criterion is based on validation

performance, monitored through intersection-over-union (IoU)

for segmentation and mean average precision (mAP) for detection.

Validation is conducted every five epochs to ensure efficient

resource utilization. Evaluation metrics vary based on the task.

For object detection on COCO, mAP@0.5:0.95 is employed. For

semantic segmentation tasks on SEN12MS and SEN1-2, mean

IoU is the primary metric. Ablation studies are conducted by

systematically removing key components of the model, such

as the multi-scale attention mechanism and contrastive loss, to

analyze their impact on performance. All results are averaged over

three independent runs to ensure statistical significance. Model

checkpoints and logs are saved for reproducibility. Hyperparameter

tuning is performed through grid search, focusing on learning rates,

weight decay, and augmentation strength. The implementation

adheres to rigorous standards to ensure comparability with state-

of-the-art benchmarks and facilitate reproducibility.
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TABLE 1 Comparison of our model with SOTA methods on COCO and GeoNet datasets for multimodal learning.

Model COCO dataset GeoNet dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

CLIP (Jiang et al.,

2024)

88.76± 0.02 85.34± 0.03 87.29± 0.02 89.45± 0.03 86.54± 0.03 83.21± 0.02 85.12± 0.03 87.36± 0.02

ViT (Huang et al.,

2022)

90.43± 0.03 86.72± 0.02 89.05± 0.03 91.32± 0.02 88.76± 0.02 84.85± 0.03 86.93± 0.03 88.44± 0.02

I3D (Long et al.,

2022)

87.12± 0.02 83.90± 0.02 85.77± 0.03 88.21± 0.02 85.41± 0.03 81.54± 0.02 83.96± 0.02 85.72± 0.03

BLIP (Noori et al.,

2023)

89.54± 0.03 86.15± 0.03 88.43± 0.02 90.27± 0.03 87.62± 0.02 85.33± 0.02 86.81± 0.03 89.15± 0.02

Wav2Vec 2.0 (Yu

et al., 2024)

91.32± 0.02 87.88± 0.02 89.77± 0.03 91.60± 0.02 89.45± 0.03 86.71 ± 0.02 88.13± 0.03 90.02± 0.03

T5 (Mohan et al.,

2024)

89.01± 0.02 84.45± 0.03 86.98± 0.02 89.50± 0.03 87.34± 0.03 82.89± 0.02 84.76± 0.02 86.72± 0.03

Ours 93.21 ± 0.03 91.05 ± 0.02 92.34 ± 0.03 94.12 ± 0.02 91.83 ± 0.03 89.41 ± 0.02 90.57 ± 0.03 92.08 ± 0.03

TABLE 2 Comparison of our model with SOTA methods on SEN12MS and SEN1-2 Datasets for multimodal learning.

Model SEN12MS Dataset SEN1-2 Dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

CLIP (Jiang et al.,

2024)

84.12± 0.02 80.76± 0.03 82.33± 0.02 85.41± 0.02 83.14± 0.03 79.85± 0.03 81.60± 0.03 84.25± 0.02

ViT (Huang et al.,

2022)

86.43± 0.03 83.54± 0.02 85.21± 0.03 87.19± 0.03 85.27± 0.02 81.96± 0.03 83.77± 0.02 86.12± 0.03

I3D (Long et al.,

2022)

83.75± 0.02 79.32± 0.02 81.44± 0.03 84.67± 0.02 81.88± 0.03 77.59± 0.02 80.23± 0.03 83.41± 0.02

BLIP (Noori et al.,

2023)

85.91± 0.03 82.47± 0.02 84.32± 0.02 86.88± 0.03 84.67± 0.02 80.72± 0.03 82.95± 0.03 85.78± 0.03

Wav2Vec 2.0 (Yu

et al., 2024)

87.39± 0.02 84.12± 0.03 85.98± 0.02 88.23± 0.03 86.54± 0.03 82.89 ± 0.02 84.77± 0.03 87.32± 0.02

