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To better assist patients with lower limb injuries in their rehabilitation training,

this paper focuses on motion control and singular perturbation algorithms and

their practical applications. First, the paper conducts an in-depth analysis of

the mechanical structure of such robots and establishes detailed kinematics

and dynamics models. An optimal S-type planning algorithm is proposed,

transforming the S-type planning into an iterative solution problem for

e�cient and accelerated trajectory planning using dynamic equations. This

algorithm comprehensively considers joint range of motion, speed constraints,

and dynamic conditions, ensuring the smoothness and continuity of motion

trajectories. Second, a zero-force control method is introduced, incorporating

friction terms into the traditional dynamic equations and utilizing the LuGre

frictionmodel for friction analysis to achieve zero-force control. Furthermore, to

address the multi-scale dynamic system characteristics present in rehabilitation

training, a control method based on singular perturbation theory is proposed.

This method enhances the system’s robustness and adaptability by simplifying

the system model and optimizing controller design, enabling it to better

accommodate complex motion requirements during rehabilitation. Finally,

experiments verify the correctness of the kinematics and optimal S-type

trajectory planning. In lower limb rehabilitation robots, zero-force control can

better assist patients in rehabilitation training for lower limb injuries, while

the singular perturbation method improves the accuracy, response speed,

and robustness of the control system, allowing it to adapt to individual

rehabilitation needs and complex motion patterns. The novelty of this paper

lies in the integration of the singular perturbation method with the LuGre

friction model, significantly enhancing the precision of joint dynamic control,

and improving controller design through the introduction of a torque deviation

feedback mechanism, thereby increasing system stability and response speed.

Experimental results demonstrate significant improvements in tracking error and

system response compared to traditional methods, providing patients with a

more comfortable and safer rehabilitation experience.
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rehabilitation robots, trajectory planning, singular perturbation, flexible control,
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1 Introduction

With the global aging trend and evolving lifestyles, the demand

for lower limb rehabilitation following injuries has surged, driving

the widespread adoption of rehabilitation robots in medical

applications. Notably, these robots exhibit significant potential in

lower limb rehabilitation training (Qassim and Wan Hasan, 2020).

Traditional rehabilitation relies heavily on specialized therapists to

manually guide patients through passive exercises, a process that

struggles to ensure consistency and continuity due to the limited

availability of qualified therapists and variations in their skill levels

stemming from individual differences. These factors represent key

bottlenecks in current rehabilitation technology. Flexible lower

limb rehabilitation robots address these challenges by simulating

natural human movement patterns, offering personalized training

programs, and facilitating the gradual restoration of motor

functions, thereby alleviating the shortage of skilled trainers.

However, technical challenges persist, particularly in achieving real-

time responsiveness and precise trajectory planning in practical

applications. The systemmodels of lower limb rehabilitation robots

typically exhibit complex characteristics, such as high order, non-

linearity, and strong coupling. Additionally, the accuracy of these

models is often challenging to ensure ultimately, which complicates

the control structure. However, the singular perturbation method

can simplify system models (Kevorkian and Cole, 2012) by

partitioning the system into fast and slow subsystems based on

time scales (Yu and Chen, 2015). Subsequently, controller design

is conducted separately for these two subsystems. This approach

reduces the order of the robot model and significantly decreases

the computational burden. Li et al. (2021) developed an image-

driven control strategy for the slow dynamic part involving rigid

body motion to reduce visual errors, while compensating for errors

in the approximated Jacobian matrix. For the fast dynamic part

related to elastic vibrations, they designed an observer to predict

the fast dynamic state to avoid relying on direct vibration state

measurements. Based on these predicted states, a control feedback

mechanism was developed to mitigate vibrations in the flexible

robot. However, this system requires extra visual sensors, which

introduces additional failure points. These visual sensors may

experience malfunctions or degraded performance due to lighting

conditions and dust.

The trajectory planning methods for rehabilitation robots have

evolved from traditional robotic arms. Additionally, literature 0

introduced a smooth algorithm for trajectory planning of spray

guns to address trajectory connection issues (From et al., 2010).

Literature 0 explored the trajectory planning for the robot end

effector (Dhanaraj et al., 2022). While literature 0 investigated

the robot kinematic model using neural network approaches

(Gao, 2020). However, due to the model complexity and the

lengthy computation time, its engineering applications are limited.

Motion control and singular perturbation control are critical

technologies in rehabilitation robot control systems, directly

impacting rehabilitation training effectiveness and safety. Further

optimization of these control strategies significantly enhances the

performance and clinical rehabilitation robot value.

This paper explores the development of kinematic and

dynamic models for lower limb rehabilitation robots, providing

a theoretical basis for trajectory planning. By applying maximum

acceleration constraints to S-type trajectory planning, the study

generates optimal acceleration trajectories that consider joint

motion ranges, speed limits, and dynamic conditions, ensuring

smooth and efficient robot operations. The integration of the

LuGre friction model into the dynamic equations enables zero-

force control, enhancing patient comfort during rehabilitation.

Additionally, the combination of singular perturbation control

and motor current-based joint torque control improves system

performance, offering precise regulation and rapid response to

dynamic changes. These advancements enhance the robustness

and stability of the control system under external disturbances,

supporting personalized rehabilitation treatments and expanding

the clinical applicability of lower limb rehabilitation robots.

