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HR-NeRF: advancing realism and
accuracy in highlight scene
representation

Shufan Dai and Shanqin Wang*

Chuzhou Polytechnic, Chuzhou, China

NeRF and its variants excel in novel view synthesis but struggle with scenes

featuring specular highlights. To address this limitation, we introduce the

Highlight Recovery Network (HRNet), a new architecture that enhances

NeRF’s ability to capture specular scenes. HRNet incorporates Swish activation

functions, a�ne transformations, multilayer perceptrons (MLPs), and residual

blocks, which collectively enable smooth non-linear transformations, adaptive

feature scaling, and hierarchical feature extraction. The residual connections

help mitigate the vanishing gradient problem, ensuring stable training. Despite

the simplicity of HRNet’s components, it achieves impressive results in recovering

specular highlights. Additionally, a density voxel grid enhances model e�ciency.

Evaluations on four inward-facing benchmarks demonstrate that our approach

outperforms NeRF and its variants, achieving a 3–5 dB PSNR improvement on

each dataset while accurately capturing scene details. Furthermore, our method

e�ectively preserves image details without requiring positional encoding,

rendering a single scene in ∼18 min on an NVIDIA RTX 3090 Ti GPU.

KEYWORDS

scene representation, view synthesis, image-based rendering, volume rendering, 3D

deep learning, spectral bias

1 Introduction

Novel view synthesis has been a persistent challenge in computer vision and graphics.

Utilizing deep learning to interpret 3D scenes from sparse image sets has wide-ranging

applications in entertainment, virtual and augmented reality, and other fields. Emerging

neural rendering techniques have recently enabled photorealistic image quality for these

tasks. One of the most prominent recent advances in neural rendering is NeRF (Mildenhall

et al., 2020) which, given a handful of images of a static scene, learns an implicit volumetric

representation of the scene that can be rendered from novel viewpoints. Although the

current neural rendering technology has achieved leading image rendering quality, it still

does not perform well in terms of model acceleration and image specular reflections detail.

By sampling the 3D coordinates in the scene, and using the MLP to infer the density of

the location and the view-dependent color value, NeRF renders compelling photorealistic

images of 3D scenes from novel viewpoints using a neural volumetric scene representation.

Volumetric neural rendering incurs a significant computational burden due to stringent

sampling requirements and the high cost of neural network queries, leading to substantially

prolonged processing times. To address this limitation, we adopt the dense voxel grid linear

interpolation strategy proposed by Sun et al. (2022) to generate the scene’s density and

view-dependent color features.
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Although NeRF employs positional encoding that maps the

inputs to a higher dimensional space using high-frequency

functions to improve renderings that perform poorly at

representing high-frequency variation in color and geometry,

it still renders poorly on specular surfaces. Figure 1 shows that

NeRF and its variants rendering quality is still not ideal on specular

objects. The rendering results for the drums category appear

notably rough. These rough artifacts are main caused by spectral

bias (Rahaman et al., 2019). Variants (Müller et al., 2022; Rosu and

Behnke, 2023; Garbin et al., 2021; Hedman et al., 2021; Lindell

et al., 2021; Liu et al., 2020; Rebain et al., 2021; Schwarz et al., 2020;

Yu et al., 2021) of NeRF work well in the direction of acceleration,

but there is little work that combines acceleration with image

quality, especially for scene highlight details. A deeper MLP with

ReLU activation is used to implicitly represent the 3D scene.

Additionally, position encoding (Rahaman et al., 2019) is applied

to the sampled point coordinates and viewpoint vector, mapping

them to a high-dimensional space and enhancing the MLP’s

ability to approximate high-frequency functions. This MLP+ReLU

implicit representation structure has not been effectively improved

in the subsequent NeRFs method, leading to a long-term limitation

in the image rendering quality of NeRFs, where the model cannot

effectively learn the high-frequency details of the image. To

address this issue, we propose the HRNet architecture, which can

be combined with a learnable 3D grid to significantly enhance

image rendering quality and achieve satisfactory model training

speed. The MLP architecture employed by NeRFs (Mildenhall

et al., 2020) can lead to variations in their feature vectors with

depth, inconsistencies in feature space, and issues such as gradient

loss and explosion. Hence, we incorporate skip connections,

layer scaling, and affine layers into the traditional MLP to ensure

stable training and enhance the network’s capacity to model

high-frequency components. Simultaneously, we utilize the Swish

activation function to replace ReLU. This alteration significantly

enhances the MLP’s capability to capture image details. Our

method overview is shown in Figure 2.