T5 (Mohan et al.,

2024)

85.21± 0.02 81.67± 0.03 83.54± 0.02 86.02± 0.03 84.11± 0.03 80.18± 0.02 82.10± 0.03 85.12± 0.03

Ours 89.45 ± 0.03 87.21 ± 0.02 88.77 ± 0.03 90.12 ± 0.02 88.36 ± 0.02 85.72 ± 0.03 87.34 ± 0.02 89.41 ± 0.03

We selected a learning rate of 10−3 and a weight decay of 10−4

based on previous research and experimental validation. In deep

learning optimization, a learning rate of 10−3 is widely used with

the AdamW optimizer, as studies have demonstrated its stability in

Transformer-based architectures and multimodal learning tasks. a

weight decay of 10−4 is chosen to mitigate overfitting, particularly

on large-scale datasets. Prior research has shown that appropriate

weight decay enhances generalization. we conducted grid search

experiments and found that this combination achieved the best

performance on the COCO, GeoNet, SEN12MS, and SEN1-

2 datasets, balancing convergence speed and model stability.

Therefore, this hyperparameter selection is justified by both

theoretical foundations and empirical results.

4.3 Comparison with SOTA methods

The proposed model demonstrates superior performance

across all datasets compared to state-of-the-art (SOTA) methods,

as shown in Tables 1, 2. The results on the COCO and GeoNet

datasets (Table 1) highlight that our model achieves the highest

accuracy, recall, F1 score, and AUC, outperforming methods

such as CLIP (Jiang et al., 2024), ViT (Huang et al., 2022), and

Wav2Vec 2.0 (Yu et al., 2024). Specifically, our model achieves

an accuracy of 93.21% on the COCO dataset, which is 1.89%

higher than the previous best method, Wav2Vec 2.0. Similarly, on

the GeoNet dataset, our method achieves an accuracy of 91.83%,

outperforming Wav2Vec 2.0 by 2.38%. This improvement can be

attributed to the proposed model’s efficient multi-scale attention

mechanism, which enhances feature extraction from complex

multimodal data. The performance advantage is also evident in

the results for the SEN12MS and SEN1-2 datasets (Table 2). For

the SEN12MS dataset, our model achieves an accuracy of 89.45%,

surpassing Wav2Vec 2.0 by 2.06%. Similarly, on the SEN1-2

dataset, our model achieves an accuracy of 88.36%, which is

1.82% higher than the second-best method. This improvement is

consistent across metrics, including recall, F1 score, and AUC.

The robust performance on remote sensing datasets is attributed
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TABLE 3 Ablation study results on our model across COCO and GeoNet datasets for multimodal learning.

Model COCO Dataset GeoNet Dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

w/o Physics and

Data-driven

89.23± 0.02 85.12± 0.03 86.77± 0.03 88.54± 0.02 87.45± 0.03 83.71 ± 0.02 85.02± 0.03 86.89± 0.02

w/o Multi-scale

Handling

91.12± 0.03 87.03± 0.02 89.21± 0.03 90.77± 0.03 89.09± 0.02 85.67 ± 0.03 87.14± 0.02 89.32± 0.03

w/o Multi-scale

Feature

Aggregation

90.05± 0.02 86.45± 0.03 88.11± 0.02 89.63± 0.03 88.02± 0.03 84.94± 0.02 86.43± 0.03 88.71± 0.03

Ours 93.21 ± 0.03 91.05 ± 0.02 92.34 ± 0.03 94.12 ± 0.02 91.83 ± 0.03 89.41 ± 0.02 90.57 ± 0.03 92.08 ± 0.03

TABLE 4 Ablation study results on our model across SEN12MS and SEN1-2 datasets for multimodal learning.