2 Motion control of lower limb
rehabilitation robot

As shown in Figure 1, this system employs a hierarchical open

architecture design Based on the human lower limb structure and

its regular movement mechanisms to enhance patients’ efficiency

and enjoyment during rehabilitation training while allowing

for personalized adjustments based on individual differences.

Regarding safety, the robot legs can be equipped with flexible tactile

sensor modules, which enhance the robot’s interactivity and the

precision of rehabilitation training. The robot also incorporates

multiple safety mechanisms, including force feedback, position

limits, and emergency stop buttons, ensuring rapid response in

abnormal situations to protect patient safety.

2.1 Kinematic model

In Figure 1, represent the lengths of the three links, while β

denotes the angle between the extension line of link 3 and link

2. Let the height of the rise at joint 1 be h, and the rotational

angles at the three joints be θ1, θ2, θ3. These three rotational angles

collectively determine the spatial position and orientation. By

adjusting the angles, the robot can navigate to different points

in three-dimensional space, providing versatile functionality for

patient interaction and treatment.

The DH parameters (as shown in Table 1) are used to describe

the geometric relationship between adjacent joints in robotic

manipulators, consisting of four key parameters: θ (joint angle), d

(link offset), a (link length), and α (link twist angle). Specifically,

θ represents the rotation angle about the Z-axis, describing the

rotational displacement of the current joint and is typically a

variable; d denotes the translation distance along the Z-axis,

indicating the linear displacement of the current joint along

the Z-axis and is usually a constant; a signifies the translation

distance along the X-axis, representing the linear displacement

of the current joint along the X-axis and is generally a constant;

and α represents the rotation angle about the X-axis, describing

the twist angle between adjacent joint axes and is typically a

constant. Together, these parameters define the relative position
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FIGURE 1

Coordinate system and connecting rod diagram of flexible lower limb rehabilitation robot.

TABLE 1 Robot D-H parameters.

rods α a d θ

1 0 0 h 0

2 π
2

0 0 θ1

3 0 l1 0 θ2 +
π
2

4 0 l2 0 θ3 + β

H 0 l3 0 0

and orientation between the joints of a robotic arm, providing a

foundational framework for kinematic analysis.

0
HT = 0

1 T ·12 T ·23 T ·34 T ·4H T =











nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1
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


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
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
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


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



nx = −C1S2C3 + S1C2C 3+ C1C2S3 + S1S2S3

ny = 0

nz = S1S2C3 − C1C2C3 − S1C2S3 − C1S2S3

ox = C1S2S3 − S1C2S3 + C1C2C3 + S1S2C3

oy = 0

oz = 0

ax = 0

ay = −1

az = −S1S2S3 + C1C2S3 − S1C2C3 − C1S2C3

px = l1C1 + l2(−C1S2 + S1C2) + l3(−C1S2C3 + S1C2C3

+ C1C2S3 + S1S2S3)

py = 0

pz = h− l1S1 + l2(S1S2 − CIC2) + l3(S1S2C3−

C1C2C3 − S1C2S3 − C1S2S3)

(2)

The known variables are:











C1 = cos θ1
S1 = sin θ1
C2 = cos θ2











S2 = sin θ2
C3 = cos (θ3 + β)

S3 = sin (θ3 + β)

(3)

The pose transformation matrix (Equation 1) can be obtained

according to DH table, and the forward kinematics equation can

be derived. In this matrix, the first three columns correspond

to the projections of the new coordinate system’s X-axis, Y-axis,

and Z-axis direction vectors within the original coordinate system,

represented as n = [nx, ny, nz]
T o = [ox, oy, oz]

T , respectively.

These vectors collectively define the rotational (orientational)

transformation of the new coordinate system relative to the original

one. The fourth column p = [px, py, pz]
T denotes the position

vector of the new coordinate system’s origin with respect to

the original coordinate system, encapsulating the translational

transformation. The final row [0, 0, 0, 1] serves as the normalization

component of the homogeneous coordinates. Such transformation

matrices are extensively utilized in robotic kinematics, where

sequential multiplication facilitates the computation of the end-

effector’s pose relative to the base coordinate system.

2.2 Zero-force control

Set on the joint coordinates q = [h q1 q2 q3]
T = [h θ1 θ1 +

θ2 θ1 + θ2 + θ3]
T .m1, m2 andm3 respectively, represent the mass

of the three members, l1, l2 and l3 represent the length of the three

members, d1, d2, d3 indicate the distance from the mass center to

the axes of the three members, respectively.

(1) Rehabilitation of robot total potential energy

Potential energy P1 of rehabilitation robot rod 1

P1 = m1g(h+ d1 cos q1) (4)

The potential energy P2 of rehabilitation robot rod 2

P2 = m2 g (h + l1 cos q1 − d2 cos q2) (5)

The potential energy P3 of rehabilitation robot rod 3

P = m3g(h+ l1 sin q1 − l2 sin q2 + d3 cos(q3 + β)) (6)

The rehabilitation robot total potential energy as Equation 7.

