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A distributed penalty-based
zeroing neural network for
time-varying optimization with
both equality and inequality
constraints and its application to
cooperative control of redundant
robot manipulators
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1School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China, 2School of

Intelligent Systems and Engineering, Sun Yat-sen University, Shenzhen, China

This study addresses the distributed optimization problem with time-varying

objective functions and time-varying constraints in a multi-agent system

(MAS). To tackle the distributed time-varying constrained optimization (DTVCO)

problem, each agent in the MAS communicates with its neighbors while relying

solely on local information, such as its own objective function and constraints, to

compute the optimal solution. We propose a novel penalty-based zeroing neural

network (PB-ZNN) to solve the continuous-time DTVCO (CTDTVCO) problem.

The PB-ZNN model incorporates two penalty functions: The first penalizes

agents for deviating from the states of their neighbors, driving all agents to reach

a consensus, and the second penalizes agents for falling outside the feasible

range, ensuring that the solutions of all agents remain within the constraints.

The PB-ZNNmodel solves the CTDTVCO problem in a semi-centralizedmanner,

where information exchange between agents is distributed, but computation

is centralized. Building on the semi-centralized PB-ZNN model, we adopt the

Euler formula to develop a distributed PB-ZNN (DPB-ZNN) algorithm for solving

the discrete-time DTVCO (DTDTVCO) problem in a fully distributed manner. We

present and prove the convergence theorems of the proposed PB-ZNN model

and DPB-ZNN algorithm. The e�cacy and accuracy of the DPB-ZNN algorithm

are illustrated through numerical examples, including a simulation experiment

applying the algorithm to the cooperative control of redundant manipulators.

KEYWORDS

distributed optimization, zeroing neural network, equality and inequality constraints,

time-varying, cooperative control

1 Introduction

Recently, owing to the development of large-scale networks and advancements in big

data theory, research on distributed optimization problems has garnered considerable

attention due to its broad application prospects in science and engineering (Bahman and

Jorge, 2014; Molzahn et al., 2017; Mao et al., 2023; Kang and Yang, 2023), such as resource

allocation (Cai et al., 2024), energy management (Li et al., 2024), and economic dispatch
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(Huang et al., 2022). In a typical distributed optimization problem,

the objective function of a multi-agent system (MAS) results from

summing the local sub-objectives of each individual agent (Jia et al.,

2024). In addition, during the search for an optimal solution, each

agent only has access to its local sub-objective and constraints while

communicating its own state to neighboring agents. Overall system

convergence is achieved through consensus among the agents.

The aforementioned studies focus on distributed optimization

problems with static objective functions. However, distributed

time-varying constrained optimization (DTVCO) problems, where

the objective functions and constraints change over time, are

encountered in practical scenarios, such as the formation control

of multi-robot systems (Sun et al., 2022), Nash equilibrium

seeking for time-varying non-cooperative games (Ye and Hu,

2015), and distributed time-varying resource allocation (Cherukuri

and Cortés, 2016). The DTVCO problem is more intricate than

distributed static optimization since the optimal solution evolves

over time. As a result, researchers have increasingly turned their

attention to DTVCO (Zheng et al., 2017; Sun et al., 2023; Zhang

et al., 2021a; Zhu and Wang, 2024; He et al., 2021). For example,

Zheng et al. (2017) introduced a consensus-based control scheme

employing second-order optimization methods to address DTVCO

problems characterized by local objective functions with identical

Hessians. Sun et al. (2023), introduced a distributed control

algorithm comprising a sliding-mode consensus component and

a Hessian-based optimization component, integrated with log-

barrier penalty functions, to address the DTVCO problem. Zhu

and Wang (2024) utilized the finite-time stability theory and

graph theory to propose a novel class of distributed finite-time

optimization algorithms that are independent to time derivatives

of the gradients and Hessian information.

Due to the parallel computing characteristics, hardware

implementation capabilities, and parallel distributed properties

(Yang et al., 2020; Jin et al., 2022b; Qiu et al., 2021; Sun

et al., 2020; Song et al., 2024), neural network-based methods

provide an powerful approach for solving various challenging

computational problems in real time. Recent advancements in

neural networks have shown significant progress in tackling

time-varying problems. For fault-tolerant motion planning of

redundant manipulators, Jin et al. (2017) developed a different-

level simultaneous minimization scheme by utilizing a discrete-

time recurrent neural network to solve quadratic programming

problems. Khan et al. (2020b) have developed a metaheuristic-

based control framework for simultaneous tracking control and

obstacle avoidance of redundant manipulators, unifying these tasks

into a single constrained optimization problem. Enhancements to

the beetle antennae search algorithm, called BAS-ADAM, have been

proposed by Khan et al. (2020a) to improve convergence behavior

and avoid local minima in highly non-convex objective functions.

A distributed competitive and collaborative coordination approach

has been established by (Liu et al., 2024) for multi-robot systems,

optimizing system stability and resource utilization through a

fusion of recurrent neural dynamics and distributed solvers. In

addition, Zhang et al. (2018a) have proposed a novel recurrent

neural network for kinematic control of redundant manipulators,

addressing periodic input disturbances and physical constraints

while optimizing a general quadratic performance index. These

studies collectively highlight the innovation and potential of

neural networks in addressing time-varying challenges in various

applications. Another exciting direction in neural network-based

control scheme is the data-driven model predictive control (MPC).

The data-driven MPC impacted the field of robotic control,

particularly in handling complex and dynamic environments. For

example, one study by Yan et al. (2024) proposed a data-driven

MPC algorithm that integrates neural dynamics for trajectory

tracking in redundant manipulators with unknown models.

Another research by Jin et al. (2024) introduced a cerebellum-

inspired learning and control scheme using echo state networks to

achieve precise joint velocity control in redundant manipulators.

Introduced by Zhang et al. (2002), since its inception, zeroing

neural network (ZNN) method has been widely utilized to

address a range of time-varying problems (Liao et al., 2022;

Peng et al., 2022; Lan et al., 2023; Zuo et al., 2022; Dai et al.,

2023; Chen et al., 2024; Hu et al., 2024; Jin et al., 2022a; Tan

et al., 2023; Ding et al., 2018), such as time-varying matrix

inversion (Dai et al., 2023), time-varying optimization (Chen

et al., 2024), and time-varying Lyapunov equation solving (Zuo

et al., 2022). Recent advancements in ZNN have illustrated their

effectiveness in various robotic applications. (Sun et al., 2024b)

have successfully applied ZNN to human-robot interaction and

force control, improving estimation accuracy and ensuring safety

in complex environments. In the realm of motion estimation,

(Wang et al., 2024) have integrated ZNN into a multi-task

parallel learning framework to reconstruct missing sEMG signals

and estimate joint angles with high accuracy. In addition, (Xie

et al., 2025) have utilized ZNN in obstacle avoidance schemes

for redundant robots, leveraging deep reinforcement learning to

enhance obstacle avoidance capabilities. Furthermore, Sun et al.