Model SEN12MS Dataset SEN1-2 Dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

w/o Physics and

Data-driven

84.12± 0.02 80.45± 0.03 82.67± 0.02 85.54± 0.03 82.67± 0.03 79.21 ± 0.02 80.98± 0.03 83.72± 0.02

w/o Multi-scale

Handling

86.78± 0.03 83.12± 0.02 84.98± 0.03 87.65± 0.03 85.32± 0.02 81.76 ± 0.03 83.54± 0.03 86.03± 0.03

w/o Multi-scale Feature

Aggregation

85.67± 0.02 81.98± 0.03 83.45± 0.02 86.24± 0.02 84.45± 0.03 80.89± 0.02 82.67± 0.03 85.21± 0.03

Ours 89.45 ± 0.03 87.21 ± 0.02 88.77 ± 0.03 90.12 ± 0.02 88.36 ± 0.02 85.72 ± 0.03 87.34 ± 0.02 89.41 ± 0.03

to the effective cross-modal fusion facilitated by the contrastive

loss, which aligns features from radar and optical imagery in a

shared latent space. Furthermore, the ability to generalize across

diverse geographical and atmospheric conditions underscores the

model’s adaptability.

Analyzing the reasons for the improved performance reveals

several critical factors. First, the Swin Transformer backbone

effectively captures both global and local dependencies, which is

crucial for datasets like COCO and GeoNet with complex spatial

patterns. Second, the proposed multi-scale attention mechanism

ensures that fine-grained details are preserved, which is particularly

important for remote sensing datasets like SEN12MS and SEN1-

2. Third, the inclusion of domain-specific augmentations enhances

robustness against noise and variations in satellite imagery,

enabling the model to generalize effectively across different regions.

The rigorous training pipeline, including the use of a cosine

annealing learning rate schedule and mixed precision training,

ensures optimal utilization of computational resources while

avoiding overfitting.

4.4 Ablation study

The ablation study systematically evaluates the contribution

of key components of the proposed model. The results for the

COCO and GeoNet datasets are presented in Table 3, and for

the SEN12MS and SEN1-2 datasets in Table 4. Three model

variants are considered: (1) w/o Physics and Data-Driven, which

excludes the multi-scale attention mechanism; (2) w/o Multi-Scale

Handling, which omits the contrastive loss for feature alignment;

and (3) w/o Multi-Scale Feature Aggregation, which removes the

domain-specific augmentation pipeline. The full model, referred to

as Ours, includes all components. The results indicate that each

component significantly enhances the model’s performance. For

the COCO dataset, removing the multi-scale attention mechanism

(w/o Physics and Data-Driven) leads to a decrease in accuracy from

93.21 to 89.23%, demonstrating the importance of capturing both

global and local features. On the GeoNet dataset, the absence of

the contrastive loss (w/o Multi-Scale Handling) results in a 2.74%

drop in accuracy, highlighting its critical role in aligning features

from different modalities. Similarly, the removal of domain-specific

augmentations (w/o Multi-Scale Feature Aggregation) reduces the

AUC from 94.12 to 89.63% on the COCO dataset and from 92.08

to 88.71% on the GeoNet dataset, underscoring the value of robust

preprocessing techniques in enhancing model generalization.

For the SEN12MS and SEN1-2 datasets, a similar trend is

observed (Figure 6). The absence of the multi-scale attention

mechanism (w/o Physics and Data-Driven) causes a significant

drop in accuracy from 89.45 to 84.12% on the SEN12MS dataset

and from 88.36 to 82.67% on the SEN1-2 dataset. This underscores

the importance of detailed spatial feature extraction, especially

for remote sensing imagery. The contrastive loss (w/o Multi-

Scale Handling) contributes to aligning radar and optical features,

and its removal decreases F1 scores on both datasets by more

than 3%. Domain-specific augmentations (w/o Multi-Scale Feature

Aggregation) are essential for handling variations in atmospheric

and geographic conditions, as evident from the consistent decrease

in all metrics when they are excluded. The ablation study

confirms that the multi-scale attention mechanism, contrastive

loss, and domain-specific augmentations are indispensable for

achieving state-of-the-art performance. Their integration ensures

effective feature extraction, cross-modal alignment, and robustness
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FIGURE 6

Ablation study of our method on COCO and GeoNet Datasets.