To summarize, we make the following contributions:

1. We propose the Highlight Recovery Network (HRNet),

an enhanced MLP that effectively renders scene image details,

especially for highlight scenes.

2.We utilize explicit and discretized volumetric representations

for modeling. While not a new approach, when combined with

HRNet, it achieves leading rendering speed and image quality.

Compared to NeRF, ourmethod requires only about 18min to train

a single scene and improves the average PSNR by 3–5 dB.

2 Related work

2.1 Neural radiance fields

Recently, NeRF has caused a new boom in new view synthesis

tasks. By simply inputting images of the sparse angles of the scene

and the corresponding camera parameters, images of the new view

can be obtained. Compared to traditional explicit and discrete

volume representations such as voxel lattices and MPI, NeRF

performs extremely well in the novel view synthesis task, using

a coordinate-based MLP as an implicit and continuous volume

representation. NeRF achieves appealing quality and has good

flexibility with many follow-up extensions to various setups, e.g.,

relighting (Bi et al., 2020; Boss et al., 2021; Srinivasan et al., 2021;

Zhang et al., 2021), deformation (Gafni et al., 2021; Noguchi et al.,

2021; Park et al., 2020; Tretschk et al., 2021), self-calibration (Jeong

et al., 2021; Lin et al., 2021; Yen-Chen et al., 2021; Meng et al., 2021;

Wang et al., 2021), meta-learning (Tancik et al., 2021), dynamic

scene modeling (Gao et al., 2021; Li et al., 2021; Martin-Brualla

et al., 2021; Pumarola et al., 2021; Xian et al., 2021), and generative

modeling (Chan et al., 2021; Kosiorek et al., 2021; Schwarz et al.,

2020). However, NeRF and its variants require a lengthy training

time ranging from hours to days for a single scene. Here, we

introduce the derivation of the density voxel grid to accelerate

the model.

2.2 Enhanced standard MLP

As a classic neural network, MLP is applied to various tasks

of deep learning. Transformers (Vaswani et al., 2017) built by

MLP shine in natural language processing, image classification, and

recognition tasks. MLP-Mixer (Tolstikhin et al., 2021) uses Mixer’s

MLP to replace ViT’s Transformer (Dosovitskiy et al., 2020),

which reduces the degree of freedom of feature extraction and can

cleverly exchange information between patches and information

within patches alternately. Recently, Facebook AI Lab proposed

ResMLP (Touvron et al., 2021) for tasks such as image classification,

a purely MLP-based architecture that uses residual operations to

update projection features, and finally average pools all block

features classification later. It is more stable than Transformer

training and more concise than MLP-Mixer. Inspired by ResMLP,

we propose the HRNet architecture to represent neural radiance

fields, which has amazing performance.

2.3 Spectral bias

Recent works (Mildenhall et al., 2020; Rahaman et al., 2019;

Sitzmann et al., 2020; Tancik et al., 2020) have shown that a

standard MLP with ReLU (Glorot et al., 2011) shows limited

performance in representing high-frequency textures. Researchers

call this phenomenon spectral bias. Its presence leads to some

limitations of the coordinate-based MLP to implicitly represent

3D scenes, such as the inability to fit high-frequency details

of object surfaces. Various methods have been proposed to

alleviate this problem. For example, researchers have proposed

the SIREN (Sitzmann et al., 2020) periodic activation function

to replace the ReLU activation function, which can achieve

accelerated convergence as well as improved image quality. Other

approaches (Mildenhall et al., 2020; Tancik et al., 2020) are to map

input coordinates into high-dimensional Fourier space by using

position encoding or Fourier feature mapping before passing an

MLP. This is also the scheme used by NeRFs, but we found that

the images rendered by NeRFs still have problems with highlight

details being difficult to capture. We consider that the ReLU

activation function is still not the optimal choice, so we use the

Swish (Ramachandran et al., 2017) activation function to replace
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FIGURE 1

We present a method to represent complex signals such as specular reflections. Our method is able to match the expressiveness of

coordinate-based MLPs while retaining reconstruction and rendering speed of voxel grids.