(2024a) have developed a hybrid orthogonal repetitive motion

and obstacle avoidance scheme for omnidirectional mobile robotic

arms, achieving accurate obstacle avoidance and repetitive motion

tasks. These studies collectively highlight the innovation and

potential of ZNN in revolutionizing various aspects of robotics.

Despite the significant success of ZNN method in addressing

time-varying problems, the ZNN models presented in the

aforementioned works are limited to solve those problems in

a centralized manner. There is a scarcity of existing research

focusing on distributed ZNN. The most typical work of distributed

ZNN is by Jin et al. In Jin et al. (2018), a ZNN-based control

scheme is introduced to address the cooperative motion generation

problem. This scheme facilitates cooperative motion generation

within a distributed network of multiple redundant manipulators.

However, for an individual manipulator, the computation results

of neighbors’ control inputs are required to compute its own

control input. Therefore, the proposed control method is not a fully

distributed scheme, as the control inputs for the entire system need

to be computed collectively by all manipulators, rather than being

computed independently by each manipulator.

Driven by the above discussions, a novel penalty-based

ZNN (PB-ZNN) model is proposed. The PB-ZNN model solves

a continuous-time DTVCO (CTDTVCO) problem in a semi-

centralized manner. Then, to extend the application of ZNN

models to distributed time-varying problems, a distributed penalty-

based ZNN (DPB-ZNN) algorithm is designed on the basis of
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the proposed PB-ZNN model. The DPB-ZNN algorithm solves a

discrete-time DTVCO (DTDTVTO) problem in a fully distributed

manner.

The remainder of this study is organized into six sections.

In Section 2, some preliminaries concerning graph theory and

mathematical notations are provided. Then, in Section 3, the

main results of this study are presented. The formulation of the

CTDTVCO problem is presented in Section 3.1, and the detailed

design process of PB-ZNN model is presented in Section 3.2. The

formulation for the DTDTVCO problem and the detailed design

process of DPB-ZNN algorithm is presented in Section 3.3. In

Section 4, the theoretical proofs of the convergence of both PB-

ZNN model and DPB-ZNN algorithm are provided. The efficacy

and efficiency of the DPB-ZNN algorithm are illustrated in Section

5 through numerical examples, including a simulation experiment

applying it to the cooperative control of redundant manipulators.

Finally, the conclusion of this study is given in Section 6.

Before ending this section, the main contributions of this study

are listed as follows.

• A novel PB-ZNNmodel is designed to address the CTDTVCO

problem. By incorporating two penalty functions, the PB-

ZNN model successfully solves the CTDTVCO problem in a

semi-centralized manner.

• On the basis of the PB-ZNN model, a DPB-ZNN algorithm is

designed. By incorporating the Euler formula, the proposed

DPB-ZNN algorithm effectively solves the DTDTVCO

problem in a fully distributed manner.

• The convergence properties of both PB-ZNNmodel and DPB-

ZNN algorithm are proved. Further theoretical analyses prove

that the maximum steady-state residual error (MSSRE) for the

proposed DPB-ZNN algorithm is of O(τ 2).

2 Preliminaries

The notation ‖·‖2 represents the 2-norm of a vector or amatrix.

Moreover, (·)T denotes the transpose of a matrix or a vector, In is

the identity matrix of size n × n, 1d = {1, · · · , 1}T ∈ R
d, and ⊗

represents the Kronecker product (Golub and Loan, 2013).

Some principles from graph theory (Diestel, 2017) are

introduced as follows.

The notation G = {V ,Y ,A} denotes a weighted graph, wherein

V = {v1, v2, · · · , vn} represents the set of vertices, and Y ⊆ V × V

denotes the set of edges. The adjacency matrix is denoted by A =

(aij)n×n ∈ R
n×n, where aij > 0 when (vi, vj) ∈ Y and aij = 0 when

(vi, vj) /∈ Y , respectively. Moreover, the notation Ni denotes the

neighbor set of ith vertex. The graph G is said to be connected and

undirected when a path between any given pair of vertices within G

exists and when (vi, vj) ∈ Y also indicates (vj, vi) ∈ Y . The degree

matrix D is defined as D = diag{d1, d2, · · · , dn} ∈ R
n×n where

di =
∑n

j=1 aij. Finally, the Laplacianmatrix is defined as L = D−A.

Assumption 1: Graph G is undirected and connected.

3 Main results

In Subsection 3.1, the formulations of the CTDTVCO problem

are provided. To address the CTDTVCO problem, two penalty

functions are introduced. In Subsection 3.2, a PB-ZNN model is

proposed to solve the CTDTVCO problem in a semi-centralized

manner. Then, on the basis of the proposed PB-ZNNmodel, a novel

DPB-ZNN algorithm is proposed to solve the DTDTVCO problem

in a fully distributed manner in Subsection 3.3.

3.1 CTDTVCO with distributed
time-varying equality and inequality
constraints

In this study, the CTDTVCO problem within graph G is

formulated as

minimize f (x(t), t) =

n
∑

i=1

fi(x(t), t), (1)

subject to Ki(t)x(t) = bi(t), i ∈ {1, 2, . . . , n}, (2)

Ji(t)x(t) ≤ ci(t), i ∈ {1, 2, . . . , n}, (3)

where x(t) ∈ R
d, and fi(x(t), t) :R

d × R 7→ R denotes the

time-varying local objective function of the agent i and fi should

be second-order differentiable and strongly convex for all i =

1, 2, · · · , n. Moreover, Ki(t)x(t) = bi(t) and Ji(t)x(t) ≤ ci(t) are

the time-varying equality and inequality constraints associated with

the agent i. For all i ∈ {1, 2, . . . , n}, the coefficient matrix Ki(t) ∈

R
ki×d is of full row rank and coefficient matrix Ji(t) is defined as

Ji(t) = [Ji1(t); . . . ; Jimi (t)] ∈ R
mi×d. In addition, notations bi(t) ∈

R
ki and ci(t) ∈ R

mi denote the coefficient vectors. The above-

mentioned matrices and vectors are assumed to be differentiable. It

is worth pointing out that all contradictions among agents’ equality

constraints should be ruled out for the CTDTVCO problem to be

solvable.

According to Assumption 1, the communication graph G

is both connected and undirected. Hence, the CTDTVCO

problem (Equations 1–3) is reformulated as an equivalent problem

described by the following Lemma 1.

Lemma 1: If graph G is connected and undirected, then the

CTDTVCO problem (Equations 1–3) is equivalent to the following

optimization problem (Bahman and Jorge, 2014).

minimize ϕ(x(t), t) =

n
∑

i=1

fi(xi(t), t), (4)

subject to J(t)x(t) ≤ c(t), (5)

K(t)x(t) = b(t), (6)

Lx(t) = 0nd, (7)

where

K(t) =













K1(t) 0 · · · 0

0 K2(t) · · · 0
...

...
. . .

...

0 0 · · · Kn(t)













∈ R
k×nd,

J(t) =













J1(t) 0 · · · 0

0 J2(t) · · · 0
...

...
. . .

...