P = P1 + P2 + P3 (7)
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(2) The rehabilitation robot total kinetic energy of can be

similarly obtained as follows

K = K1 + K2 + K3 (8)

The Lagrange function L is:

L = K − P = (K1 + K2 + K3)− (P1 + P2 + P3) (9)

The known variables are:











C1 = cos q1
S1 = sin q1
C2 = cos q2











S2 = sin q2
C3 = cos

(

q3 + β
)

S3 = sin
(

q3 + β
)

(10)

The driving torque for each joint of the rehabilitation robot is

then given by:

τ1 =
d
dt
∂L
∂h

− ∂L
∂h

= (m1 +m2 +m3) ḧ+
(

m1d1 +m2l1
+m3l1

)

C1q̈1+
(

−m2d2+ m3l2
)

S2q̈2 −m3d3S3q̈3 −
(

m1d1 +m2l1
+m3l1

)

S1q̇21+
(

−m2d2 +m3l2
)

C2q̇22 −m3d3C3q̇
2
3 − (m1 +m2 +m3) g

(11)

Similarly, we can get other joint driving torques. Take

the friction term into the traditional dynamic equation

and use the LuGre friction model for friction analysis and

realize zero-force control. This study utilized a flexible

lower-limb rehabilitation robotic experimental platform to

approach enabled zero-force and high-precision control of

the end effector force in the robot, achieving effective force

feedback management.

M(q) q̈ + C(q, q̇) q̇ + G(q) + Tf (q̇) = τ (12)

Tf is torque of LuGre friction, q̇ is angular velocity vector, q̈ is

rotational angular acceleration vector.

This paper uses the LuGre friction model to compensate for

joint dynamics. LuGre friction method not only enhances the fit

of friction characteristics simulation but also improves the overall

accuracy of the collision detection model. The LuGre friction

model is

Tf (q̇) =

{[

fC + (fS − fc) exp(−(
q̇

q̇s
)
2

)

]}

sgn(q̇) + σ2q̇ (13)

In order to obtain the real friction parameters, experiments

are carried out on the vacuum manipulator platform to obtain

the following data: among others, fC is Coulomb friction,

fS is static friction; q̇(t) provides real-time speed for the

joints; q̇s for Stribeck Speed δ is a parameter related to the

shape of the contact surface; σ2 is the coefficient of viscous

friction;τ (t) is the joint drive torque measured by a sensor. The

sampling frequency is high enough to capture changes in friction

over time.

In rehabilitation robotics, the LuGre friction model provides

critical support for joint friction compensation. When a patient

applies a minimal external force, the robot, based on real-time

joint velocity measurements and identified friction parameters

(such as static friction), generates an equivalent compensating

torque through the controller to counteract the inherent friction

resistance of the mechanical system. This process enables

the end-effector to exhibit a “weightless” zero-force control

effect for the patient, meaning that only a minimal force is

required to drive the robot’s motion. This significantly enhances

the compliance of rehabilitation training and the safety of

human-robot interaction. By experimentally calibrating parameters

(e.g., low-speed sweep tests for static friction and high-speed

constant velocity tests for viscous friction separation), the

LuGre model further optimizes friction compensation accuracy,

ensuring the robustness of zero-force control in complex

motion scenarios.

2.3 Optimal S-type planning

Under optimal trajectory control, the lower limb rehabilitation

robot significantly improves its trajectory planning ability and

operational flexibility and maximizes the advantages of the

lower limb rehabilitation robot. The trajectory interpolated core

considers both kinematic constraints (such as joint angles and

end-effector positions) and dynamic constraints (including forces,

torques, and inertia). Optimal trajectory parameters that satisfy

these constraints are computed using optimization algorithms.

A complete S-curve trajectory planning can be constructed

based on Equations 14, 15.

J(t) is Jerk, A(t) is Acceleration and V(t) is Velocity:

J(t) =











































J0 ≤ t < t1
0 t1 ≤ t < t2
−J t2 ≤ t < t3
0 t3 ≤ t < t4
−J t4 ≤ t < t5
0 t5 ≤ t < t6
J t6 ≤ t < t7

(14)

A(t) =











































Jτ1 0 ≤ t < t1
JT1t1 ≤ t < t2

JT1 − Jτ3t2 ≤ t < t3
0t3 ≤ t < t4

−Jτ5t4 ≤ t < t5
−JT5t5 ≤ t < t6

−JT5 + Jτ7t6 ≤ t < t7

V(t) =











































Vs +
1
2 Jτ

2
1 0 ≤ t < t1

V01 + JT1τ2t1 ≤ t < t2
V02 + JT1τ3 −

1
2 Jτ

2
3 t2 ≤ t < t3

V03t3 ≤ t < t4
V04 −

1
2 Jτ

2
5 t4 ≤ t < t5

V05 − JT5τ6t5 ≤ t < t6
V06 − JT5τ7 −

1
2 Jτ

2
7 t6 ≤ t < t7
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Position is S(t):

S(t) =











































Vsτ1 +
1
6 Jτ

3
1 0 ≤ t < t1

S01 + V01τ2 +
1
2 JT1τ

2
2 t1 ≤ t < t2

S02 + V02τ3 +
1
2 JT1τ

2
3 − 1

6 Jτ
2
3 t2 ≤ t < t3

S03 + V03τ4 t3 ≤ t < t4
S04 + V04τ5 −

1
6 Jτ

2
5 t4 ≤ t < t5

S05 + V05τ6 −
1
2 JT5τ

2
6 t5 ≤ t < t6

S06 + V06τ7 −
1
2 JT5τ

2
7 + 1

6 Jτ
3
7 t6 ≤ t < t7

(15)

