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Multi-scale image edge detection
based on spatial-frequency
domain interactive attention

Yongfei Guo*, Bo Li, Wenyue Zhang and Weilong Dong

Xi’an Jieda Measurement & Control Co., Ltd., Xi’an, China

Due to the many di�culties in accurately locating edges or boundaries in images

of animals, plants, buildings, and the like with complex backgrounds, edge

detection has become one of themost challenging tasks in the field of computer

vision and is also a key step in many computer vision applications. Although

existing deep learning-based methods can detect the edges of images relatively

well, when the image background is rather complex and the key target is small,

accurately detecting the edge of the main body and removing background

interference remains a daunting task. Therefore, this paper proposes a multi-

scale edge detection network based on spatial-frequency domain interactive

attention, aiming to achieve accurate detection of the edge of the main target

on multiple scales. The use of the spatial-frequency domain interactive attention

module can not only perform significant edge extraction by filtering out some

interference in the frequency domain. Moreover, by utilizing the interaction

between the frequency domain and the spatial domain, edge features at di�erent

scales can be extracted and analyzed more accurately. The obtained results

are superior to the current edge detection networks in terms of performance

indicators and output image quality.
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1 Introduction

The edge information of images plays an important role in image understanding

and analysis (Zhang and Shui, 2015; Jing et al., 2022a). In natural images, due to

various complex situations such as large background interference and small main targets,

accurately obtaining edges from images is undoubtedly a huge challenge in computer vision

tasks (Romani et al., 2019; Shui and Zhang, 2012). With the continuous development of

deep learning technology, it has shown strong potential and advantages in handling tasks

related to image edge extraction.

Edge detection refers to an operation that extracts the contours of different objects

and automatically ignores other details (Jing et al., 2022b; Zhang et al., 2017; Zhang and

Sun, 2020). It can often provide important information in other image tasks, such as

object detection (Amit et al., 2021), corner detection (Zhang and Shui, 2015; Zhang W.

et al., 2023), image segmentation (Ghandorh et al., 2022), object tracking (Zhang and Sun,

2019), and image reconstruction (Li et al., 2023). These visual tasks all need to extract the

boundaries of objects or perceive obvious edges from the original image. Therefore, only

by stably detecting the details of object edges in an image can practical tasks be effectively

completed. Traditional edge detection algorithms such as edge detection methods based

on active contours (Cai et al., 2018; Ma et al., 2024) and edge detection methods based

on multi-scale structures (Cui et al., 2021; Li et al., 2019; Zhang et al., 2019, 2014).
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Traditional edge detection methods rely on mathematical methods.

When designing these methods, the attribute information of edges

in the image needs to be considered and then corresponding

mathematical methods are further used for processing in order

to obtain the edge information of objects more accurately. Deep

learning-based methods mainly use the feature extraction ability

of convolutional neural networks to learn the features of various

objects in the image and analyze various feature representations to

obtain the edge information of objects in image features.

Researchers utilize the feature extraction capabilities of

convolutional neural networks such as VGG (Simonyan and

Zisserman, 2014), ResNet (He et al., 2016; Liao et al., 2025),

and other backbone networks (Zhang et al., 2024; Ren et al.,

2024; Wang et al., 2024; Lei et al., 2024) to design multiple deep

learning architectures for object edge detection (Al-Amaren et al.,

2021; Park et al., 2020). Moreover, multi-scale information in edge

detection is very important. Some methods that utilize multi-

scale information (Dong et al., 2022; Ma et al., 2020; Qiu et al.,

2021) are applied to image processing tasks. In Dong et al. (2022),

using multi-scale edge information for auxiliary training can better

complete tasks such as image compression. In Ma et al. (2020),

edge detection is elaborately described as edge detection, object

contour detection, and semantic edge detection. Among them, edge

detection mainly extracts the edges in the input image by relying on

low-level, fine-grained features. Object contour detection locates

the edges and suppresses those edges that do not belong to

the object contour, usually requiring low-level and middle-level

features. And semantic edge detection, that is, extracting object

boundaries and classifying them, needs to cover features of all

levels. This means that in edge detection, to achieve different results

for different task goals, the influence of features at different levels

must be considered.

The methods described above all start from the spatial domain

information of images. However, images in the frequency domain

space can also easily filter out interference and further enhance

the edge information of the main body. Therefore, combining the

spatial and frequency domains, this paper proposes a multi-scale

edge detection network with spatial-frequency domain interactive

attention (SFIA-MSNet) for accurate and stable detection of object

edges in images. Two main modules are designed. The spatial-

frequency domain interactive attention module can suppress the

interference information in the image in the frequency domain

and obtain its edge frequency information in the frequency

domain, obtain the edge features of the image enhanced in the

frequency domain, and interact with the original image in the

spatial domain, making the object edges of the spatial domain

image more significant and obtaining a higher-quality edge feature

representations, so that it is easier to be detected. The multi-scale

module mainly obtains the feature representations of the enhanced

features at different scales, which can reflect more fine-grained

edge information. After experiments on multiple datasets such

as BSDS500 (Arbelaez et al., 2010), NYUDV2 (Silberman et al.,

2012), and Multicue (Mély et al., 2016), and comparison with the

most advanced methods, the results obtained using the proposed

architecture are more accurate in quality and precision and are

superior to all methods.