0 0 · · · Jn(t)













∈ R
m×nd,

Frontiers inNeurorobotics 03 frontiersin.org

https://doi.org/10.3389/fnbot.2025.1553623
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


He et al. 10.3389/fnbot.2025.1553623

with x(t) = [x1(t); x2(t); . . . ; xn(t)] ∈ R
nd, k =

∑n
i=1 ki, and m =

∑n
i=1 mi. The coefficient vectors b(t) and c(t) are defined as b(t) =

[b1(t); b2(t); . . . ; bn(t)] ∈ R
k, and c(t) = [c1(t); c2(t); . . . ; cn(t)] ∈

R
m, and the matrix L = L⊗ Id ∈ R

nd×nd. In addition, 0nd denotes

an nd dimensional vector whose elements are 0.

Remark 1: Through Lemma 1, the consensus problem for the

CTDTVCO problem (Equations 1–3) is reformulated as an equality

constraint (Equation 7). Following the conventional ZNN design

method, equality constraints are typically handled by applying

the Lagrange function. However, this approach is not suitable for

equality constraint (Equation 7), because the Laplacian matrix L is

inherently rank-deficient. Consequently, setting L = L ⊗ Id also

results in a rank-deficient matrix.

To obtain the optimal solution for the CTDTVCO problem

(Equations 1–3), two penalty functions are introduced in this study.

The definitions of these two penalty functions are as follows:

p1(x(t)) =
1

4
σ1

n
∑

i=1

∑

j∈Ni

‖xi(t)− xj(t)‖
2
2, (8)

p2(x(t)) = ρ

n
∑

i=1

mi
∑

j=1

e−σ2Nj(xi(t)), (9)

where Nj(xi(t)) = cij(t)− Jij(t)xi(t) with cij(t) being the jth element

of vector ci(t) and Jij(t) being the jth row of matrix Ji(t). In addition,

σ1, σ2 > 0 are two positive parameters that are sufficiently larege

and parameter ρ > 0 is positive and near zero.

• The first penalty function intuitively manages information

exchange between agents and their neighbors, driving all

agents to reach a consensus.

• The second penalty function is from Zhang et al. (2021b), and

it addresses the distributed inequality constraints, ensuring

that each agent’s solution remains bounded.

It is evident that when Lx(t) → 0nd, the value of

p1(x(t)) approaches zero. Furthermore, when inequality constraints

(Equation 5) are met, the value of p2(x(t)) becomes a positive

number very close to zero. This soft penalty allows slight violations

of constraints while still promoting feasible solutions. Conversely,

by choosing sufficiently large enough positive parameters σ1 and

σ2, the values of p1(x(t)) and p2(x(t)) are magnified to serve as

punishments for solution x(t) that fall outside the feasible range.

Thus, the CTDTVCO problem (Equations 4–6) is transformed into

an equivalent CTDTVCO problem with no inequality constraints

as follows:

minimize ϕ(x(t), t)+ p1(x(t))+ p2(x(t)), (10)

subject to K(t)x(t) = b(t). (11)

Therefore, by solving the CTDTVCO problem (Equations 10,

11), one acquires an approximate solution to the original

CTDTVCO problem (Equations 1–3). To solve the CTDTVCO

problem (Equations 10, 11), a Lagrange function is introduced:

L(x(t),λ(t), t) = ϕ
(

x(t), t
)

+ p1
(

x(t))+ p2(x(t)
)

+ λ
T(t)

(

K(t)x(t)− b(t)
)

, (12)

where the Lagrange multiplier λ(t) is defined as λ(t) =

[λ1(t); λ2(t); . . . ; λn(t)] ∈ R
k, with λi(t) ∈ R

ki being the

Lagrange multiplier corresponding to the agent i. It is assumed

that both ∂L(x(t),λ(t), t)/∂x(t) and ∂L(x(t),λ(t), t)/∂λ(t) exist and

are continuous. The optimal solution must satisfy the following

equations:

{

∂L(x(t),λ(t),t)
∂x(t)

= ∇xϕ(x(t), t)+ σ1Lx(t)+8(x(t))+ KT(t)λ(t) = 0nd ,
∂L(x(t),λ(t),t)

∂λ(t)
= K(t)x(t)− b(t) = 0k,

(13)

where

∇xϕ(x(t), t) =
∂ϕ(x(t))

∂x(t)
= [∇xf1(x1(t), t); ∇xf2(x2(t), t); . . . ;

∇xfn(xn(t), t)] ∈ R
nd,

with the elements being

∇xfi(xi(t), t) =
∂fi(xi(t), t)

∂xi(t)
∈ R

d.

In addition,8(x(t)) is defined as

8(x(t)) =
∂p2(x(t))

∂x(t)
= [φ1(x1(t));φ2(x2(t)); . . . ;φn(xn(t))] ∈ R

nd,

with

φi(xi(t)) = ρσ2

mi
∑

j=1

e−σ2Nj(xi(t))JTij (t) ∈ R
d.

For convenience in computation, (Equation 13) is expressed as the

following matrix equation:

A(t)y(t) = g(t), (14)

where

A(t) =

[

σ1L KT(t)

K(t) 0k×k

]

∈ R
(nd+k)×(nd+k),

y(t) =

[

x(t)

λ(t)

]

∈ R
(nd+k),

g(t) =

[

−∇xϕ(x(t), t)−8(x(t))

b(t)

]

∈ R
(nd+k).

The vector y(t) needs to be solved at all time. One sees that

the CTDTVCO problem (Equations 1–3) is solved if the matrix

equation (Equation 14) is solved.

3.2 PB-ZNN Model for CTDTVCO Problem
Solving

In this subsection, a PB-ZNN model is proposed for the entire

system to solve the matrix equation (Equation 14).
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To obtain the solution of (Equation 14), an error function is

defined as

ε(t) = A(t)y(t)− g(t) ∈ R
nd+k. (15)

Tominimize the value of the error function ε(t) and approach zero,

it is essential that the derivative of the error function (Equation 15)

with respect to time t remains negative (Zhang et al., 2018b).

Consequently, the ZNN design formula is employed as follows:

dε(t)

dt
= −γ9(ε(t)), (16)

where 9(·) :Rnd+k 7→ R
nd+k is an array consisting of activation

functions ψ(·) and a positive parameter γ > 0 is used to adjust

the convergence rate. It is crucial that the activation function ψ(·)

satisfies two properties: It must be monotonically increasing and an

odd function. By substituting (Equation 16) into (Equation 15), the

following model is obtained:

A(t)ẏ(t) = −Ȧ(t)y(t)− γ9(A(t)y(t)− g(t))− ġ(t), (17)

where Ȧ(t) and ġ(t) denote the derivatives with respect to time t of

the matrix A(t) and the vector g(t), respectively.