An example of a planning segment from time node t0to

t7is considered, where t0 represents the initial moment and t7
indicates the final moment. At both the start and end points,

the robot velocity and acceleration are set to zero to ensure a

smooth initiation and cessation of motion. Furthermore, it is

essential to account for the limits of robot speed, acceleration,

and jerk (the accelerated change rate) during the movement

process. These include the max velocity vm, the max acceleration

amu, the max deceleration amd, as well as the max jerk

during the acceleration and deceleration phases, denoted as

jmu, jmd. These parameters are directly related to robot safety

and efficiency.

The states of trajectory planning at each discrete point
(

qi, q̇i, q̈i
)

are obtained using the robot S-type programming model.

Based on the established dynamic model (Equation 16), the inverse

dynamic IDy is used to solve the theoretical torque τi,cal of each

joint demand.

τi,cal = IDy
(

qi, q̇i, q̈i
)

(16)

The calculated moment value is compared with each

manipulator joint’s maximum output moment τi,max. If the

calculated moment value exceeds the theoretical moment value,

it indicates that the joint cannot provide the moment value and

must be corrected to make the planning result conform to the

moment limit. The corrected joint calculated moment is as follows

Equation 17.

τi, calmax = sign
(

τi,cal
)

·min
(

τi,max,
∣

∣τi, cal
∣

∣

)

(17)

The optimal trajectory control can be achieved only when the

robot dynamics constraint is applied to the trajectory planning

of the manipulator’s end. According to the dynamic equation of

the manipulator, the corresponding relationship between the joint

torque and acceleration q̈newmax is obtained as follows Equation 18.

q̈newmax = M(q)
(

τi, calmax − q̇TC(q)q̇− g(q)
)

(18)

On this basis, the torque constraint is mapped to the

acceleration constraint, the acceleration subject to the torque

constraint is obtained, and the final acceleration constraint is

obtained by comparing it with the joint acceleration in the

initial state. The process is as follows Equation 19. q̈i,max is the

maximum acceleration constraint in the initial state, q̈i, modified

is the maximum acceleration of the i joint calculated by

torque constraint.

q̈i, newmax = min
(

q̈i,max

∣

∣q̈i, modified

∣

∣

)

(19)

q̈i,newmax is the maximum acceleration constraint adjusted

by the dynamic constraint, and q̈ is the vector formed by the

maximum joint acceleration calculated by the torque constraint.

If the new acceleration constraint is substituted into the dynamic

trajectory planning, the complete trajectory planning satisfies the

dynamic constraint.

3 Singular perturbation method of
lower limb rehabilitation robot

In the widespread robot application, a particular type of system

is often encountered, characterized by significant differences in

the rates of change between various states, exhibiting unique

singularities and separated phenomena in motion (Weingartshofer

et al., 2023; Amersdorfer and Meurer, 2022; Jiang et al., 2023;

Wang et al., 2021; Pana et al., 2023; Cao et al., 2023; Zhang

et al., 2024). Such systems, including electric motors, generators,

precision robotic structures, and complex biological systems, are

collectively called singularly perturbed systems or systemswith dual

time scales. For these dual time-scale dynamic systems, also known

as singular perturbation systems, the design of control strategies

must consider their multi-time-scale characteristics. Traditional

control methods based on a single time scale are often inadequate,

as the dynamic behaviors of such systems differ significantly

across various time scales. To achieve precise control of these

systems, it is common to utilize singular perturbation theory to

decompose the original system into multiple subsystems that are

temporally separated yet mutually coupled, with each subsystem

corresponding to a specific time scale.

3.1 Singular perturbation model of robotics

This chapter focuses on transforming dynamic models

into singular perturbation forms. Based on the inherent

dynamic characteristics, mathematical transformation methods

are applied to derive robot system models that comply

with the requirements of singular perturbation theory

analysis. During this derivation process, friction factors

are temporarily excluded from consideration to simplify

the analysis and highlight the core dynamic characteristics.

The aim is to capture the essential dynamic behavior, it

provides a theoretical framework for the design of subsequent

controllers based on singular perturbation theory. The

singular perturbation model is categorized into separate fast

and slow subsystems. Typically, the fast subsystem reflects

the high-frequency dynamic characteristics, while the slow

subsystem characterizes the long-term behavior and primary

motion trends.

By temporarily neglecting the influence of friction, a simplified

dynamic model of the robotic joint torque system can be
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expressed as follows Equation 20, N is the accelerator transmission

ratio, Jem is motor rotor inertia, is the electromotor torque

formula, which from the AC permanent magnet synchronous

motor torque model. τ is joint torque, τext is the external

reaction torque.











M(q)q̈+ C(q̇, q̇)q̇+ G(q) = τ + τext

NJemq̈+ τ = Nτem
τem = 3

2npyf isq

(20)

It can be observed as follows Equation 21.