The chapter arrangement of this paper is as follows. Section

2 introduces related work. Section 3 presents the proposed edge

detection method. Section 4 describes the settings and results of

the experiment and analyzes and discusses them. Section 5 is

the conclusion.

2 Related work

Edge detection has always been able to provide key information

in many image processing tasks. Its methods are mainly divided

into two categories: traditional manual edge detection and deep

learning-based edge detection.

2.1 Traditional edge detection

Traditional edge detection algorithms are usually used for

the edge detection of simple objects because they occupy less

computing resources. The active contour method can detect

edges in images more accurately with the help of a reasonable

mathematical model. Cai et al. (2018) proposed an adaptive scale

active contour model (ASACM) based on image entropy and a

semi-naive Bayes classifier to achieve simultaneous segmentation

field estimation. ASACM first constructs an adaptive scale operator

and adjusts the scale according to the degree of non-uniformity

of image intensity. Secondly, through the improved bias field

estimation term, a dependent membership function is assigned

to each pixel to effectively estimate the bias field. Finally, a new

piecewise polynomial penalty term is introduced to avoid time-

consuming reinitialization and the instability of traditional penalty

terms. Ma et al. (2024) proposed an active contour model based

on the Laplacian operator (LOACM). LOACM combines a global

pre-fitting function constructed by using the second-order gradient

information of the image with an adaptive boundary indicator

function to construct a hybrid model for accurately detecting the

edge information of the image.

Multi-scale information also plays a very important role in

object edge detection. Different scales can further describe the

edge information of an image. Cui et al. (2021) proposed a multi-

scale adaptive image edge detector. Firstly, a multi-scale pyramid

image is constructed. The gradient map and standard deviation

map are calculated by utilizing the characteristics of the gradient

and local gradient difference. Candidate edges are detected through

pixel-by-pixel detection and weighted fusion. Finally, a binarized

edge map is obtained through adaptive linking, which improves

detection accuracy. In Li et al. (2019), proposed a method to obtain

edge maps by using multi-scale anisotropic Gaussian kernels. The

directional derivative is introduced to obtain multi-scale local

intensity changes. Secondly, the multi-scale edge intensity map

is fused to solve the contradiction between noise robustness and

accurate edge extraction. Finally, the fused map is embedded in the

Canny framework to obtain edge contours.

When the anisotropic diffusion model is used in image

edge detection, it can obtain the attribute information of the

same position from different directions, and then can more

accurately describe the edge information in the image. Guo

et al. (2018) proposed an improved speckle reducing anisotropic

diffusion (SRAD) method. SRAD constructs a new edge detection

operator by using weighted Euclidean distance. This operator
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can adaptively distinguish homogeneous and heterogeneous image

regions, effectively generate anisotropic diffusion coefficients for

each image pixel, and filter each pixel on different scales to obtain

more accurate edge information. In Gupta and Lamba (2021), a

new diffusion coefficient is proposed for the anisotropic diffusion

model, which has a high convergence speed and image-dependent

threshold parameters. This method effectively suppresses step

artifacts and avoids edge blurring, and performs excellently in noise

removal and edge preservation.

Researchers have also proposed a series of extensive methods

by leveraging frequency domain information. In Zhang et al.

(2022), combined the threshold denoising method of wavelet

neural networks for edge detection. This method retains more real

information and improves the impact of noise on edge images.

In addition, Zheng et al. (2023) introduced an edge detection

method based on a two-dimensional discrete cosine transform and

frequency domain. It combines frequency domain filtering with

anisotropic gradient operator and can extract the edge information

of unknown objects in the case of an under-sampling rate.

2.2 Deep learning edge detection

With the development of computing power and deep learning,

deep learning-based edge detection methods are currently more

cutting-edge technologies. Through the autonomous learning

ability of computers, edges in images can be quickly and accurately

detected without the need to construct a mathematical model.

Among them, the attention method is introduced in various image

tasks, greatly improving the completion degree of each task. Liu

et al. (2022) proposed an edge attention network (EdgeAtNet).

When processing low-level features, EdgeAtNet inserts a global

view attention block at the bottleneck of the shallow network

to capture the long-range dependence of edge features. When

processing high-level features, local focus attention is designed to

achieve a clear boundary representation. Zhang J. et al. (2023)

proposed an attention-guided edge refinement network (AERNet).