Moreover, according to Equation 14, one obtains

ġ(t) =

[

δ̇(t)

ḃ(t)

]

∈ R
nd+k, (18)

where

δ̇(t) = −ċ(t)−H(x(t), t)ẋ(t)− 8̇(x(t)) ∈ R
nd, (19)

with ḃ(t) = db(t)/dt and

8̇(x(t)) =

[

∂2p21(x1(t))

∂x1(t)∂t
;
∂2p22(x1(t))

∂x2(t)∂t
; . . . ;

∂2p2n(x1(t))

∂xn(t)∂t

]

∈ R
nd,

in which

∂2p2i(x1(t))

∂xi(t)∂t
= ρσ2

mi
∑

j=1

e−σ2Nj(xi(t))(σ2J
T
ij (t)J̇ij(t)xi(t)

+ σ2J
T
ij (t)Jij(t)ẋi(t)− σ2J

T
ij (t)ċij + J̇Tij (t)),

with J̇ij(t) = dJij(t)/dt and ċij(t) = dcij/dt. In addition,

H(x(t), t) =













H1(x1(t), t) 0 · · · 0

0 H2(x2(t), t) · · · 0
...

...
. . .

...

0 0 · · · Hn(xn(t), t)













∈ R
nd×nd,

whereHi(xi(t), t) ∈ R
d×d for all i = 1, 2, . . . , n denotes the Hessian

matrix of the agent i and the definition of Hi(xi(t), t) is as follows:

Hi(xi(t), t) =



















∂2fi(xi(t),t)

∂x2i1

∂2fi(xi(t),t)
∂xi1∂xi2

· · ·
∂2fi(xi(t),t)
∂xi1∂xid

∂2fi(xi(t),t)
∂xi2∂xi1

∂2fi(xi(t),t)

∂x2i2
· · ·

∂2fi(xi(t),t)
∂xi2∂xi3

...
...

. . .
...

∂2fi(xi(t),t)
∂xid∂xi1

∂2fi(xi(t),t)
∂xid∂xi2

· · ·
∂2fi(xi(t),t)

∂x2
id



















∈ R
d×d.

One notices the simultaneous presence of x(t) and ẋ(t) in δ̇(t)

in Equation 19. This reflects the combined influence of both the

state and its time derivative on the dynamics of the system.

When numerically computing Equation 17, it becomes necessary

to consolidate similar terms. Define two matrices,M1(t) andM2(t),

and a vector h(t), as follows:

M1(t) =













M11(t) 0 · · · 0

0 M12(t) · · · 0
...

...
. . .

...

0 0 · · · M1n(t)













∈ R
nd×nd,

M2(t) =













M21(t) 0 · · · 0

0 M22(t) · · · 0
...

...
. . .

...

0 0 · · · M2n(t)













∈ R
nd×nd,

h(t) = [h1; h2; . . . ; hn] ∈ R
nd,

where for all i = 1, 2, . . . , n,

M1i = ρσ 2
2

mi
∑

j=1

e−σ2Nj(xi(t))JTij (t)Jij(t) ∈ R
d×d,

M2i = ρσ 2
2

mi
∑

j=1

e−σ2Nj(xi(t))JTij (t)J̇ij(t) ∈ R
d×d,

hi = ρσ2

mi
∑

j=1

e−σ2Nj(xi(t))(−σ2J
T
ij (t)ċij + J̇Tij (t)) ∈ R

d,

Hence, after a restructuring of the ZNN model (Equation 17), one

has

Q(t)ẏ(t) = −S(t)y(t)− γ9(A(t)y(t)− g(t))+ u(t),

where

Q(t) =

[

H(x(t), t)+ σ1L+M1(t) KT(t)

K(t) 0k×k

]

∈ R
(nd+k)×(nd+k),

S(t) =

[

M2(t) K̇T(t)

K̇(t) 0k×k

]

∈ R
(nd+k)×(nd+k),

u(t) =

[

−h(t)−∇xtϕ(x(t), t)

ḃ(t)

]

∈ R
nd+k,

with∇xtϕ(x(t), t) = [∂2f1(x1(t), t)/∂x1∂t; ∂
2f2(x2(t), t)/∂x2∂t; . . . ;

∂2fn(xn(t), t)/∂xn∂t]. In this study, the linear function (i.e.,

9(x(t)) = x(t)) is chosen as the activation function for simplicity.

Therefore, the PB-ZNN model for the whole system is given as

ẏ(t) = −Q−1(t)
(

S(t)y(t)− γ
(

A(t)y(t)− g(t)
)

+ u(t)
)

. (20)

Thus, the design of PB-ZNN model that solves the CTDTVCO

problem (Equations 1–3) is completed.

It is worth pointing out that, although the PB-ZNN model

(Equation 20) is designed to address the CTDTVCO problem,

it solves Equation 14 in a semi-decentralized manner. Upon

examining matrix Q(t) in Equation 20, one observes that for agent

i, due to the presence of L in Q(t), solving the time derivative ẋi(t)
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analytically requires information from its neighbors: ẋj(t) for j ∈

Ni. Therefore, if to be analytically solved, the information exchange

among agents is distributed, but the PB-ZNN model (Equation 20)

is computed in a centralized way.

3.3 Distributed PB-ZNN algorithm for
DTDTVCO problem solving

In this subsection, a distributed PB-ZNN (DPB-ZNN)

algorithm is developed for each agent to solve the DTDTVCO

problem in a fully distributed manner.

First, let us consider the following DTDTVCO problem with a

computational time interval [tk, tk+1):

minimize f (xk+1, tk+1) =

n
∑

i=1

fi(xk+1, tk+1), (21)

subject to Kik+1
xk+1 = bik+1

, i ∈ {1, 2, . . . , n}, (22)

Jik+1
xk+1 ≤ cik+1

, i ∈ {1, 2, . . . , n}, (23)

where f (xk+1, tk+1) is generated or measured from the smoothly

time-varying signal f (x(t), t) by sampling at the time instant t =

(k + 1)τ (which is denoted as tk+1), and τ denotes the sampling

gap.

The DPB-ZNN algorithm is designed on the basis of the

continuous-time PB-ZNN model (Equation 20). Therefore, the

distributed form of PB-ZNN model (Equation 20) is given to lay

the basis for the DPB-ZNN algorithm.

Through simple matrix computation, the distributed form of

equation (Equation 14) for agent i to solve in continuous-time is

given as

Ai(t)yi(t) = gi(t), (24)

where

Ai(t) =

[

σ1Di KT
i (t)

Ki(t) 0ki×ki

]

∈ R
(d+ki)×(d+ki),

yi(t) =

[

xi(t)

λi(t)

]

∈ R
d+ki ,

gi(t) =

[

−∇xfi(xi(t), t)− φ(xi(t))+ σ1ei(t)

bi(t)

]

∈ R
d+ki ,

with Di = diId×d and di denotes the degree of the Laplacian matrix

L associated with the agent i. In addition, ei(t) =
∑

j∈Ni
aijxj(t).

It is evident that the distributed solution [ẋ1(t); ẋ2(t); . . . ; ẋn(t)]

for equation (Equation 24) is equivalent to ẋ(t) in equation

(Equation 14).