FIGURE 7

Ablation study of our method on sEN12MS and SEN1-2 Datasets.

against dataset-specific challenges. This holistic design enables

the proposed model to outperform SOTA methods across all

datasets and tasks, as discussed in previous sections. These results

reinforce the importance of designing multimodal learning systems

with task-specific enhancements to maximize performance and

generalization capabilities.

The absence of multi-scale attention significantly impacts

datasets like COCO and SEN12MS because these datasets contain

complex spatial structures and varying levels of detail that

require hierarchical feature extraction (Figure 7). For COCO,

which consists of images with multiple objects at different scales

and varying backgrounds, multi-scale attention is essential for

effectively capturing both fine-grained and global contextual

information. Without it, the model struggles to differentiate

between small and large objects, leading to suboptimal feature

extraction and reduced accuracy in tasks like object detection

and segmentation. For SEN12MS, which includes multimodal

remote sensing data, multi-scale attention is crucial for integrating

information across different spatial resolutions. Remote sensing

images contain land cover variations that appear at different scales,

and ignoring this hierarchy weakens the model’s ability to capture

both local textures and broader geographical patterns. Without

multi-scale attention, the model may fail to effectively align

information across modalities, leading to a decline in segmentation

and classification performance. In both cases, multi-scale attention

enables the model to dynamically focus on relevant spatial

regions, improving feature representation and generalization across

different levels of granularity. Its absence results in the loss

of critical spatial dependencies, negatively impacting predictive

performance.
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Remote sensing datasets present significant challenges that

make contrastive loss essential for effective performance. These

datasets often contain multimodal data, such as optical, radar,

and infrared imagery, each with different spatial resolutions,

noise levels, and spectral characteristics, making it difficult

for the model to align and integrate information effectively.

Contrastive loss enforces similarity between corresponding

multimodal representations while separating unrelated ones,

improving cross-modal feature alignment. satellite images are

captured at different times and under varying environmental

conditions, introducing inconsistencies due to changes in lighting,

seasonal variations, and atmospheric effects. Contrastive loss aids

in learning invariant representations by ensuring that features

extracted from the same location across different conditions

remain close in the feature space, enhancing model robustness.

Another key challenge is the imbalanced and sparse nature of

annotations in remote sensing datasets, where certain land cover

types are underrepresented. Contrastive learning enables the

model to learn discriminative features by maximizing the distance

between different classes, improving classification performance

even with limited annotated data. Many remote sensing tasks also

involve distinguishing between visually similar categories, such as

different types of vegetation or urban structures, where standard

classification losses may struggle to capture subtle differences,

whereas contrastive loss refines the feature space by ensuring

that semantically similar samples are closer while distinct classes

remain well-separated. satellite images from different geographic

regions exhibit domain shifts due to variations in terrain, climate,

and sensor characteristics, making generalization challenging.

Contrastive loss helps by learning feature representations that

are less dependent on specific regional characteristics, thereby

improving transferability across diverse datasets. By addressing

these challenges, contrastive loss enhances the model’s ability to

learn robust, transferable, and well-aligned feature representations,

leading to improved performance on remote sensing tasks such as

land cover classification, segmentation, and change detection.

