AUTHOR=Guo Yongfei , Li Bo , Zhang Wenyue , Dong Weilong TITLE=Multi-scale image edge detection based on spatial-frequency domain interactive attention JOURNAL=Frontiers in Neurorobotics VOLUME=Volume 19 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/neurorobotics/articles/10.3389/fnbot.2025.1550939 DOI=10.3389/fnbot.2025.1550939 ISSN=1662-5218 ABSTRACT=Due to the many difficulties in accurately locating edges or boundaries in images of animals, plants, buildings, and the like with complex backgrounds, edge detection has become one of the most challenging tasks in the field of computer vision and is also a key step in many computer vision applications. Although existing deep learning-based methods can detect the edges of images relatively well, when the image background is rather complex and the key target is small, accurately detecting the edge of the main body and removing background interference remains a daunting task. Therefore, this paper proposes a multi-scale edge detection network based on spatial-frequency domain interactive attention, aiming to achieve accurate detection of the edge of the main target on multiple scales. The use of the spatial-frequency domain interactive attention module can not only perform significant edge extraction by filtering out some interference in the frequency domain. Moreover, by utilizing the interaction between the frequency domain and the spatial domain, edge features at different scales can be extracted and analyzed more accurately. The obtained results are superior to the current edge detection networks in terms of performance indicators and output image quality.