Consequently, for the agent i, the distributed form of the error

function is defined as

εi(t) = Ai(t)yi(t)− gi(t) ∈ R
d+ki . (25)

Therefore, following the same design process as the PB-ZNN

model, one has

Qi(t)ẏi(t) = −Si(t)yi(t)− γ9(Ai(t)yi(t)− gi(t))+ ui(t), (26)

where

Qi(t) =

[

Hi(xi(t))+ σ1Di +M1i(t) KT
i (t)

Ki(t) 0ki×ki

]

∈ R
(d+ki)×(d+ki),

Si(t) =

[

M2i(t) K̇i
T
(t)

K̇i(t) 0ki×ki

]

∈ R
(d+ki)×(d+ki),

ui(t) =

[

−hi(t)− ∇̇xfi(xi(t), t)+ σ1ėi(t)

ḃi(t)

]

∈ R
d+ki ,

with ėi(t) =
∑

j∈Ni
aijẋj(t). In addition,M1i(t),M2i(t), and hi(t) are

defined in the same way as in Section 3.2. Therefore, for agent i, the

distributed form of PB-ZNN model (Equation 20) is formulated as

ẏi(t) = −γQ−1
i (t)9

(

Ai(t)yi(t)− gi(t)
)

− Q−1
i (t)Si(t)yi(t)

+ Q−1
i (t)ui(t).

Hence, the distributed discrete-time PB-ZNN model is formulated

as

ẏik = −γQ−1
ik
9

(

Aikyik − gik
)

− Q−1
ik

Sikyi + Q−1
ik

uik , (27)

where Qik ,Aik , Sik , gik , and uik are generated or measured from

the smoothly time-varying signals Qi(t),Ai(t), Si(t), gi(t), and

ui(t), respectively. Upon examining uik , one notices that ėik =
∑

j∈Ni
aijẋjk is required for agent i to compute ẋik . However, ẋjk

is unknown to agent i in a fully distributed manner. Therefore, an

approximation for ėik is introduced.

In traditional methods that solve distributed optimization

problems, agents exchange xik with their neighbors to address

the consensus problem. In this study, an alternative approach is

proposed. Instead of merely exchanging the information xik , each

agent maintains a short memory of their neighbors’ states. By using

the Euler formula, agents approximate ẋjk for j ∈ Ni on the basis

of the memories that they kept, and ultimately approximate ėik
effectively.

The Euler formula used in this study is given as follows (Chen

et al., 2024).

ẋik =
˙̃xik + O(τ ) =

xik − xik−1

τ
+ O(τ ). (28)

This formula approximates the derivative ẋik using the

backward difference of xik over the time step τ . The term O(τ )

represents the truncation error, indicating that the approximation

becomes more accurate as τ approaches zero. Therefore, the

approximation of ėi(t) is defined as

ėik =
˙̃eik + O(τ ) =

∑

j∈Ni

˙̃xjk + O(τ ). (29)

Here, ėik is approximated by summing the estimated derivatives

of the neighbors’ states ˙̃xjk , utilizing the stored state information

to eliminate the need for continuous communication. Hence, the

fully distributed DPB-ZNN algorithm that solves the DTDTVCO

problem is given as

ẏik
.
= −γQ−1

ik
9

(

Aikyik − gik
)

− Q−1
ik

Sikyi + Q−1
ik

ũik ,
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with

ũik =

[

−hik − ∇̇xfi(xik , tk)+ σ1
˙̃eik

ḃik

]

.

Hence, by choosing the linear function as the active function,

one obtains

ẏik
.
= −γQ−1

ik
(Aikyik − gik )− Q−1

ik
Sikyik + Q−1

ik
ũik .

By introducing the 2-step time-discretization (TD) formula

(Chen et al., 2024).

ξ̇k =
1

τ

(

ξk+1 − ξk
)

+ O(τ ), (30)

the DPB-ZNN algorithm is obtained as

yik+1

.
=yik − hQ−1

ik
(Aikyik − gik )− τQ

−1
ik

Sikyik + τQ
−1
ik

ũik ,

(31)

where parameter h = τγ is used to scale the convergence

rate. The proposed DPB-ZNN algorithm (Equation 31) solves

the DTDTVCO problem in a fully distributed manner. Notably,

information exchange between agents is strictly limited to their

solutions xik . Local information, including each agent’s own

objective function and constraints, remains inaccessible to its

neighbors.

4 Theoretical analyses

In this section, the convergence theorems for the PB-ZNN

model (Equation 31) and DPB-ZNN algorithm (Equation 26) are

established and proved.

4.1 Convergence Theorem of PB-ZNN
Model

On the basis of the analyses presented in Subsection 3.1,

the CTDTVCO problem (Equations 1–3) is reformulated as the

matrix equation (Equation 15). Therefore, solving the CTDTVCO

(Equations 1–3) is equivalent to solving the matrix equation

(Equation 15).

Theorem 1: For the CTDTVCO problem (Equations 1–

3), consider that a monotonically increasing odd activation

function 9(·) is used. Starting from any initial state y(0) ∈

R
nd+k, the residual error ‖ε(t)‖2 converges to zero, meaning

limt→+∞ ‖ε(t)‖2 = 0.

Proof: Define a Lyapunov candidate function as

V(t) =
‖ε(t)‖22

2
= ε

T(t)ε(t) ≥ 0. (32)

Hence, the time derivative of V(t) is

V̇(t) = −γ

nd+k
∑

i=1

εi(t)ψ(εi(t)). (33)

With 9(·) being monotonically increasing and odd, the following

conditions hold true for ψi(·):

ψ(εi(t))















> 0, if εi(t) > 0

= 0, if εi(t) = 0

< 0, if εi(t) < 0

. (34)

Therefore, it is guaranteed that εi(t)ψ(εi(t)) ≥ 0 always holds

true, which means V̇(t) ≤ 0. According to the Lyapunov stability

theorem (Khalil, 2002), one obtains that ‖ε(t)‖2 converges to zero,

meaning limt→+∞ ‖ε(t)‖2 = 0. Thus, the proof is completed. �

4.2 Convergence theorem of DPB-ZNN
algorithm

In this subsection, detailed theoretical analyses about the DPB-

ZNN algorithm (Equation 31) are given. The DPB-ZNN algorithm

is deemed as a linear 2-step method. For better understanding,

some lemmas are introduced as follows (Chen et al., 2024).

Lemma 2: A linear N-step method is formulated as
∑N

j=0 ωjαk+j = τ
∑N

j=0 υjβk+j. The first and second

characteristic polynomials of the linear multiple-step method

are z(ι) =
∑N

j=0 ωjι
j and ζ (ι) =

∑N
j=0 υjι

j, respectively. If all

complex roots of the characteristic polynomial z(ι) ensure |ι| ≤ 1,

and if there exists |ι| = 1 with the root that ensures |ι| = 1 is

simple, then the corresponding N-step method is 0-stable.