AERNet uses a global context feature aggregation module to

aggregate the information obtained from multi-layer context

features. Combined with an attention decoding block guided by

enhanced coordinate attention to capture the channel and position

associations of features. It also uses an edge-refinement module to

enhance the network’s ability to perceive and refine the edges of

changing regions.

Multi-scale information plays an important role in the learning

of image edge features in deep learning networks and can further

refine edge features. Therefore, multi-scale information is often

introduced into the network to enhance the extraction ability of

fine features. Liu et al. (2017) proposed a method using richer

convolutional features (RCF). RCF encapsulates all convolutional

features in more discriminative representations, making full use

of the multi-scale and multi-level information of objects and

comprehensively carrying out image-to-image prediction. Xuan

et al. (2022) proposed a novel fine-scale correction learning

network (FCL-Net). FCL-Net is mainly composed of a top-

down attention-guided (TAG) module and a pixel-level weighting

(PW) module. With the help of long short-term memory, the

TAG module can adaptively learn and repeatedly fuse multi-scale

features under the guidance of coarse-scale depth-supervised

predictions, effectively promoting fine-scale feature learning. The

PW module independently processes the contribution of each

spatial position and helps the fine-level branch detect detailed

edges with high confidence. Elharrouss et al. (2023) proposed

a cascaded high-resolution network (CHRNet) to overcome the

challenges of refined edge detection. This network is interconnected

between successive parts of the network and uses refined batch

normalization layers to maintain high-resolution edges.

Frequency domain information is different from spatial domain

information and can also reflect different attributes in images.

Reasonable use of frequency domain information in images

can more accurately obtain the edge information of images.

Guobin et al. (2020) found that noise information in images

can be filtered out through wavelet transformation. A wavelet

transform denoising method and morphological gradient operator

are proposed. By selecting the appropriate structural elements

of remote sensing images, noise pixels cannot participate in

morphological calculation. The noise intensity changes with the

size of the quantum superposition state structural elements, which

can better filter out the noise information in the graph and

enhance the image edge representations. You et al. (2023) proposed

a wavelet transform algorithm that uses four wavelet functions

and four decomposition levels to filter and reconstruct images.

Denoising the image before edge detection can improve the signal-

to-noise ratio of the image and retain as much edge information

as possible.

Different from the above edge detection methods that only rely

on spatial domain or frequency domain information, our research

hopes to combine the features of these two domains. It can make

full use of the advantages of features in different fields, use the

self-attention mechanism, and take advantage of the differences

between frequency domain and spatial domain features to obtain

significant features, improve the accuracy after detection, and

finally obtain more comprehensive and reliable results.

3 Methods

To obtain clearer and more accurate edges, we propose

a multi-scale edge detection network method with spatial-

frequency domain interactive attention. Figure 1 is the framework

of our method, including three modules: using the frequency

enhancement attention (FEA) module for extracting significant

frequency domain edge features; using the multi-scale attention

(MSA) module for extracting multi-scale features in the spatial

domain; using the spatial-frequency interactive attention (SFIA)

module for interactive attention between frequency domain

features and spatial domain features to obtain the spatial domain

features enhanced by the frequency domain. Next, we will

introduce them in detail.

3.1 Frequency enhancement attention
module

The information of the image in the spatial domain is clearly

visible. However, due to the limitation that certain specific features

cannot be separated in the spatial domain, frequency domain
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FIGURE 1

The multi-scale edge detection framework with spatial-frequency domain interactive attention proposed in this paper first extracts features from

spatial domain images through Block 1 to Block 4 and uses the MSA module for spatial domain enhancement. Then, it fuses the frequency domain

features after frequency domain enhancement with the spatial domain features obtained from each Block to obtain more accurate features. Finally,

the edge map is output through the decoder.

features are introduced in this research to improve the ability to

obtain edge information in complex images. Therefore, in order

to better utilize frequency characteristics, this paper proposes a

novel FEA module to obtain significant edge information in the

frequency domain space. It is mainly divided into two parts.

First, obtain the low-frequency and high-frequency information

of the image in the frequency domain space. Secondly, enhance

the frequency domain information of the edge, and use the self-

attention mechanism to obtain the correlation between high and

low frequencies to further filter out the edge information of

the background.

The acquisition of frequency domain information is obtained

by performing specific transformations on the image in the spatial

domain to obtain the frequency domain information of the image.