FIGURE 2

Method overview. The coordinates x of the ray sampling points are linearly interpolated by the learnable 3D Grid and then stitched with the viewpoint

vector d. Finally, they are fed into the HRNet to predict the color values. The HRNet is stably trained and accelerates convergence using an a�ne

transformation layer. Layerscale and Skip Connection are used to enhance the network’s ability to fit high-frequency information.

ReLU, and the introduction of the skip-connection, layerscale and

affine module in MLP can ensure the consistency of network

features and significantly improve the network’s ability to fit high-

frequency details.

3 Preliminaries

To represent 3D scenes implicitly, NeRF (Mildenhall et al.,

2020) employs MLP networks. Given any input 3D position x and a

viewing direction d, NeRF uses a spatial MLP to output the density

σ of volumetric particles and view-dependent color emission c:

(σ , e) = MLP(post)(γ (x)) (1a)

c = MLP(rgb)(e, γ (d)) (1b)

MLP(post) first processes the input 3D coordinate×with eight fully-

connected layers and outputs σ and a feature vector e. This feature
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vector e is then concatenated viewing direction d and passed to

MLP(rgb) that output the view-dependent RGB color c. In practice,

positional encoding γ is applied to x and d, which enables the

MLPs to learn the high-frequency details from low-dimensional

input (Tancik et al., 2020). The ray is projected at the pixel center of

the image along the viewing direction d, and N coordinate points

are sampled in a limited range. The MLP is used to query their

densities and colors of theseN points. Finally, theN queried results

are accumulated into a single color with the volume rendering

quadrature in accordance with the optical model given by Max

(1995):

Ĉ(r) =

N
∑

i=1

Ti

(

1− exp (−σiδi)
)

ci) (2a)

where Ti = exp



−

i−1
∑

j=1

σjδj



 (2b)

where δj is the distance between adjacent samples. The function Ti

denotes accumulated transmittance along the ray from near and

far samples. If the ray is blocked, the later sample points will not

be calculated. For more accurate sampling, NeRF simultaneously

optimize two networks: one “coarse” and one “fine.” Given a

training image with camera pose, the NeRF model optimizes the

loss value between the predicted pixel value and the true pixel value:

L =
∑

r∈R

[

∥

∥

∥
Ĉc(r)− C(r)

∥

∥

∥

2

2
+

∥

∥

∥
Ĉf (r)− C(r)

∥

∥

∥

2

2

]

(3)

where Ĉc(r) and Ĉf (r) is color pixel values for the coarse and fine

network outputs. C(r) is the ground truth. R is the set of rays in

each batch.

4 Method

In this section, similar to Sun et al. (2022), we will first introduce

how to use a density voxel grid to achieve scene reconstruction.

The reconstruction process is divided into two stages: a coarse

stage and a fine stage. In the coarse stage, a low resolution voxel

grid is used to obtain the density and color of the scene through

an interpolation algorithm. Building on the coarse stage, the grid

resolution is then increased to further reconstruct scene details

and view-dependent colors. Next, we propose HRNet, a novel

High-Resolution Residual Multi-Layer Perceptron (MLP) Network

designed to effectively model high-dimensional data through a

hierarchical residual architecture. HRNet leverages a combination

of affine transformations, multi-layer perceptrons, and a custom

Swish activation function to achieve robust feature extraction and

transformation, culminating in a low-dimensional output suitable

for tasks such as 3D regression or scene representation. Figure 3

illustrates the overall network structure of our method.

4.1 Coarse scene reconstruction

In the coarse stage, our method aims to efficiently establish

an initial representation of the geometry and density distribution

of the scene. This stage employs a low-resolution voxel grid to

accelerate the optimization process, prioritizing computational

efficiency over fine-grained detail. The primary objective is

to provide a robust foundation for subsequent refinement by

capturing the overall structure and appearance of the scene. A

voxel grid V
(c)
density

∈ R
N(c)×N(c)×N(c)

is used to explicitly model the

volumetric density of the scene, where N(c) denotes the resolution

of the coarse grid (e.g. N(c) = 64). For any 3D position x ∈ R
3, the

density σ (x) is computed via trilinear interpolation:

σ (x) = Interpolate(V
(c)
density

, x)

Similarly, a separate voxel grid V
(c)
rgb

∈ R
3×N(c)×N(c)×N(c)

stores

view-invariant color emissions. The color c(x) at position x is

obtained as:

c(x) = Interpolate(V
(c)
rgb

, x)

This stage effectively captures the coarse geometry and appearance,

serving as an initialization for the fine stage while avoiding the

computational overhead of high-resolution optimization from

scratch.