Lemma 3: A linear N-step method is formulated as
∑N

j=0 ωjαk+j = τ
∑N

j=0 υjβk+j. The order of truncation error when

synthesizing the N-step method can be checked by computing

w0 =
∑N

j=0 ωj and wj =
∑N

j=1 j
i/i!ωj −

∑N
j=0 j

i−1/(i − 1)!υj.

If wq 6= 0 and wi = 0 with i < q, the N-step method, then the

multiple-step method has truncation error of O(τ q).

Lemma 4: A linear N-step method is formulated as
∑N

j=0 ωjαk+j = τ
∑N

j=0 υjβk+j. The first and second

characteristic polynomials of the linear multiple-step method

are z(ι) =
∑N

j=0 ωjι
j and ζ (ι) =

∑N
j=0 υjι

j, respectively. If z(1) = 0

and ż(1) = ζ (1), with ż being the derivative of z(ι), the N-step

method is consistent.

Lemma 5: A linear N-step method is formulated as
∑N

j=0 ωjαk+j = τ
∑N

j=0 υjβk+j. The N-step method is convergent,

if and only if Lemmas 1 and 3 are satisfied. That is, an N-step

method is convergent, if and only if it is 0-stable and consistent.

On the basis of the above lemmas, the theorem about the

convergence property of DPB-ZNN algorithm (Equations 24) is

proved.

Theorem 2: Consider the CTDTVO problem (Equations 1–3).

Suppose that for every agent i, its local objective function fi(xi(t), t)

has continuous 2nd order derivatives. With design parameter

γ > 0 and sufficiently small sampling interval gap, the DPB-

ZNN algorithm (Equation 31) is convergent with a truncation error

O(τ 2).

Proof: According to Lemma 5, if and only if the DPB-ZNN

algorithm (Equation 24) is 0-stable and consistent, the DPB-ZNN

algorithm (Equation 24) is convergent.
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According to Lemma 2, the first characteristic polynomial of the

DPB-ZNN algorithm (Equation 24) is formulated as

z2(ι) = ι− 1. (35)

The root of the characteristic polynomial is ι = 1. One obtains

that all roots ensure |ι| ≤ 1 and when|ι| = 1 the root is simple.

Therefore, the DPB-ZNN algorithm (Equation 24) is 0-stable.

On the basis of (Equations 30, 31), the following equation for

the DPB-ZNN algorithm (Equation 31) is formulated:

yik+1
= yik + τ

(

ẏik + σ1O(τ )
)

+ τO(τ )

= yik + τ ẏik + O(τ 2).
(36)

According to Lemma 3, wj =
∑N

j=1 j
i/i!ωj −

∑N
j=0 j

i−1/(i − 1)!υj.

Hence, w2 is obtained as

w2 =
22

2!
−

12

2!
−

11

1!
=

1

2
6= 0.

One computes that wj = 0 for j = 0, 1. Therefore, according to

Lemma 3, the DPB-ZNN algorithm (Equation 31) has a truncation

error orderO(τ 2). In addition, the second characteristic polynomial

of the DPB-ZNN algorithm (Equation 31) is formulated as ζ (ι) =

1. Hence, one has ż(1) = ζ (1) = 1. Thus, according to Lemma 4,

the DPB-ZNN algorithm (Equation 31) is consistent order O(τ 2).

According to Lemma 5, the DPB-ZNN algorithm (Equation 31)

is convergent since it is 0-stable and consistent order O(τ 2). Thus,

the proof is completed. �

Theorem 3: Consider the CTDTVO problem (Equations 1–3).

Suppose that, for every agent i, its local objective function fi(xi(t), t)

have continuous 2nd order derivatives. With design parameter

γ > 0 and sufficiently small sampling interval gap, the maximum

steady-state residual error (MSSRE) synthesized by the DPB-ZNN

algorithm (Equation 26) limk→+∞ sup‖εik‖2 is of O(τ
2).

Proof: Let y∗ik+1
denotes the actual solution to the problem,

i.e., εik+1
= 0 when yik+1

= y∗ik+1
. According to Theorem 3, the

DPB-ZNN algorithm (Equation 31) has a truncation error ofO(τ 2),

meaning yik+1
= y∗ik+1

+ O(τ 2). By applying the Taylor expansion,

one further has

εik+1
(yik+1

, tk+1) =εik+1

(

y∗ik+1
+ O(τ 2), tk+1

)

=εik+1

(

y∗ik+1
, tk+1

)

+
∂εik+1

(yik+1
, tk+1)

∂yik+1

O(τ 2)

+O(τ 4)

≤
∂εik+1

(yik+1
, tk+1)

∂yik+1

O(τ 2).

Hence, the MSSRE is deducted as

lim
k→+∞

sup
∥

∥εik+1
(yik+1

, tk+1)
∥

∥

2
≤ lim

k→+∞
sup

∥

∥

∥

∥

∥

∂εik+1
(y∗ik+1

, tk+1)

∂y∗ik+1

O(τ 2)

∥

∥

∥

∥

∥

2

≤ lim
k→+∞

sup

∥

∥

∥

∥

∥

∂εik+1
(y∗ik+1

, tk+1)

∂y∗ik+1

∥

∥

∥

∥

∥

F

O(τ 2),

where‖ · ‖F represents the Frobenius norm of a matrix.

Since y∗ik+1
is the actual solution, the partial derivative

FIGURE 1

Communication topology of graph G1 in Example 1, where G1 is

connected and undirected.

TABLE 1 Expressions of time-varying objective functions of all agents in

Example 1.

Objective function Expression

f1(xk , tk)
sin(tk)

4
x21k + x22k + cos(tk)x1kx2k

f2(xk , tk) x21k +
sin(tk)

4
x22k + cos(3tk)x1k

f3(xk , tk) x21k + x22k + sin(3tk)x2k

‖∂εi
k+1

(y∗ik+1
, tk+1)/∂y

∗
ik+1

‖F evaluates to a constant matrix,

bounded due to the continuity of the second-order derivatives of

fi. Therefore, the MSSRE synthesized by the DPB-ZNN algorithm

(Equation 31) is of O(τ 2). Thus, the proof is completed. �

5 Illustrative examples

In this section, two numerical examples are presented. These

examples serve to validate the effectiveness of the proposed DPB-

ZNN algorithm (Equation 31) discussed in this study.

5.1 Example 1: DTDTVCO problem by
DPB-ZNN algorithm

Consider a DTDTVCOproblemwith aMAS consisting of three

agents. The formulation of the DTDTVCO problem is given as

follows:

minimize f (xk+1, tk+1) =

3
∑

i=1

fi(xik+1
, tk+1),

subject to Kik+1
xk+1 = bik+1

, i = 1,

Jik+1
xk+1 ≤ cik+1

, i = 2, 3,

(37)

where xik ∈ R
2. The communication topology of the network

G1 is shown in Figure 1. The detailed time-varying local objective

functions fi and the corresponding time-varying local constraints

are given through Tables 1, 2.