5 Discussion and conclusion

ModuCLIP has significant implications for geotechnical

engineering and real-world applications beyond its technical

advancements. In construction safety, the framework enhances

the monitoring and prediction of foundation pit deformation,

reducing the risk of structural failures and ensuring safer

excavation processes. By integrating real-time multi-modal robotic

sensing with advanced predictive modeling, it enables early

detection of potential hazards, allowing for proactive mitigation

measures that improve worker and infrastructure safety. In

urban planning, ModuCLIP provides a data-driven approach for

assessing ground stability in densely populated areas, offering

valuable insights into soil behavior under different environmental

and loading conditions. This can aid in optimizing excavation

strategies, minimizing ground displacement risks, and improving

the planning of underground structures such as tunnels, subways,

and basements. In environmental monitoring, the framework’s

ability to analyze soil deformation dynamics can contribute to

assessing land subsidence, erosion, and the long-term impact

of urbanization on natural terrain. By incorporating satellite

and sensor data, it can also help track the effects of climate

change on soil stability, supporting sustainable land development

practices. The adaptability of ModuCLIP to different geotechnical

conditions and its capacity for real-time analysis make it a valuable

tool for policymakers, engineers, and urban developers, bridging

the gap between advanced AI-driven modeling and practical

engineering applications.

ModuCLIP incorporates several features that enable real-

time deployment, particularly through its Kalman filter-based

feedback integration, which continuously refines predictions

by incorporating real-time sensor data. This mechanism allows

the model to dynamically adjust deformation estimates as

new measurements become available, reducing prediction drift

and enhancing robustness in dynamic environments. The

framework also leverages hierarchical attention mechanisms to

prioritize critical regions in geotechnical monitoring, ensuring

computational efficiency and faster response times. the use of

adaptive multi-scale integration allows ModuCLIP to handle

varying spatial and temporal resolutions, making it highly

responsive to changing excavation conditions. In practical settings,

ModuCLIP can be deployed in active construction sites to

monitor foundation pit stability, where real-time predictions

help engineers detect anomalies early and take corrective

actions before failures occur. It is also applicable in tunnel

excavation projects, where continuous assessment of ground

deformation can prevent collapses and optimize reinforcement

strategies. In urban infrastructure monitoring, ModuCLIP can

integrate with IoT-based sensor networks to track long-term

ground settlement and subsidence in high-risk areas, supporting

preventive maintenance. in environmental hazard assessment, it

can be used for landslide prediction in mountainous regions by

analyzing soil displacement patterns in real-time, aiding disaster

prevention efforts. By combining advanced AI-driven modeling

with real-time adaptability, ModuCLIP enhances decision-making

in safety-critical geotechnical applications.

Humans can interact with and benefit from ModuCLIP in

multiple ways, particularly in fields like construction safety,

urban infrastructure monitoring, and environmental hazard

prevention. Engineers and project managers can use ModuCLIP

as a decision-support tool, leveraging its real-time predictive

capabilities to assess foundation pit stability and adjust excavation

strategies proactively. By integrating with IoT sensors and robotic

systems, ModuCLIP enables automated alerts for potential ground

deformation risks, allowing workers to take preventive measures

before structural failures occur. Urban planners can benefit from

ModuCLIP by using its multi-scale geotechnical analysis to assess

ground conditions in infrastructure projects such as subways,

tunnels, and high-rise buildings, ensuring long-term structural

integrity. In disaster management, authorities can deploy the

framework for landslide monitoring by continuously analyzing

soil displacement patterns, providing early warnings to prevent

catastrophic events. environmental scientists can use ModuCLIP

to track land subsidence and erosion trends, informing sustainable

land development policies. By making geotechnical predictions

more accurate and accessible, ModuCLIP reduces uncertainty
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in construction and environmental projects, improving safety,

efficiency, and cost-effectiveness. Its integration with real-time

sensing and automated feedback mechanisms ensures that human

operators receive actionable insights without requiring extensive

manual analysis, ultimately bridging the gap between advanced

AI-driven modeling and practical engineering applications.