τ =
3

2
Nnpψf isq − NJem

dω

dt
(21)

In the analysis of robotic dynamics, the electromotor torque

τem serves as the driving source, and its output is transmitted

to the robot joints through the transmission system, resulting

in the joint torque τ . When the robot design includes joint

torque sensors, this critical parameter can be directly measured.

The expression for joint torque is given by Equation 22, where

K represents the inherent stiffness of the joint, N−1θ is the

equivalent joint angular displacement obtained by inversely

transforming the motor angle θ through the gear ratio N,

and q is the actual joint angle. This Equation illustrates the

dynamic relationship between joint torque, motor angle, and

joint angle, as well as the impact of stiffness K on system

response. The motor angular acceleration is obtained from

Equation 23.

τ = K(N−1θ − q) (22)

θ̈ = NK−1τ̈ + Nq̈ (23)

Substituting Equations 22, 23 into the second equation in

Equation 20, we get Equation 24.

N2JmK
−1τ̈ + τ = Nτm − N2Jmq̈ (24)

Since the inertia matrix is a symmetric positive definite matrix,

the following equation can be obtained.

q̈ = M(q)−1 (

τ + τext − C(q, q̇)q̇− G(q)
)

(25)

Substituting Equation 25 into Equation 24 gives Equation 26.

K−1τ̈ +

(

J−1
m N−2 +M(q)−1

)

τ = J−1
m N−1τm +M(q)−1 (26)

(

C(q, q̇)q̇+ G(q)− τext
)

By introducing a small parameter ε, the system equations

can be reformulated as a standard singular perturbation

model. The joint stiffness K is often very high, so Kε
ε2

can be used instead of K. Kε is positive definite diagonal

matrix. Substituting the expression of K and sorting

it out, we can get the singular perturbation model of

the system:











M(q)q̈+ C(q̇, q̇)q̇+ G(q) = τ + τext

ε2τ̈ + Kε

(

J−1
emN−2 +M(q)−1

)

τ = KεJ
−1
emN−1τem

+KεM(q)−1 (

C(q, q̇)q̇+ G(q)− τext
)

(27)

The system boundary layer model is derived by introducing a

new coordinate variable as follows Equation 28.











h(q, q̇, t) =
(

J−1
emN−2 +M−1

)−1 (

J−1
emN−1τ̄em

+M−1(C ˙̄q+ G− τ̄ext )
)

γ = τ − h(q, q̇, t), y ∈ R
n

(28)

Introduce a new time scale as follows Equation 29.

{

v = (t − t0)/ε

if ε = 0
(29)

Equation 30 is derived from Equations 28, 29.

d2γ
dt2

+ Ks

(

J−1
emN−2 +M−1

)

(γ + h) (30)

= KsJem
−1N−1τem + KsM

−1
(

Cq̇+ G− τext
)

At the time scale v, the state variables and the external inputs

τext are regarded as static values. Equation 31 can be derived.

(

Jem
−1N−2 +M−1

)

h = Jem
−1N−1τ̄em (31)

+M−1(Cq̇+ G− τ̄ext )

By substituting it into Equation 30, the final system boundary

layer model is as follows Equation 32.

d2y

dv2
+ Ks

(

J−1
emN−2 +M−1

)

γ = KsJ
−1
emN−1 (τem − τ̄em) (32)

3.2 Controller design based on singular
perturbation

In robotic controller design, singular perturbation methods

are often integrated into composite feedback strategies to

optimize system performance, as shown in Figure 2. This

decomposition strategy independently addresses the different time

scale issues in the system dynamics, thereby enhancing system

stability, improving response speed, and simplifying the controller

complexity (Bhardwaj et al., 2021; Khan et al., 2022; Zheng et al.,

2022; Iskandar et al., 2022).

This design decomposes the control input into slow and fast

system components, as shown in Equation 33.

τem = τem,slow + τem,fast (33)
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FIGURE 2

Singular control structure diagram.

The slow subsystem represents the long-term behavior and

primary motion trends of the robot. It is characterized by slower

dynamics, such as the robot’s overall trajectory and position control.

The slow subsystem employs classical control strategies, such as

computed torque control and torque feedforward control, which

are commonly used in rigid robot models. These strategies ensure

that the robot’s motion is smooth and accurate over time.

For the selection of the control input τem,slow for the slow

subsystem, it must be based on the assumption that the system has

a standard form, meaning that the average time scale τ in the quasi-

steady-statemodel exists and has a unique solution. The key point is

that the determination of τem,slow should depend solely on the state

variables of the quasi-steady-state model (q, q̇), avoiding the direct

introduction of instantaneous feedback from the joint torque τ , to

ensure the independence and stability of the control input.

The fast subsystem captures high-frequency dynamics, such

as vibrations and rapid adjustments in the robot’s joints. These

dynamics are critical for ensuring stability during rapid movements

or when external disturbances are present.

In designing the control input τem,fast for the fast subsystem, it

is essential to strictly adhere to the principle that it has no impact

on the quasi-steady-state model when boundary layer effects are

significant (ε = 0). This requires that the norm tends to zero

under the limit condition (τem,fast|εto0 = 0). This design criterion

aims to isolate potential disturbances from the fast subsystem

on the dynamic behavior of the slow subsystem, ensuring the

overall stability and accuracy of the system during rapid dynamic

adjustments while optimizing performance in the boundary layer

region. And we get the Equation 34.