Before conducting the experiment, the parameters of the DPB-

ZNN algorithm (Equation 31) must be properly configured. The

total solving time is set to T = 10 s, the sampling gap τ is set

to τ = 0.001 s, and h is set to 0.2. In this experiment, for the
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first penalty function, σ1 is set to 50. To guarantee that xik remains

within the feasible region of the inequality constraints for any agent,

σ2 is set to 100, while the parameter ρ is set to a value close to zero,

specifically 0.001.

The initial states xi0 are set as x10 = [−0.6, 0.6]T, x20 = [0, 0]T,

and x30 = [0.6,−0.6]T. The experimental results are illustrated

through Figures 2, 3. In Figures 2, 3, the dashed red lines denote the

inequality constraints J2kx2k ≤ c2k associated with the agent 2, and

dashed purple lines denote the inequality constraints J3kx3k ≤ c3k
associated with the agent 3.

From Figures 2, 3, one sees that the three agents achieve

consensus from different initial states. In Figures 2, 3, the

distributed time-varying inequality constraints are denoted by the

red and purple dashed lines. As pointed out by the blue circles in

Figures 2, 3, for each agent, their solutions are constrained by the

distributed time-varying inequality constraints.

In addition, several experiments are conducted with DPB-

ZNN algorithm (Equation 31) solving the DTDTVCO problem

(Equation 37) with different τ . The corresponding MSSREs ‖εk‖2

TABLE 2 Expressions of time-varying constraints of all agents in Example

1.

Constraint Expressions

K1k x1k = b1k sin(tk)x1k + cos(tk)x2k = cos(2tk)

J2kx2k ≤ c2k x1k ≤ 0.5 cos(tk − 4.4)+ 1.5

x2k ≤ 0.5 cos(tk − 4)+ 0.9

J3kx3k ≤ c3k x1k ≥ −0.5 cos(tk − 3.6)− 1

x2k ≥ −0.5 cos(tk − 3.6)− 1

are presented in Figure 4, Table 3. In Figure 4, the MSSREs ‖εk‖2
with different τ are presented. Figure 4 includes three distinct

trajectories corresponding to τ = 0.001 s (blue dashed line), τ =

0.0001 s (orange dashed line), and τ = 0.00001 s (green dashed

line). The blue dashed line, for τ = 0.001 s, shows a decreasing

MSSRE starting from approximately 102 to approximately 10−2.

The orange dashed line, for τ = 0.0001 s, reflects a faster

convergence with MSSRE reducing to 10−4. The green dashed

line, for τ = 0.00001 s, presents the most rapid reduction, with

MSSRE decreasing from 102 to 10−6, highlighting the advantage

of very small time steps for precise updates. The figure reveals a

clear trend: As τ decreases, the MSSRE also decreases, indicating

improved performance of the algorithm with smaller τ values.

From Figure 4, Table 3, one sees that the MSSRE ‖εk‖2 is of O(τ
2),

which corroborates the theoretical analyses.

Moreover, the gradient neural network (GNN) algorithm

is often used to solve time-varying problems with constraints.

Therefore, a comparison experiment between the GNN and the

proposed DPB-ZNN algorithm is conducted.

First, for the agent i, a scalar-valued energy function is designed

as follows:

eGik =
1

2
‖εik‖

2
2, (38)

where εik = Aikyik − gik . Then, by exploiting the gradient

information of the energy function (Equation 38), one obtains

ẏik = −γ G
∂eGik
∂yik

= −γ G

(

∂εik

∂yik

)T

εik = −γ GAT
ik
(Aikyik − gik ),

FIGURE 2

Trajectories of xi1k for all agents synthesized by DPB-ZNN algorithm (Equation 31).
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FIGURE 3

Trajectories of xi2k for all agents synthesized by DPB-ZNN algorithm (Equation 31).

FIGURE 4

Trajectories of MSSRE ‖εk‖2 for DPB-ZNN algorithm in solving DTDTVCO problem (Equation 40), with di�erent τ .
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where the parameter γ G is used to scale the convergence rate of the

GNN algorithm (Zhang et al., 2021b). Hence, the GNN algorithm

for solving the DTDTVCO problem is given as

yik+1
= yik − γ

GτAT
ik
(Aikyik − gik ), (39)

Then, both the GNN algorithm (Equation 39) and the DPB-

ZNN algorithm (Equation 31) are used to solve the DTDTVCO

problem (Equation 37). For both the GNN algorithm and the DPB-

ZNN algorithm, the parameters σ1, σ2, ρ, and the initial states are

set the same. The corresponding experimental results are shown in

Table 4, Figure 5.

TheMSSRE ‖εk‖2 along with the corresponding parameters for

bothGNN andDPB-ZNN algorithms are provided in Table 4. From

Table 4 and Figure 5, one sees that, with the sampling time being the

same τ = 0.0001 s, DPB-ZNN algorithm (Equation 31) achieves a

TABLE 3 MSSREs of DPB-ZNN algorithm (Equation 31) in solving

DTDTVCO problem (Equation 37) with di�erent τ .

τ MSSRE ||εk||2

0.001 s 3.76× 10−2

0.0001 s 5.51× 10−4

0.00001 s 6.44× 10−6

TABLE 4 Comparisons between GNN algorithm and DPB-ZNN algorithm

in solving DTDTVCO problem.

Algorithm Parameter τ MSSRE εk||2

GNN γ G = 2, 000 0.0001s 2.16× 10−1

DPB-ZNN γ = 2, 000 0.0001s 3.54× 10−4

higher accuracy with the MSSRE ‖εk‖2 being 3.54 × 10−4, while

the MSSRE ‖εk‖2 of GNN algorithm is 2.16 × 10−1. To sum up,

the DPB-ZNN algorithm (Equation 31) has a higher accuracy when

solving DTDTVCO problem than the GNN algorithm.

In addition, to investigate the impact of model inaccuracies and

measurement noise, numerical experiments on a DTVCO problem

with noise, solved by the DPB-ZNN algorithm, are conducted.

To lay the basis for further investigation on the robustness of

DPB-ZNN algorithm under the pollution of unknown noises, one

obtains the following equation:

yik+1

.
=yik − hQ−1

ik
(Aikyik − gik )− τQ

−1
ik

Sikyik + τQ
−1
ik

ũik + ̺ik ,

(40)

where ̺ik ∈ [−0.5, 0.5] denotes a discrete-time bounded unknown

random noise that is uniformly distributed within the range

[−0.5, 0.5]. The corresponding experimental results are presented

in Figure 6. Except for the bounded random noise ̺ik , the initial

states and corresponding parameters are set to be the same as those

in Subsection 5.1. The trajectories of the residual error ‖εk‖2 of

the DPB-ZNN algorithm with different values of τ are illustrated

in Figure 6.

From the Figure 6, one observes that theMSSRE converges over

time for all three sampling intervals, indicating that the DPB-ZNN

algorithm effectively reduces the residual errors in the presence of

noise. The trajectory with τ = 0.00001 s (green dash line) shows

the fastest convergence, reaching the lowest error value within

the shortest time, with MSSRE values dropping to approximately

10−4. The trajectory with τ = 0.0001 s (orange dashed line) also

converges well but at a slightly slower rate, with MSSRE values

reaching approximately 10−3. The trajectory with τ = 0.001 s (blue

dashed line) converges the slowest, taking the longest time to reach

a low error value, with MSSRE values approximately 10−2.