4.2 Fine scene reconstruction

Building upon the coarse stage, the fine stage refines the

representation of the scene by improving geometric details and

introducing view-dependent appearance effects. The resolution

of the voxel grid is increased to N(f ) (e.g. N(f ) = 256),

enabling the method to model intricate structures and subtle

variations in density and color with greater precision. The

density is now represented by a higher resolution voxel grid

V
(f )

density
∈ R

N(f )×N(f )×N(f )
, and the density at position x is similarly

interpolated:

σ (x) = Interpolate(V
(f )

density
, x)

To account for view-dependent effects, we introduce a feature

voxel grid V
(f )

feature
∈ R

F×N(f )×N(f )×N(f )
, where F denotes the

dimensionality of the feature (e.g. F = 16). The color c(x, d) is

computed by combining the interpolated features with the viewing

direction d through HRNet:

c(x, d) = HRNet(Interpolate(V
(f )

feature
, x), d)

The HRNet maps the input features and direction to an RGB

output. The output of the coarse stage is frozen or used as a priori

to guide the optimization of V
(f )

density
and V

(f )

feature
, thus reducing the

convergence time. This two-stage approach balances efficiency and

quality, achieving superior rendering precision while maintaining

computational tractability.

4.3 HRNet: high-resolution residual
multi-layer perceptron network

4.3.1 Swish activation function
HRNet incorporates a parameterized Swish activation function,

defined as f (x) = x ·σ (x), where σ (x) denotes the sigmoid function.
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FIGURE 3

HRNet overview. The proposed High-Resolution Residual Multi-Layer Perceptron Network comprises A�ne transformations, linear layers, Swish

activation, and residual connections, enabling e�cient feature learning.

This activation is implemented with an optional in-place operation

to optimize memory usage during training. Unlike the widely-used

ReLU, Swish provides a smooth, non-monotonic nonlinearity that

preserves negative values, potentially enhancing gradient flow and

model expressiveness.

4.3.2 A�ne transformation module
A lightweight Affine module is introduced to perform per-

dimension scaling and shifting of the input features. Formally,

given an input x ∈ R
d, the transformation is computed as y =

α · x + β , where α,β ∈ R
d are learnable parameters initialized

to ones and zeros, respectively. This module serves as a feature

normalization mechanism, akin to simplified layer normalization,

enabling the network to adaptively adjust the scale and bias of

intermediate representations.

4.3.3 Multi-layer perceptron (MLP) block
The MLP block in HRNet consists of a three-layer fully-

connected network with an expansion-compression design. For

an input dimension d, the architecture expands the feature space

to 2d through the first layer, maintains this dimensionality in

the second layer, and compresses it back to d in the third layer.

Each linear transformation is followed by the Swish activation,

facilitating non-linear feature mapping. This bottleneck-inspired

design increases the network’s capacity to capture complex patterns

while maintaining computational efficiency.

4.3.4 Residual MLP block (ResMLP block)
At the core of HRNet lies the Residual MLP (ResMLP) Block,

which integrates residual connections and a LayerScale mechanism

to enhance training stability and performance in deep architectures.

The block operates as follows:

- The input x is first processed by an Affinemodule, followed by

a linear layer Linear(d, d), yielding a residual term r1.

- This residual is added to the input, and further scaled by a

learnable LayerScale parameter λ1 ∈ R
d, initialized with a small

constant (e.g., 10−5).

- The resulting feature is then passed through another Affine

module and the MLP block, producing a second residual term r2,

which is similarly scaled by λ2 ∈ R
d and added to the intermediate

representation.

This dual-residual structure, combined with LayerScale,

mitigates the vanishing gradient problem and allows the network

to preserve high-resolution feature information across layers.

4.3.5 HRNet architecture
The full HRNet model consists of a stack of N ResMLP blocks,

where N is a configurable depth parameter (we set N = 1 in our

experiments). The input x is sequentially processed by each block,

followed by a final Affine transformation and a global residual

connection that adds the original input to the output of the block

stack. The resulting features are activated using ReLU and mapped

to a 3-dimensional output via a linear layer Linear(d, 3). This

design ensures that both local and global contextual information

are preserved, making HRNet particularly suited for tasks requiring

precise low-dimensional predictions.