{

τem,slow = τem|calE→0 = τ̄

τem,fast = τem − ¯τ = −εDτ γ̇
(34)

It becomes clear that this structure aligns with that of a rigid

robot model. This alignment allows for the direct application of

classical control strategies used for rigid manipulators, such as

the computed torque method and torque feedforward control, for

design slow subsystem.

The damping matrix Dτ is designed as a positive definite

matrix to ensure the stability and convergence of the system.

A positive definite damping matrix introduces an energy

dissipation mechanism into the system, which helps to suppress

oscillations and stabilize the system. This is particularly crucial

for rehabilitation robots, as smooth and stable motion is vital for

patient safety and comfort.

For the slow subsystem, the controller design follows the

fundamental principles (Equation 35) of the rigid manipulator

model. The variables q, q̇ represent the joint position and velocity.

Considering the specificity of the boundary layer system, where

time t and state variables can be treated as constants within

a specific analytical framework, the original term −εDτ γ̇ can

be reasonably transformed into −εDτ τ̇ . This transformation

deepens the understanding of the system dynamic behavior under

boundary conditions.

τem,slow = τrigid(q, q̇) (35)

The design of the overall composite feedback controller

for the robotic system integrates the control strategies of

the aforementioned fast and slow subsystems. By adjusting

the positive definite damping matrix, the control laws of the

rigid manipulator model, and the dynamic adjustments under

boundary layer effects, a robust and efficient control system

framework is ultimately formed. This framework is capable of

addressing complex and variable operational environments and

task requirements.

τem = τrigid (q, q̇)− εDτ τ̇ (36)

It utilizes an increased damping term to act on the

system. However, it does not address or optimize the dynamic

characteristics of the boundary layer, which limits the system’s

overall performance improvement. To overcome this shortcoming,

we introduce a torque deviation feedback mechanism. By

monitoring and feeding back torque deviations in real-time, we

can dynamically adjust the control strategy, enhancing system

stability and significantly improving the boundary layer’s dynamic

response and adjustment capability, leading to more efficient

system control.

The torque deviation feedback is Equation 37.

Kτγ = Kτ (τ − h(q, q, t)) (37)

Kτ is gain matrix, which used to improve the boundary layer

dynamic performance. Therefore, the entire controller can be

expressed as follows:

τem = τrigid (q, q̇)− Kτγ − εDτ τ̇ = τrigid (q, q̇) (38)

−Kτ (τ − h(q, q̇, t))− εDτ τ̇
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3.3 Improved controller design

To implement an effective feedback mechanism, it is often

necessary to accurately solve the steady-state function h(q, q̇, t).

However, this can be quite challenging in practical applications,

such as the difficulties in accurately measuring external torque

τext and the complex computation of the inverse inertia

matrix M(q). The Tychonov theorem states that for trajectory

tracking errors, it ensures that the deviation from the quasi-

steady state is bounded by a high-order infinitesimal quantity

ε. This characteristic becomes significant only as ε approaches

zero, highlighting the remarkable advantage of the boundary

layer model over the quasi-steady state model in terms of

dynamic response speed. By finely tuning the parameter ε,

rapid convergence of the error to a range close to the quasi-

steady state can be achieved. Its introduction enables us to

decompose complex multi-timescale systems into two independent

subsystems—the fast subsystem and the slow subsystem—thereby

simplifying controller design. The fast subsystem is typically

employed to address high-frequency dynamics (e.g., vibrations,

rapid adjustments), while the slow subsystem is utilized to

manage low-frequency dynamics (e.g., overall trajectory control,

position control).

To lessen the complexity of the state function, the controller is

broken down into the following structure.

τem = τss(q, q̇)− Kτ τ − εDτ τ̇ (39)

The positive definite control gain matrix Kτ ,Dτ are crucial,

as they ensure the system stability and responsiveness. The real-

time control input τss(q, q̇) in the quasi-steady state model is

dynamically adjusted based on the system state to achieve precise

control. By replacing Kτ τ in the original Equation 39 with Kτ y,

it directly affects the dual time scale control strategy. On one

hand, it directly acts on the fast system component, optimizing

the computation of τm,fast to enhance the system rapid response

capability and dynamic performance. On the other hand, this

strategy also indirectly affects the control input of the slow system

component τm,slow by optimizing the long-term control strategy,

thereby improving the system robustness and steady-state accuracy.

During the design process, careful adjustments to Kτ ,Dτ are

necessary, taking into account the interactions between the fast

and slow systems to ensure that the overall control system can

respond quickly to external changes while maintaining long-term

stable operation.

τss(q̄, q̄) = N−1(I + Kτ )τd, τd (40)
(

M(q̄)+ (I + Kτ )
−1N2Jem

)

¯̄q+ C(q̄, q̄)q̄+ G(q̄) (41)

= (I + Kτ )
−1Nτss(q̄, q̄)

τdas a new control input, it can be designed based on rigid

robots to derive the steady-state system as follows Equation 41.

Finally, we get the Equation 42 and Closed-loop control system

Equation 43.