Under normal circumstances, doing so can divide the image

information in the frequency domain space into low-frequency

information and high-frequency information. Compared with the

spatial domain, the frequency domain can divide the features that

are difficult to separate in the spatial domain to a certain extent so

that operations can be performed for the required frequency band

to complete certain specific image tasks. As shown in Figure 2, in

this paper, discrete cosine transform (DCT) (Ahmed et al., 1974) is

used to obtain image frequency domain information because DCT

transform can effectively compress image information and at the

same time remove the correlation between image pixels, making

edges easier to be detected. After the image is transformed by DCT,

ZigZag (Al-Ani and Awad, 2013) is used to divide the frequency

signal into high-frequency and low-frequency components. First,

convert the RGB image X of 3 × H × W pixels into the YCbCr

domain, and then divide it into H
8 × W

8 image blocks Xi
patch

of

8 × 8 pixels in each channel, and perform DCT transformation

to obtain Xi
t(i = 1, 2, 3), i refers to the number of channels. In

the ZigZag method, a 1 × 1 window is used to slide in a zigzag

direction in each image block to sort the frequencies of each

Xi
t(i = 1, 2, 3). The similar frequency signals of Xi

t(i = 1, 2, 3)

in the Y, Cb, and Cr channels are recombined into a new feature

map. The grouped feature maps are sorted from low to high in

frequency, which can effectively separate the high-frequency and

low-frequency components from the original feature map so that

each new feature map only contains similar low-frequency and

high-frequency bands. The first 32 dimensions obtained under

each channel are low-frequency components Xi
low

, and the last

32 dimensions are high-frequency components Xi
high

. The low-

frequency and high-frequency information obtained from the

three channels are spliced respectively to obtain the low-frequency

information Xlow and high-frequency information Xhigh of

the image:

Xi
t = DCT(Xi

patch),

Xi
low,X

i
high = ZigZag(Xi

t),

Xlow = Concat(Xi
low), i ∈ [0, 31],

Xhigh = Concat(Xi
high), i ∈ [32, 63].

(1)

After obtaining the separated low-frequency and high-

frequency image information using the DCT and ZigZag methods.

As shown in Figure 3, the self-attention mechanism is used to

interact with the low-frequency and high-frequency information

Frontiers inNeurorobotics 04 frontiersin.org

https://doi.org/10.3389/fnbot.2025.1550939
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Guo et al. 10.3389/fnbot.2025.1550939

FIGURE 2

The low-frequency and high-frequency information in the frequency domain is separated by the ZigZag method after the input RGB image is cut

into patches and undergoes DCT transformation.

FIGURE 3

Obtain significant edge information by using self-attention in frequency domain information.

to obtain the correlation between frequency domains and further

enhance the frequency domain information of the image edge.

Since the self-attention focuses on the correlation between

image blocks when in use, before splicing, the low-frequency

information Xlow and the high-frequency information Xhigh are

reshaped from the shape of (1, 96, H8 ,
W
8 ) to (1, HW64 , 96), denoted

as Xc−low and Xc−high. Since the edge information is generally

preserved in the high frequency, an enhancement parameter

ρ is set to fuse it into the high-frequency information to

obtain the enhanced high-frequency edge information Xs−high.

Secondly, the low-frequency information Xc−low and the high-

frequency information Xs−high are spliced into a complete

frequency domain information Xs−freq using Concat. The output

of FEA is calculated based on the standard self-attention

operation in the transformer encoder. The calculation operation is

as follows:

Attention(Q,K,V) = SoftMax(
QKT

√
dk

)V (2)
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Therefore, the Xa−freq after being enhanced by self-attention is:

Xa−freq = Attention(Xs−freqW
Q
φ ,Xs−freqW

K
φ ,Xs−freqW

V
φ ),

Xa−freq ∈ R(
HW
64 ×192). (3)

Among them, WQ
φ , W

K
φ , and WV

φ are a set of learnable weight

parameters. Next, continuous calculations are performed through

layer normalization (LN) and multilayer perceptron (MLP):

Xfreq = MLP(LN(Xa−freq + Xs−freq)). (4)

3.2 Multi-scale attention module

In image edge detection, there may be a problem that the main

target is too small, resulting in inaccurate detection. In response

to this, this paper proposes the MSA module, which enables the

network to accurately locate and detect relatively fine edge features

by expanding the receptive field.

In this research, ResNet50 (He et al., 2016) is adopted as the

backbone network in the spatial domain and used as the encoder for

image feature extraction. The ResNet50 network has four Blocks,

and each Block serves as an encoder to extract features of the

image at the current scale. After the input image X passes through

the four encoders composed of the ResNet50 network, the feature

representation Fl (l = 1, 2, 3, 4) at the current scale is obtained.

After the feature output Fl passes through the MSA module,

more refined feature representations at the current scale can be

obtained. In the MSA module, dilation convolution is introduced

with magnification factors of 2 and 4. As shown in the Figure 4,

after the feature representations Fl pass through convolutions with

magnification factors of 1, 2, and 4, respectively, it is integrated into

a feature representation with three times the original number of

channels through splicing. Then, through convolution with a kernel

size of 1, its number of channels is changed to the original number

of channels. Softmax is used to obtain the weight parameters of the

channels and multiply them with the original features. This can be

regarded as a kind of channel attention. Finally, it is fused with the

original features through the residual method, which can obtain

fine features while avoiding discarding useful feature information.

The processing of the MSA module can be expressed as:

Flc = Concat(Fl1, F
l
2, F

l
4),

Flω = SoftMax(Flc),

FlMSA = Fl + (Fl × Flω).