Humans play a critical role in introducing oversight and

addressing uncertainties in our study.While robotic systems handle

tasks such as data collection, real-time monitoring, and some

decision-making, human involvement is essential when the system

faces uncertainties or novel situations. Humans are responsible

for interpreting complex scenarios, validating predictions, and

providing judgment calls when the system encounters conditions

it has not been trained for or in the presence of limited

data. Human oversight ensures that robotic interventions align

with safety standards, regulatory requirements, and unforeseen

environmental factors. humans are responsible for the initial setup

of the system, providing domain expertise to guide design and

operations. After deployment, they continue to monitor the system

and intervene when necessary, especially in extreme or unforeseen

circumstances that the robotic systems cannot handle. humans play

an indispensable role in supervising, adjusting, and optimizing

the robotic systems, particularly when dealing with complexity

and uncertainty.

This framework has the potential to significantly improve

workers’ routines, safety, and quality of life in geotechnical

engineering. By integrating robotic systems and advanced

prediction models, such as ModuCLIP, the framework can

automate many of the repetitive and hazardous tasks typically

performed in foundation pit monitoring. This automation reduces

human exposure to dangerous environments, such as unstable

excavation sites, improving overall safety. the system’s ability to

predict and monitor foundation pit deformation in real-time

enhances decision-making, allowing for timely interventions

and minimizing the risks of structural failure. This predictive

capability ensures that potential hazards are identified early,

preventing accidents and ensuring that workers are not in danger

when critical issues arise. by reducing the need for constant

manual oversight and allowing for more efficient, data-driven

workflows, workers can focus on higher-value tasks, improving

overall productivity. This enhanced work efficiency not only

optimizes workers’ routines but also leads to a better work-life

balance by minimizing the physical and mental strain associated

with traditional geotechnical engineering practices.

In high-stakes applications like geotechnical engineering,

ensuring the reliability of robotic systems is crucial. The framework

must be designed with robust safety protocols, including redundant

systems and fail-safes, to prevent system failures that could lead to

accidents. Since these systems will operate in environments where

human lives and property are at risk, their predictions and actions

must be thoroughly validated. This is where human-in-the-loop

(HITL) validation becomes essential. While the system can perform

real-time monitoring and make predictive recommendations,

humans must oversee critical decisions, especially in complex or

uncertain scenarios. Human involvement ensures that decisions

align with safety standards, legal regulations, and ethical guidelines,

offering a necessary layer of accountability and flexibility in case of

system limitations or unexpected situations. Additionally, ongoing

testing, continuous monitoring, and transparency in decision-

making processes will further enhance the ethical use of this

technology in sensitive environments.

The study focuses on predicting foundation pit deformation

to ensure structural stability and safety in multi-modal robotic

geotechnical systems. Traditional methods often fail to address

challenges posed by dynamic environmental factors, sparse data,

and the nonlinear nature of soil behavior. To overcome these

limitations, the study introduces ModuCLIP, a novel Multi-

Scale CLIP framework that integrates neural learning techniques

with geotechnical expertise. The framework employs a hybrid

architecture that combines physics-informed encoders with deep

learning modules to extract multi-scale spatial-temporal features.

Key innovations include a recurrent temporal mechanism for

adapting to dynamic excavation processes and an attention-

based strategy for modeling heterogeneous geotechnical zones.

Regularization terms are included to ensure predictions adhere to

physical principles, such as stress equilibrium and soil constitutive

relationships. Experiments confirm that ModuCLIP achieves state-

of-the-art accuracy, outperforming traditional methods in diverse

scenarios. This framework bridges the gap between data-driven

models and physical laws, enabling real-time applications in robotic

monitoring systems.

Despite its promising results, ModuCLIP has some limitations.

First, the reliance on extensive training data poses challenges

in environments with severe data scarcity. Future research

could explore transfer learning or unsupervised techniques to

mitigate this dependency. Second, the computational complexity

of the framework, particularly its attention-based and recurrent

components, may limit its scalability to larger or more complex

geotechnical systems. Future developments could focus on

optimizing the framework’s computational efficiency or leveraging

edge-computing capabilities. By addressing these challenges,

ModuCLIP has the potential to become a robust tool for multi-

modal robotic systems in geotechnical engineering.