τem = τd − Kτ (τ − τd)− εDτ τ̇ (42)
d2γ
dv2

+ Kǫ J
−1
emN−1Dτ

dγ
dv

+ kǫ J
−1
em (43)

(

N−2 + JemM(q)−1 + N−1Kτ
)

γ = 0

For the newly constructed quasi-steady state system, the design

of the inertia matrix Kτ is closely related to the control gain matrix.

We can dynamically configure the inertia distribution coefficient of

themotor rotor by adjusting this parameter. This not only enhances

the system resistance to external disturbances but also optimizes the

response speed and stability of the control loop.

For the modified boundary layer system, the control input for

the fast subsystem part is in the form of Equation 44.

τem, fast = −Kτ (τ̄ − τ̄ )− εDτ τ̇ = −Kτγ − εDτ τ̇ (44)

d2γ
dv2

+ KεJ
−1
emN−1Dτ

dγ
dv

+ KεJ
−1
em (45)

(

N−2 + JemM(q)−1
+ N−1Kτ

)

γ = 0

4 Experiment

4.1 Kinematics and trajectory planning

The kinematic experiment uses cylindrical helices and conical

helices to verify the kinematic trajectories. The parametric equation

for a cylindrical helix can be expressed as Equation 46.











x(t) = R · cos(t)

y(t) = R · sin(t)

z(t) = c · t

(46)

Here, t is the parameter, R is the radius of the helix, and c is the

pitch constant, which represents the distance the helix moves in the

z direction for each complete turn.

The parametric equation for a conical helix can be expressed as

Equation 47.











x(t) =
(

R0 + kt
)

· cos(t)

y(t) =
(

R0 + kt
)

· sin(t)

z(t) = c · t

(47)

Here, R0 is the initial radius of the helix, k is the pheasant rate

of change and c is the pitch constant.

As shown in Figure 3, by comparing the original end effector

trajectory with the trajectory obtained from the forward kinematics

calculations, the results indicate a high degree of consistency

between the two. This not only verifies the correctness of the inverse

and forward solution algorithms but also further demonstrates the

accuracy and reliability of the robot kinematic model in design and

practical applications.

Figure 4 clearly illustrates the trajectory constraints of

S-curve trajectory planning within a specified time frame

and how to accurately generate trajectories that comply with

preset acceleration limits, thereby validating the correctness
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FIGURE 3

Cylindrical helix and conical helix.

FIGURE 4

S-type trajectory planning.

of this planning method. The main advantage of trajectory

planning in joint space is the direct control of the robotic joint

movements. Compared to trajectory planning in operational

space, this approach significantly enhances operational

flexibility and accuracy. Furthermore, this method effectively

avoids potential issues arising from motion singularities and
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FIGURE 5

Optimal trajectory control end position time.

operational complexities, thereby enhancing the robustness of the

system.

In this paper, the torque value obtained by the complete

dynamic model is converted into the acceleration value, and the

acceleration value is further applied as a limiting factor in trajectory

planning to obtain the optimal trajectory control of the lower

limb rehabilitation robot. As shown in Figure 5, the horizontal

coordinate is the time, and the vertical coordinate is the TCP end

position of the vacuum manipulator. Red is the general planning

curve, and blue is the optimal trajectory curve. When the end

position is from 0 to−80 and then to 90, the robot’s time is obtained

from the acceleration calculated by the dynamics, and the planning

time becomes significantly faster.

The acceleration calculated by the dynamics is applied to the

S-type trajectory planning, and the optimal trajectory control of

the acceleration of the S-type trajectory is performed indirectly

according to the acceleration solved by the dynamics to achieve

the corresponding optimal. Comparing the running time with the

ordinary planning time, optimal S-type planning performs quickly.

Optimal S-type planning typically requires that servo drives use

position control, which enhances the speed and current response of

the motor, thereby improving the effectiveness of position control.

4.2 Zero-force control based on friction
model

Zero force control is a compliant control strategy that aims

to ensure that the force between the system and the environment

remains at zero level. The LuGre friction parameters are identified

and optimized, and the theoretical driving torque is solved against

the collected actual torque, as shown in Figure 6. The blue curve

represents the real frictionmoment curve, while the red curve is the

moment curve of the LuGre friction model proposed in this paper.

FIGURE 6

Comparison of actual torque and theoretical torque on zero-load

control.

The deviation of actual friction and LuGre friction is calculated to

be about 5Nm. The results verify that the whole dynamic algorithm

with The LuGre friction can effectively solve zero-force control.

To intuitively and scientifically validate the effectiveness of

the dynamic algorithm, this study utilized a flexible lower-limb

rehabilitation robotic experimental platform to demonstrate a

zero-load control algorithm. As shown in Figure 7, this approach

enabled high-precision control of the end effector force in the robot,

achieving effective force feedback management.

Implementing the zero-load control algorithm on the

experimental platform signifies that the robot can more accurately

simulate the natural movement patterns of the human body

while performing rehabilitation training tasks. This reduces

Frontiers inNeurorobotics 10 frontiersin.org

https://doi.org/10.3389/fnbot.2025.1562519
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Xie et al. 10.3389/fnbot.2025.1562519

FIGURE 7

Zero-load control of flexible lower limb rehabilitation robot.

FIGURE 8

Tracking error of PD control.

unnecessary mechanical resistance and discomfort, enhancing

patient rehabilitation experience and therapeutic outcomes.