FIGURE 5

Trajectories of ‖εk‖2 of GNN and DPB-ZNN algorithms in solving DTDTVCO problem.
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FIGURE 6

Trajectories of MSSRE ‖εk‖2 for DPB-ZNN algorithm in solving DTDTVCO problem with random noise and di�erent τ .

These experimental results illustrate the robustness of the DPB-

ZNN algorithm as it consistently minimizes residual errors and

converges effectively even in the presence of noise. The smaller

sampling intervals τ lead to faster convergence and lower residual

errors, highlighting the algorithm’s ability to handle noise polluted

time-varying challenges with high accuracy and efficiency.

5.2 Example 2: DPB-ZNN algorithm
application to cooperative control of
redundant robot manipulators

To illustrate the efficacy of the proposed DPB-ZNN algorithm

(Equation 31) in applications, a cooperative control experiment

is simulated. In this experiment, we consider a group of four

identical 5-joint planar redundant robot manipulators performing

a cooperative control task. The communication topology of the four

robot manipulators is shown in Figure 7.

To control the redundant robot manipulators performing a

cooperative control, for the entire system, a motion planning

scheme for the entire system on the basis of the DTDTVCO

problem is described as follows (Jin et al., 2018):

minimize

4
∑

i=1

1

2
θ̇Tik θ̇ik , (41)

subject to Jiwk
θ̇ik = ṙwk

, i = 2, 4, (42)
∑

j∈Nik

‖θ̇ik − θ̇jk‖2 = 0, i = 1, 2, 3, 4, (43)

θ̇−i ≤ θ̇ik ≤ θ̇+i , i = 1, 2, 3, 4. (44)

FIGURE 7

Communication topology of graph G2 in Example 3, where G2 is

connected and undirected.

where ṙiwk
denotes the time derivative of the desired trajectory

of the end-effector position vector (i.e., reference), θ̇ik ∈ R
n denotes

the joint velocities of the ith manipulator, and Jiwk
∈ R

2×5

denotes the Jacobian matrix of the manipulator i. In applications,

limitations of joint velocities are often encountered. The boundary

constraints are denoted as θ̇−i ≤ θ̇i ≤ θ̇+i , where the lower and

upper limits of the joint velocity θ̇i are denoted as θ̇−i ∈ R
5 and

θ̇+i ∈ R
5, respectively. The bound constraints (Equation 44) are

easily transformed into inequality constraints Ji1θ̇ik ≤ θ̇+i and

Ji2θ̇ik ≤ −θ̇−i , in which Ji1 = Id×d and Ji2 = −Id×d, respectively. It

is worth pointing out that, as discussed in Section 3.1, the equality
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FIGURE 8

Trajectories of end e�ectors generated by DPB-ZNN algorithm (Equation 31) when robot manipulators track Lissajous pattern.

constraints of the robot manipulators should not be contradictory.

In this particular experiment, manipulators 2 and 4 share the same

equality constraint Jiwk
θ̇ik = ṙwk

, whereas manipulators 1 and 3 do

not have such constraints. This means that manipulators 2 and 4

have access to the desired path, while manipulators 1 and 3 do not.

Then, the DPB-ZNN algorithm (Equation 31) is adopted to solve

the aforementioned cooperative control problem with parameters

h = 0.2, σ1 = 50, and σ2 = 50. The sampling time is set to

τ = 0.001 s. The desired trajectory for the robot manipulators

follows a Lissajous pattern. In this simulation experiment, the upper

and lower joint velocity limits for each joint were set to 1.5 and

−1.5 rad/s, respectively. The experimental results are presented in

Figure 8 through Figure 10.

The experimental results depicted in Figure 8 showcase the

trajectories of the end effectors generated by the DPB-ZNN

algorithm, as the manipulators track a Lissajous pattern. Each

subplot, corresponding to Manipulator 1 through Manipulator

4, exhibits that all manipulators track the Lissajous pattern

successfully. The experimental results depicted in Figure 9 reveal

the effectiveness of the proposed DPB-ZNN algorithm in driving

the residual errors ‖ǫik‖2 = ‖Jiwk
θ̇ik − ṙwk

‖2 of all robot

manipulators toward zero over time. Figure 9 fully illustrates the

efficiency of the proposed DPB-ZNN algorithm for solving the

cooperative control problem of robot manipulators with joint

velocity limits.

From Figure 9, one sees that the residual error trajectories,

presented in a logarithmic scale reaches the level of 10−4 m/s to

10−5 m/s over a 10-s period, illustrate a rapid reduction in error

magnitude, particularly during the initial phase of the simulation,

highlighting the algorithm’s swift convergence capabilities. While

minor fluctuations in the early stages reflect the dynamic

adjustments made by the algorithm to adhere to time-varying

constraints and achieve consensus among agents, the overall trend

consistently shows convergence across all manipulators. The slight

variations in the error reduction rate among the manipulators are

likely due to differences in their initial states and local objective

functions, yet these discrepancies diminish over time, emphasizing

the algorithm’s distributed nature and ability to enforce consensus

and feasibility. In addition, one sees that despite the lack of

information of the desired path, manipulator 1 and manipulator 3

track the desired path successfully, meaning the cooperative control

problem is solved by the DPB-ZNN algorithm (Equation 31)

effectively in a fully distributed manner.

Furthermore, the joint velocities of the robot manipulators

solved by the DPB-ZNN algorithm (Equation 31) are presented

in Figure 10. As shown in Figure 10, for all agents, all the joint

velocities remain within the upper and lower joint velocity limits,

which verify the effectiveness of DPB-ZNN algorithm in applying

to the cooperative control problem of robot manipulators. To sum

up, this experiment verifies the effectiveness and high accuracy of

the proposed DPB-ZNN algorithm (Equation 31).

6 Conclusion

Aiming at solving the CTDTVCO problem with both time-

varying equality and inequality constraints, a novel PB-ZNNmodel

has been designed in this study by incorporating two penalty

functions. The proposed PB-ZNN model solves the CTDTVCO

problem in a semi-centralized manner. Then, on the basis of
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FIGURE 9

Trajectories of residual error ‖ǫik‖2 of all robot manipulators.

FIGURE 10

Trajectories of θ̇ik for four robot manipulators generated by DPB-ZNN algorithm (Equation 31) when robot manipulators track Lissajous pattern.

the PB-ZNN model, a DPB-ZNN algorithm has been proposed.

By adopting an approximation formula, the DPB-ZNN algorithm

solves the DTDTVCO problem in a fully distributed manner. The

global convergence theorems of the proposed PB-ZNN model and

DPB-ZNN algorithm have been proved. Numerical experiment

results have illustrated the efficacy and efficiency of the proposed

DPB-ZNN algorithm, including a simulation experiment applying

it to the cooperative control of redundant robot manipulators.
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