(5)

Among them, Fl1, F
l
2, and Fl4 respectively represent the results

obtained by Fl passing through dilation convolutions with different

magnification factors and a convolution kernel size of 3 × 3. FlMSA

represents the final output of the feature representations of the

l − th block in the ResNet12 network after passing through the

MSA module. The MSA module plays a huge role in increasing

the receptive field of the network. After using the MSA module,

the network captures more edge information, thus retaining a large

amount of edge information.

3.3 Spatial-frequency interactive attention
module

After obtaining the feature representations of the image in

both the spatial domain and the frequency domain, further

consideration needs to be given to how to use the spatial and

frequency domain feature representations to further strengthen the

edge information of the image. Generally speaking, simple addition

after feature alignment can make the frequency domain and spatial

domain features fuse with each other, but doing so cannot find

information more conducive to image edge detection from the

spatial domain or frequency domain. In order to be able to use the

features of the spatial and frequency domains to more accurately

detect the edge features of the image. As shown in the Figure 5,

this paper designs the SFIA module. Through mutual attention,

the frequency domain and spatial domain features of the image

interact. The spatial domain features are used to guide and enhance

the frequency domain, and the frequency domain features are used

to guide and enhance the spatial domain features, respectively.

Finally, the enhanced spatial domain features and frequency

domain features are fused to realize the interaction between the

spatial domain features and frequency domain features of the image

and enhance the edge information. Before the frequency domain

features are sent to the SFIA module, since the size of the current

frequency domain feature map is H
8 × W

8 , which is the same as the

size of the output of the last Encode of the spatial domain features,

when performing SFIA at each layer, first perform sampling and

other operations on the frequency domain feature map to obtain

the transformed frequency domain feature Xfreq, so that the shape

of the frequency domain feature is consistent with that of the

spatial domain.

Specifically, the SFIA module introduces interactive attention.

The enhanced frequency domain feature Xfreq is multiplied by the

learnable weight parameters W
Q
ψ , W

K
ψ , and WV

ψ to obtain Xq−freq,

Xk−freq, and Xv−freq respectively. The enhanced spatial domain

feature FlMSA of each layer is multiplied by the learnable weight

parameters W
Q
γ , W

K
γ , and WV

γ to obtain Flq−MSA, F
l
k−MSA

, and

Flv−MSA respectively. The frequency domain feature Xs enhanced

by the spatial domain and the spatial domain feature Fls enhanced

by the frequency domain are calculated respectively through the

formulas described below. The final output feature of each layer

Flm is obtained by weighted summation of the frequency domain

feature Xs and the spatial domain feature Fls, and is represented as:

Xs = Attention(XfreqW
Q
ψ ,XfreqW

K
ψ ,XfreqW

V
ψ ),

Fls = Attention(FlMSAW
Q
γ , F

l
MSAW

K
γ , F

l
MSAW

V
γ ),

Flm = ω1 × Xs + ω2 × Fls.

(6)

Here, Attention(·) is as shown in Equation 2.

3.4 Loss function

For a typical edge image, the ratio of non-edge pixels to edge

pixels is extremely imbalanced. Around 90% of the pixels in the

true label map are non-edge pixels. Hence, we use a weighted
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FIGURE 4

The multi-scale attention module proposed in this paper can obtain fine features under di�erent receptive fields by making the input features pass

through dilated convolutions with di�erent dilation rates respectively. And by using the splicing and SoftMax operations to obtain the attention

weights of each channel, it can obtain the fine edge features of the input features at di�erent scales.

FIGURE 5

Use spatial-frequency domain interactive attention to mutually enhance and fuse frequency domain features and spatial domain features to obtain

more accurate edge information.

cross-entropy loss for each edge map. Given a predicted edge map

F = {fi ∈ [0, 1], i = 1, 2, · · · , |F|} and its corresponding ground

truth Y = {yi = 0 or 1, i = 1, 2, · · · , |Y|}, the calculation formula

for the loss function L is as follows:

L = loss(F,Y) = −α
∑

yi∈Y+

log(fi)− β
∑

yi∈Y−

log(1− fi). (7)

where α = |Y−|
|Y+|+|Y−| , β = λ

|Y+|
|Y+|+|Y−| . Usually, edge detection

datasets will have multiple different annotations. However, due

to subjective ambiguity, these annotations often have deviations

in aspects such as location, even edges, or non-edge pixels. This

inconsistency will bring a lot of noise and mislead optimization

during the training process. In order to reduce this inconsistency

or error, a threshold θ is set to filter out annotations that may be

incorrect. The positive edge is defined as Y+ = {y|y ≥ θ}, and
Y− = {y|y = 0} represents the negative edge. The coefficient λ is a

learnable parameter whose role is to adjust the weights of edge and

non-edge pixels.