4.3.6 Design rationale and contributions
HRNet draws inspiration from residual networks and

Transformer-like architectures, adapting these concepts to a fully-

connected MLP framework. The use of LayerScale and multiple

residual paths enables the model to scale effectively with depth,

while the Swish activation and affine transformations enhance its

representational flexibility. By outputting a 3-dimensional vector,

HRNet is tailored for applications in 3D vision tasks, such as

scene reconstruction or object localization, where maintaining

high-resolution feature fidelity is critical.

5 Experiments

In this section, we highlight the advantages of our method

by comparing experimental data and rendered images. We use

four publicly available datasets for this comparison: Synthetic-

NeRF (Mildenhall et al., 2020), Synthetic-NSVF (Liu et al., 2020),

BlendedMVS (Yao et al., 2020), and Tanks&Temples (Knapitsch
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FIGURE 4

Quantitative results on the synthetic-NeRF test scenes. We selected three categories of rendered images from Synthetic-NeRF: Hotdog, Mic, and

Materials to compare with Plenoxels and DirectVoxGo. We can find that the images rendered by Plenoxels and DirectVoxGo are not smooth enough,

and the blue box dotted area in the figure.
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et al., 2017).Wewill first introduce each dataset, followed by images

rendered using our method. Next, we present the comparison

results using standardmetrics from previous view synthesis studies:

PSNR, SSIM (Wang et al., 2004), and LPIPS (Zhang et al., 2018).

Note that golden yellow indicates first place, orange indicates

second, and light yellow indicates third.

5.1 Synthetic scenes

5.1.1 Synthetic-NeRF
The Synthetic-NeRF dataset, from the original NeRF paper,

features path-traced renderings of geometrically complex objects

with non-Lambertian materials across eight scenes (chair, drums,

ficus, hotdog, lego, materials, mic, ship). Each scene includes 100

training, 100 validation, and 200 test images at 800×800 resolution

in RGBA format. We conducted comprehensive experiments on

this public dataset, comparing 13 leading methods, including

DirectVoxGo, Plenoxels, PlenOctrees, Mip-NeRF, and NSVF, for

image rendering quality. Table 1 highlights our method’s superior

performance in PSNR, SSIM, and LPIPS metrics. While Mip-NeRF

excels in quality, it requires 6 h to train on an RTX 2080Ti GPU.

Figure 4 compares our method against state-of-the-art approaches,

showing zoomed-in renderings from eight scenes. Our method

produces sharper, more detailed images with fewer artifacts, closely

resembling ground truth.

5.1.2 Synthetic-NSVF
The Synthetic-NSVF dataset includes eight diverse objects

(Wineholder, Steamtrain, Toad, Robot, Bike, Palace, Spaceship,

Lifestyle), each with 100 training and 200 test images at 800×800

resolution. Its complex geometries and textures challenge rendering

methods. As shown in Table 2, our method ranks first in PSNR

(35.83) and LPIPS (0.015), nearlymatchingNSVF’s top SSIM (0.979

vs. 0.978), and outperforms DirectVoxGo by 0.8 dB in PSNR. This

demonstrates our approach’s superior quality, fidelity, and artifact

reduction in synthetic scene rendering.

5.1.3 BlendedMVS and Tanks & Temples
These datasets, characterized by real-world complexity such

as intricate textures, varied lighting, and complex geometries,

are established benchmarks for assessing image rendering in

photogrammetry and 3D reconstruction. Our method outperforms

on BlendedMVS and Tanks & Temples datasets (Tables 3, 4),

improving PSNR by 4 dB and 3 dB, respectively, against NeRF

baselines using public real-world data. This reflects our approach’s

strength in capturing fine details and handling diverse, challenging

scenes—including reflective surfaces, shadows, and occlusions—

enhancing rendering fidelity across varied datasets.

5.2 Ablation study

We study the impact of the different components of HRNet in

ablation studies. We mainly validate the effectiveness of layerscale,

skip-connection and swish —which enable standard MLP to model

TABLE 1 Quantitative results on the Synthetic-NeRF test scenes.