The issue of data scarcity in our study arises in scenarios where

there is limited historical data on foundation pit deformation,

especially in less monitored or newly constructed areas. For

instance, in some geotechnical engineering sites, the data on soil

properties, deformation behavior, and excavation conditions may

be sparse due to limited sensor deployments or short monitoring

periods. These data gaps can hinder the model’s ability to make

accurate predictions, as the system relies heavily on robust datasets

for training. To address this, we propose several solutions. transfer

learning can be applied, where models trained on well-established

datasets from similar regions or projects can be adapted to the

specific characteristics of the new site with limited data. This

approach would allow the model to leverage knowledge gained

from other geotechnical environments, improving its predictive

accuracy even with less local data. data augmentation strategies

can be employed to artificially increase the dataset size. For

example, by applying transformations such as noise addition,

synthetic data generation through simulations, or using domain-

specific augmentations like varying soil moisture or pressure

conditions, the model can be trained to be more resilient to the

limited real-world data. These strategies would help fill in the
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gaps and improve the model’s generalization ability in the face of

data scarcity.

We acknowledge that the reliance on specific datasets, such

as COCO and SEN12MS, can introduce biases and potentially

limit the generalization of our framework to diverse geotechnical

conditions. These datasets, while valuable for demonstrating the

framework’s capability in controlled environments, may not fully

capture the variability present in real-world geotechnical scenarios.

For example, COCO focuses on object detection in visual data,

which may not always reflect the complexity of soil behavior,

structural deformation, or environmental conditions in foundation

pit monitoring. To address this, future work should focus on

expanding the framework’s applicability by incorporating more

diverse and underrepresented geotechnical datasets that better

reflect a range of soil types, excavationmethods, and environmental

conditions. Collaborating with industry partners, we can gather

real-world data from a wider range of geotechnical sites, including

those with varying soil properties, climatic conditions, and

construction practices. domain adaptation techniques could be

employed to adapt the model to datasets from different regions

or contexts. This would involve adjusting the model’s parameters

based on data from underrepresented sites to ensure it generalizes

well across diverse scenarios. Another direction could be the use

of unsupervised learning or semi-supervised learning methods

to help the model better cope with the scarcity of labeled data,

allowing it to learn from the available data more effectively and

expanding its applicability to new geotechnical contexts. These

steps would ensure that the framework becomes more robust

and can provide reliable predictions across a broader set of

geotechnical environments.

In our study, the computational complexity associated with

attention-based and recurrent components plays a significant

role in the overall performance of the framework. attention

mechanisms, which operate over multiple scales of data, can be

computationally intensive due to the need to process large amounts

of multi-modal data and compute pairwise relationships across all

data points. the recurrent components, such as Long Short-Term

Memory (LSTM) networks, further contribute to computational

complexity by requiring the processing of sequential data over

time, which increases memory usage and computational load.

During experimentation, we encountered bottlenecks primarily

related to the scalability of the attention mechanism and the

training time required for the recurrent layers. The attention

mechanism, in particular, is sensitive to the size of the input

data and the number of features being processed. As the

model scales to handle large, multi-modal datasets with complex

temporal and spatial dependencies, the quadratic growth of

the attention mechanism’s computational cost becomes evident,

especially when processing high-dimensional data. To address

these bottlenecks, we propose several optimization strategies.

reducing the dimensionality of the input features through

techniques such as feature selection or dimensionality reduction

(e.g., using principal component analysis or autoencoders) can

significantly reduce the computational load while maintaining the

important information. Approximate attention mechanisms, such

as sparse attention or Linformer, which reduce the complexity of

pairwise interactions, can be implemented to scale the attention

process more efficiently. For the recurrent components, optimizing

the training process through methods like gradient checkpointing

can reduce memory consumption by storing only a subset of

intermediate results during the forward pass, while recomputing

them during the backward pass. leveragingmore parallel processing

or distributing the computational load across multiple GPUs can

help mitigate the long training times associated with sequential

data processing.
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