4 Experiments and result analysis

4.1 Datasets

In this section, we will evaluate the performance of our

proposed method on three benchmark datasets, including

BSDS500 (Arbelaez et al., 2010), Multicue (Mély et al., 2016), and
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FIGURE 6

Ablation study under the BSDS500 dataset, (a) Ground truth map, (b) Baseline network, (c) Baseline network + MSA module, (d) Baseline network +

FEA module, (e) Baseline network + MSA + FEA module, (f) Baseline network + MSA + FEA + SFIA module.

TABLE 1 The results of validating the e�ectiveness of multiple modules

proposed in this paper on the BSDS500 dataset respectively.

Baseline FEA MSA SFIA ODS OIS AP

X × × × 0.773 0.791 0.813

X X × × 0.798 0.815 0.856

X × X × 0.812 0.833 0.858

X X X × 0.817 0.841 0.869

X X X X 0.824 0.845 0.885

NYUDV2 (Silberman et al., 2012), and compare it with previous

advanced methods.

BSDS500 is a benchmark dataset created by the Berkeley

Center for Computer Vision and Machine Learning for image

segmentation and edge detection. It contains 500 natural images. In

the experiment, 200 images are used as the training set, 100 images

as the validation set, and the remaining 200 images as the test set.

Multicue contains 100 challenging natural images, each of

which contains a binocular view. Boundaries and edges are strictly

distinguished in the images. Among them, boundaries are the

boundary pixels of meaningful objects, while edges refer to sudden

changes related to brightness, color, and texture. They are randomly

divided into 80 images for training and 20 images for testing, and

the performance of the boundary subset and the edge subset is

evaluated separately.

NYUDV2 is a commonly used dataset for deep learning and

computer vision research, mainly used for semantic segmentation

and depth estimation tasks of indoor scenes. There are a total of

1449 RGBD images of 640× 480 pixels.

4.2 Implementation details

In the experiment, we use the deep learning framework

PyTorch to train the method proposed in this paper. ResNet50 is

selected as the network backbone. The Adam algorithm is used as

the optimizer, and the batch size is set to 8. During the training

process, the epoch is set to 200, and the global learning rate is

1×10−5. All experiments are completed on anNVIDIARTX3090Ti

GPU. In the experiment, operations such as rotation, scaling,

flipping, and cropping are applied for data augmentation. After

augmentation, the number of images in the BSDS500 training set

is expanded to 28,800. Similarly, through data augmentation, the

training sets of the Multicue and NYUDV2 datasets reach 11,520

and 54,864 images, respectively. In the experiment, the Optimal

Image Scale (OIS), Optimal Dataset Scale (ODS), and Average

Precision (AP) were used as performance indicators to evaluate the

advantages and disadvantages of the method proposed in this paper

and other methods.

4.3 Ablation study

In this subsection, quantitative analysis is conducted on the

FEA, MSA, and SFIA modules proposed in this paper on the

BSDS500 dataset respectively to verify the effectiveness of each

module proposed in this article for edge detection. In the evaluation

stage, we use non-maximum suppression (NMS) technology to thin

and normalize the detected edges.

For the ground truth maps of some images in the dataset, as

shown in Figure 6a, they are compared with the edgemaps obtained

by other methods for analysis. As can be seen from Figure 6b,

when only the baseline network is used, not only will a large
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FIGURE 7

Some visualization results of edge detection on the BSDS500 dataset.

amount of edge information be lost, but the edges are also relatively

rough. In Figure 6c, after introducing the MSA module into the

baseline network, some fine features can also be detected, and the

detected edges are also more refined. In Figure 6d, when the FEA

module is introduced into the baseline network, it can be found

that the edges in the background other than the larger main body

can also be detected, but at the same time, some interfering edge

information is also detected, and the edges are rough. In Figure 6e,

when the MSA and FEA modules are directly combined and used,

the detection refinement is enhanced, but there are still some

errors. When the SFIA module is used to mutually enhance the two

features, it can be found in Figure 6f that not only can relatively fine

edges be obtained, but also the interference information is greatly

reduced. It can also be clearly observed from Table 1 that when

the three modules of MSA, FEA, and SFIA proposed in this paper

are introduced into the baseline network, there are improvements

in all three indicators, which also shows the effectiveness of the

SFIA-MSNet proposed in this paper.

4.4 Comparison with the state-of-the-arts

In this section, the performance of the method proposed in this

paper is compared with that of multiple advanced methods under

the official standard dataset. At the same time, the differences in the

results of some model visualizations are analyzed.