Methods PSNR↑ SSIM↑ LPIPS↓

SRN (Sitzmann

et al., 2019)

22.26 0.846 0.170

NV (Lombardi

et al., 2019)

26.05 0.893 0.160

NeRF (Mildenhall

et al., 2020)

31.01 0.947 0.081

JaxNeRF (Deng

et al., 2020)

31.69 0.953 0.068

Mip-NeRF (Barron

et al., 2021)

33.09 0.961 0.043

AutoInt (Lindell

et al., 2021)

25.55 0.911 –

FastNeRF (Garbin

et al., 2021)

29.90 0.937 –

SNeRG (Hedman

et al., 2021)

30.38 0.950 –

NSVF (Liu et al.,

2020)

31.74 0.953 –

PlenOctrees (Yu

et al., 2021)

31.71 0.958 0.053

Plenoxels (Fridovich-

Keil et al.,

2022)

31.71 0.958 0.049

DirectVoxGo (Sun

et al., 2022)

31.93 0.956 0.053

KiloNeRF (Reiser

et al., 2021)

31.00 0.950 –

Ours 32.50 0.960 0.048

TABLE 2 Quantitative results on the Synthetic-NSVF test scenes.

Methods PSNR↑ SSIM↑ LPIPS↓

SRN (Sitzmann

et al., 2019)

24.33 0.882 0.141

NV (Lombardi

et al., 2019)

25.83 0.892 0.125

NeRF (Mildenhall

et al., 2020)

30.81 0.952 0.043

NSVF (Liu et al.,

2020)

35.13 0.979 0.015

DirectVoxGo (Sun

et al., 2022)

35.08 0.975 0.019

KiloNeRF (Reiser

et al., 2021)

33.37 0.970 –

Ours 35.83 0.978 0.015

scene appearance with NeRF better quality. At the same time,

verify the validity of the case without position encoding. Table 5

shows that our HRNet still renders images of high quality even

without positional encoding. When we remove the some module,

the evaluation metrics drop significantly, which fully demonstrates

the effectiveness of this module.
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TABLE 3 Quantitative results on the BlendedMVS test scenes.

Methods PSNR↑ SSIM↑ LPIPS↓

SRN (Sitzmann

et al., 2019)

20.51 0.770 0.294

NV (Lombardi

et al., 2019)

23.03 0.793 0.243

NeRF (Mildenhall

et al., 2020)

24.15 0.828 0.192

NSVF (Liu et al.,

2020)

26.90 0.898 0.113

DirectVoxGo (Sun

et al., 2022)

28.02 0.922 0.075

KiloNeRF (Reiser

et al., 2021)

27.39 0.920 –

Ours 28.50 0.929 0.069

TABLE 4 Quantitative results on the Tanks&Temples test scenes.

Methods PSNR↑ SSIM↑ LPIPS↓

SRN (Sitzmann

et al., 2019)

24.09 0.847 0.251

NV (Lombardi

et al., 2019)

23.70 0.834 0.260

NeRF (Mildenhall

et al., 2020)

25.78 0.864 0.198

JaxNeRF (Deng

et al., 2020)

27.94 0.904 –

NSVF (Liu et al.,

2020)

28.40 0.900 0.153

PlenOctrees (Yu

et al., 2021)

27.99 0.917 –

DirectVoxGo (Sun

et al., 2022)

28.41 0.911 0.148

KiloNeRF (Reiser

et al., 2021)

28.41 0.910 –

Ours 28.82 0.920 0.137

TABLE 5 Ablation studies.

Methods PSNR↑ SSIM↑ LPIPS↓(Vgg)

NeRF

(Mildenhall

et al., 2020)

31.01 0.947 0.081

Ours 32.52 0.959 0.048

Ours (no pe) 32.50 0.959 0.049

Ours (no

layerscale)

32.16 0.958 0.050

6 Conclusion

Our method strikes a balance between rendering quality and

speed in neural radiance fields, surpassing both the original

NeRF and most of its variants in terms of rendering quality and

training efficiency. As noted in the introduction, our approach

trains a single scene in ∼18 min, with a PSNR improvement of

3–5 dB over the original NeRF. However, it still falls short of

achieving real-time rendering and shows some flaws in quality

at higher resolutions. Despite these limitations, we believe our

method lays the groundwork for faster convergence and enhanced

rendering quality in such scenarios. We expect that our approach

will contribute to further advancements in NeRF-based scene

reconstruction and its applications.
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