Such advancements have profound implications for improving

rehabilitation efficiency, shortening recovery periods, and reducing

overall rehabilitation costs.

4.3 Singular perturbation

To validate the effectiveness of the designed control method,

we compared the PD control strategy with a PD-based composite

FIGURE 9

Command velocity vs. actual velocity with PD control.

control strategy that integrates singular perturbation theory. The

core of the experiment involved quantitatively analyzing the system

performance under both control architectures, focusing on key

metrics such as system tracking error, velocity response curves, and

velocity error. Figures 8, 9 visually demonstrate the system dynamic

behavior using classical PD control, providing a benchmark for

subsequent comparison with PD control combined with singular

perturbation theory. In figures, the Tracking difference on the

Y-axis represents the actual code drive value minus the planned

code drive value, and its units can be expressed in PPR (Pulse

Per Revolution).
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FIGURE 10

Tracking error of PD + singular perturbation control.

FIGURE 11

Command velocity vs. actual velocity with PD control + singular

perturbation.

The system data curves for the PD combined with singular

perturbation control are presented in Figures 10, 11.

The comparison curves (Figure 12) indicate that a singular

perturbation controller significantly enhances system tracking

performance, reducing the tracking error by about one-third

compared to using only a PD controller. As a critical step in

evaluating the controller performance, experimental validation,

through comparative data, demonstrates that the PD with singular

perturbation control effectively reduces system tracking errors,

ensuring more accurate trajectory tracking.

From Table 2, we can intuitively observe the advantages and

disadvantages of the two control methods. The PD control excels

in its simplicity and low computational cost, making it suitable for

real-time applications in rigid systems. However, it struggles with

multi-time-scale dynamics and external disturbances, leading to

larger tracking errors and slower response times. In contrast, the

PD + Singular Control (PD+SC) significantly improves response

FIGURE 12

Compared curves of the two methods.

TABLE 2 Compared methods.

Method Advantages Limitations

PD 1. Simple structure 1. Limited effectiveness in

multi-time-scale systems

2. Low computational cost 2. Difficulty in handling

high-frequency dynamics

3. Performs well in rigid systems 3. Larger tracking errors and

slower response speed

PD+SC 1. Improves response 1. Complex controller design

2. Effectively handles

multi-time-scale dynamics

2. Higher computational cost

3. Enhances system robustness

speed, tracking accuracy, and system robustness by effectively

handling multi-time-scale dynamics. Nevertheless, it comes with

increased complexity in controller design, higher computational

demands, and potential errors due to model simplification. This

comparison highlights the trade-offs between simplicity and

performance in control system design.

The improvement in tracking error has significant practical

implications for patient rehabilitation. By reducing tracking

errors, the robot can more precisely follow the patient’s movement

intentions, minimizing unnecessary mechanical resistance

or sudden adjustments. This enhanced precision makes the

rehabilitation training feel more natural and comfortable for

patients, reducing discomfort caused by inaccurate robot

movements. Additionally, smaller tracking errors enable the

robot to respond more accurately to the patient’s actions during

training, enhancing safety by preventing accidents due to control

delays or errors. For example, if a patient suddenly stops or

changes direction, the robot can adjust quickly and accurately,

lowering the risk of injury. Furthermore, precise motion control

allows patients to engage in more effective rehabilitation training.

By providing consistent and accurate assistance, the robot

helps patients better restore their motor functions, potentially
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accelerating the recovery process and shortening rehabilitation

time. The experimental results allow for further adjustments and

optimization of the control parameters to achieve the best control

outcomes. This validates the theoretical design’s correctness

and provides valuable experience and data support for future

engineering applications.

5 Conclusion

This paper focuses on developing a flexible lower limb

rehabilitation robot, with an in-depth exploration of the

construction process for motion control and singular perturbation

algorithms. The classical DH method was employed to ensure the

accuracy and practicality of the models. The study demonstrates

a dynamic zero-load control algorithm to utilize a flexible

lower-limb rehabilitation robotic. Take the friction term into

the traditional dynamic equation and use the LuGre friction

model for friction analysis to realize zero-force control.

This approach enabled high-precision control of the end

effector force in the robot, achieving effective force feedback

management. In this paper, an optimal S-type planning with

limited acceleration is proposed, and a complete algorithm for

all possible trajectory shapes under various constraints is given.

The trajectory planning algorithm proposed in this paper is

more consistent with the actual motion performance of the

robot. The limitations of traditional singular perturbation control

methods in flexible joint robots were anal in control strategize.

The rehabilitation robot employing the improved singular

perturbation control strategy can rapidly respond to and adjust

the applied external forces when the patient actively participates

in training, significantly reducing the discomfort and stress risks

perceived by the patient. This technology demonstrates significant

control accuracy, system response speed, and operational

safety advantages.

Looking ahead, we plan to expand further and optimize

the findings of this research, including but not limited to

improving the accuracy of the dynamic models, optimizing

the efficiency of the control algorithms, and enhancing the

robustness and adaptability of the system. Additionally, we will

actively explore the application potential of this technology

in other rehabilitation robot fields, such as upper limb and

spinal rehabilitation, to benefit more patients in need of

rehabilitation support.
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