4.4.1 Performance on BSDS500 dataset
Performance on BSDS500 dataset: The method SFIA-MSNet

proposed in this paper is compared with several relatively excellent

methods, including DeepEdge (Bertasius et al., 2015), CED (Wang

et al., 2017), HED (Xie and Tu, 2017), LPCB (Deng et al., 2018),

RCN (Kelm et al., 2019), RCF (Liu et al., 2019), REDN (Le

and Duan, 2020), PiDiNet (Su et al., 2021), RHN (Al-Amaren

et al., 2021), BDCN (He et al., 2022), EDTER (Pu et al., 2022),

DexiNed (Soria et al., 2023), CHRNet (Elharrouss et al., 2023),

DiffusionEdge (Ye et al., 2024) and FF-CNSNP (Xian et al., 2024).

In Figure 7 also shows the visualization results of some algorithms

and the SFIA-MSNet method in the BSDS500 dataset. As can be

seen from Table 2, under the three performance indicators of ODS,

OIS, and AP, the method proposed in this paper achieves the

best results.

The method proposed in this paper reaches 0.824 on ODS,

0.845 on OIS, and 0.885 on AP. It ranks second - highest among all

methods on these three metrics In the Figure 7, it can be observed

that compared with the edge maps obtained by methods such

as CED (Wang et al., 2017), RCF (Liu et al., 2019), RCN (Kelm

et al., 2019) and PidiNet (Su et al., 2021), the method proposed

in this paper is more refined, accurate on the edges, and has less

background interference.

4.4.2 Performance on NYUDV2 dataset
Performance on NYUDV2 dataset: The method SFIA-MSNet

proposed in this paper is compared with several relatively excellent

methods in the NYUDV2 dataset, including HED (Xie and Tu,

2017), LPCB (Deng et al., 2018), RCF (Liu et al., 2019), PiDiNet (Su

et al., 2021), RHN (Al-Amaren et al., 2021), BDCN (He et al.,

2022), EDTER (Pu et al., 2022), CHRNet (Elharrouss et al., 2023),

DiffusionEdge (Ye et al., 2024) and FF-CNSNP (Xian et al., 2024).

The results of the SFIA-MSNet method and other detection models

are shown in Table 3.

As can be seen from the Table 3, the performance of SFIA-

MSNet is still the best, with ODS of 0.775, OIS of 0.791, and AP of

0.798. Compared with the method DiffusionEdge (Ye et al., 2024)

and FF-CNSNP (Xian et al., 2024), the ODS, OIS, and AP of SFIA-

MSNet are all improved. Figure 8 shows the visualization results

of other models such as CED (Wang et al., 2017), RCF (Liu et al.,

2019), RCN (Kelm et al., 2019) and PidiNet (Su et al., 2021), and
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TABLE 2 Comparison with other edge detection methods on the

BSDS500 dataset, where methods denoted with “-VOC” were trained on a

mixed dataset combining BSDS500 and Pascal VOC.

Method Year Backbone OIS ODS AP

DeepEdge

(Bertasius et al.,

2015)

2015 AlexNet 0.772 0.753 0.807

CED (Wang et al.,

2017)

2017 VGG16 0.811 0.794 0.847

HED (Xie and Tu,

2017)

2017 VGG16 0.808 0.788 0.840

LPCB (Deng

et al., 2018)

2018 VGG16 0.816 0.800 -

RCN (Kelm et al.,

2019)

2019 ResNet 0.838 0.823 0.853

RCF (Liu et al.,

2019)

2019 VGG16 0.815 0.798 -

REDN (Le and

Duan, 2020)

2020 DenseNet 0.828 0.808 0.827

PiDiNet-VOC

(Su et al., 2021)

2021 - 0.823 0.807 -

RHN (Al-Amaren

et al., 2021)

2021 VGG16 0.833 0.817 -

BDCN (He et al.,

2022)

2022 VGG16 0.826 0.806 0.847

EDTER (Pu et al.,

2022)

2022 ViT 0.841 0.824 0.880

DexiNed (Soria

et al., 2023)

2023 - 0.745 0.729 0.583

CHRNet-VOC

(Elharrouss et al.,

2023)

2023 - 0.788 0.787 0.801

DiffusionEdge

(Ye et al., 2024)

2024 ResNet101 0.848 0.834 -

FF-CNSNP (Xian

et al., 2024)

2024 VGG16 0.827 0.808 -

SFIA-MSNet

(ours)

2024 ResNet50 0.845 0.824 0.885

the SFIA-MSNetmethod onNYUDV2. From these results, it can be

seen that even in complex indoor scenes, the SFIA-MSNet method

can also detect the subtle edges existing in the image, including the

edges in the shadows, which also shows that the method proposed

in this paper can detect various complex edges with high quality in

the edge detection task.

4.4.3 Performance on multicue dataset
Performance on Multicue dataset:The SFIA-MSNet method

proposed in this paper is compared with several relatively excellent

methods under two annotations (boundary and edge) in the

Multicue dataset, including HED (Xie and Tu, 2017), RCF (Liu

et al., 2019), PiDiNet (Su et al., 2021), RHN (Al-Amaren et al.,

2021), BDCN (He et al., 2022), and EDTER (Pu et al., 2022). The

results of the SFIA-MSNet method and other detection models are

shown in Table 4.

TABLE 3 Comparison with other edge detection methods on the NYUDV2

dataset.

Method Year Backbone OIS ODS AP

HED (Xie and Tu,

2017)

2017 VGG16 0.734 0.720 0.734

LPCB (Deng

et al., 2018)

2018 VGG16 0.754 0.739 -

RCF (Liu et al.,

2019)

2019 VGG16 0.757 0.743 -

PiDiNet (Su et al.,

2021)

2021 - 0.747 0.733 0.765

RHN (Al-Amaren

et al., 2021)

2021 VGG16 0.762 0.751 -

BDCN (He et al.,

2022)

2022 VGG16 0.763 0.748 0.770

EDTER (Pu et al.,

2022)

2022 ViT 0.789 0.774 0.797

CHRNet

(Elharrouss et al.,

2023)

2023 - 0.745 0.729 0.818

DiffusionEdge

(Ye et al., 2024)

2024 ResNet101 0.766 0.761 -

FF-CNSNP (Xian

et al., 2024)

2024 VGG16 0.754 0.741 -

SFIA-MSNet

(ours)

2024 ResNet50 0.791 0.775 0.798

As can be seen from Table 4, the method SFIA-MSNet

proposed in this paper achieves 0.873, 0.862, 0.924 and 0.901,

0.900, 0.950 for OIS, ODS, and AP respectively under the two

annotations of boundary and edge. Compared with the relatively

advanced method EDTER, it is superior to this method in multiple

performance indicators, which also shows the superiority of the

performance of the method proposed in this paper.

4.4.4 Complexity analysis
To compare the complexity of SFIA-MSNet when using

different backbones and methods, we compared the number of

parameters and the number of FLOPs of SFIA-MSNet using

different backbones and methods, as shown in Table 5.

As shown in Table 5: Different backbones significantly impact

model complexity. Take SFIA-MSNet as an example–when using

the ResNet50 backbone, the number of parameters is 32.59M

and the FLOPs reach 20, 608.97M. After changing to the VGG16

backbone, the parameters decrease to 20.94M and the FLOPs

are greatly reduced to 89, 000.67M, indicating that the choice

of backbone directly affects the model’s parameter scale and

computational volume. SFIA-MSNet with the VGG16 backbone

has more advantages in complexity control. Cross-method

comparison also highlights differences: although BDCN with the

VGG16 backbone has a parameter number of 14.71M (lower than

SFIA-MSNet’s 20.94M with the VGG16 backbone), its FLOPs reach

56, 658.49M–far higher than SFIA-MSNet’s 89, 000.67M with the

VGG16 backbone. This demonstrates that when different methods

use the same backbone, network structure design significantly
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FIGURE 8

Some visualization results of edge detection on the NYUDV2 dataset.

TABLE 4 Comparison with other edge detection methods on the multicue dataset.

Method Year Backbone Boundary Edge

OIS ODS AP OIS ODS AP

HED (Xie and Tu, 2017) 2017 VGG16 0.822 0.814 0.869 0.864 0.851 -

RCF (Liu et al., 2019) 2019 VGG16 0.825 0.817 - 0.862 0.857 -

PiDiNet (Su et al., 2021) 2021 - 0.830 0.818 - 0.860 0.855 -

RHN (Al-Amaren et al., 2021) 2021 VGG16 0.856 0.841 - 0.905 0.896 -

BDCN (He et al., 2022) 2022 VGG16 0.846 0.836 0.893 0.898 0.981 0.935

EDTER (Pu et al., 2022) 2022 ViT 0.870 0.861 0.919 0.900 0.894 0.944

SFIA-MSNet (ours) 2024 ResNet50 0.873 0.862 0.924 0.901 0.900 0.950
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TABLE 5 Comparison of the complexity between SFIA-MSNet with

di�erent backbones and the BDCNmethod.

Method Backbone Parameters(M) FLOPs(M)

BDCN (He et al., 2022) VGG16 14.71 56,658.49

SFIA-MSNet (ours) ResNet50 32.59 20,608.97

SFIA-MSNet (ours) VGG16 20.94 89,000.67

influences computational complexity, while SFIA-MSNet (with the

VGG16 backbone) shows unique optimization effects in balancing

parameters and computational volume.

5 Conclusion

In this study, we propose an SFIA-MSNet method that

combines the spatial domain and the frequency domain. It not only

filters interference information in the frequency domain to obtain

significant edge information but also obtains multi-scale attention

features by designing the MSA module in the spatial domain.

Finally, the SFIA module is used to enable the interaction between

spatial domain information and frequency domain information

and obtain enhanced fused information, so as to solve the problem

that existing edge detection methods cannot accurately detect the

edges of small objects hidden in the background. At the same time,

it also effectively suppresses noise interference. The results under

multiple datasets indicate that the method proposed in this paper

can accurately identify and detect fine edges.
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