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Introduction: Wrist function impairment is common after stroke and heavily 
impacts the execution of daily tasks. Robotic therapy, and more specifically 
wearable exoskeletons, have the potential to boost training dose in context-
relevant scenarios, promote voluntary effort through motor intent detection, and 
mitigate the effect of gravity. Portable exoskeletons are often non-backdrivable 
and it is challenging to make their control safe, reactive and stable. Admittance 
control is often used in this case, however, this type of control can become 
unstable when the supported biological joint stiffens. Variable admittance 
control adapts its parameters dynamically to allow free motion and stabilize the 
human-robot interaction. 
Methods: In this study, we implemented a variable admittance control scheme 
on a one degree of freedom wearable wrist exoskeleton. The damping parameter 
of the admittance scheme is adjusted in real-time to cope with instabilities and 
varying wrist stiffness. In addition to the admittance control scheme, sEMG- and 
gravity-based controllers were implemented, characterized and optimized on 
ten healthy participants and tested on six stroke survivors. 
Results: The results show that (1) the variable admittance control scheme 
could stabilize the interaction but at the cost of a decrease in transparency, 
and (2) when coupled with the variable admittance controller the sEMG-based 
control enhanced wrist functionality of stroke survivors in the most extreme 
angular positions. 
Discussion: Our variable admittance control scheme with sEMG- and 
gravity-based support was most beneficial for patients with higher levels of 
impairment by improving range of motion and promoting voluntary effort. Future 
work could combine both controllers to customize and fine tune the stability of 
the support to a wider range of impairment levels and types. 
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1 Introduction 

Upper limb paresis is a common impairment poststroke 
affecting 75% of stroke survivors (Rathore et al., 2002). This 
manifests not only during whole arm movements but also 
during tasks that require well-coordinated hand and wrist actions. 
Wrist function in particular is essential in many activities of 
daily living (ADL) for orientating and stabilizing the hand 
(Palmer et al., 1985), and recovery of this function can have a 
meaningful impact on the quality of life poststroke (Squeri et al., 
2013). Robot-mediated rehabilitation has the potential to provide 
intensive, repetitive, and task-specific training in a motivating 
environment (Norouzi-Gheidari et al., 2012; Colombo et al., 
2007). Moreover, by supporting movements with the impaired 
limb, robotic training promotes voluntary effort and enhances 
proprioceptive feedback, which stimulates neuroplasticity in the 
neural circuitry that generates skilled movements (Miall et al., 2018; 
Ghez et al., 1990; Hasan, 1992). One limitation of most robotic 
rehabilitation devices to date is that they are stationary and require 
supervision from trained professionals. This could be overcome by 
portable exoskeletons that support the impaired limb based on the 
movement intention of the user (Lenzi et al., 2012), or by reducing 
the effect of gravity (Wu et al., 2016; Moubarak et al., 2010). The 
putative advantage of portable exoskeletons is that they would allow 
the integration of rehabilitation training into functional everyday 
tasks, which would provide a high training dose via distributed 
sessions in task-relevant contexts (Brewer et al., 2007; Bützer et al., 
2019; Gasser et al., 2017). 

Currently, there are only a few active wearable devices targeting 
wrist function that could be used as portable rehabilitation tools 
(Dragusanu et al., 2020; Choi et al., 2019; Higuma et al., 2017; 
Sangha et al., 2016; Al-Fahaam et al., 2016; Bartlett et al., 
2015; Andrikopoulos et al., 2015; Khokhar et al., 2010), and 
none of these solutions are fully portable and mobile. Existing 
wearable wrist exoskeletons fall into two main categories. The first 
includes designs that use highly flexible and compliant structures, 
however, the control of these devices is challenging so they usually 
only provide relatively basic support, e.g., via pre-programmed 
(Dragusanu et al., 2020; Bartlett et al., 2015; Andrikopoulos et al., 
2015) or remotely triggered (Higuma et al., 2017) movement 
sequences. The second category includes designs that use rigid 
structures which are less comfortable to wear but allow the 
implementation of more precise and continuous control schemes 
that incorporate physiological signals such as force myography 
(FMG) (Sangha et al., 2016) or surface electromyography (sEMG) 
(Khokhar et al., 2010). Control schemes based on physiological 
signals afford some level of voluntary effort from the stroke 
survivor, which is believed to be more beneficial for neural 
reorganization and recovery (Lotze et al., 2003; Perez et al., 2004). 
Moreover, precise and proportional control of the mechanical 
support enhances the rehabilitation of coordinated movements 
(Lotze et al., 2003; Ghez et al., 1990). These assumptions motivated 
the development of new interactive robot-based treatments that 
require active participation (Song et al., 2013; Hu et al., 2015; Lenzi 
et al., 2012). 

One challenge when designing wearable actuated exoskeletons 
for poststroke rehabilitation is the development of an appropriate 

controller. sEMG is a technique that has been used extensively 
for the control of upper-limb robotic devices by decoding the 
user’s movement intention (Farina et al., 2014). This method is 
non-invasive, easy to apply, and contains rich information about 
motor intentions. Moreover, the occurrence of the sEMG signal 
starts about 20–50 ms before overt movement takes place (Norman 
and Komi, 1979), which might help reduce delays in the robot’s 
actuation system. However, the signal varies substantially across 
subjects and electrode placement, which requires a calibration after 
the device has been donned (Fleischer and Hommel, 2007; Hashemi 
et al., 2014; Lin et al., 2024). Typically, the signal is heavily filtered to 
extract its envelope, which is suitable for robotic control (Lyu et al., 
2020). From there, the amplitude of the envelope is extracted to 
proportionally control joint velocity (Corbett et al., 2011), pressure 
(Sawicki and Ferris, 2009) or torque of the assistive device. Torque 
mapping is by far the most common and straightforward approach 
to obtain natural motion (Song et al., 2013; Hu et al., 2015; Lenzi 
et al., 2012), but precise control can be challenging due to the non-
linear sEMG-torque relationship with respect to movement velocity 
and joint position (Farina, 2006; Solomonow et al., 1991). 

An alternative control strategy that does not attempt to 
decode the user’s movement intention is gravity compensation. 
By definition, a wearable exoskeleton moves with its user, and 
thus the mechanical support it provides to the limb is altered 
by the effect of gravity. One solution that takes this effect into 
account is evaluating the spatial orientation of the exoskeleton and 
adjusting the mechanical support accordingly. This can be done by 
implementing an inertial measurement unit (IMU) on the device. 
Gravity compensation has mostly been implemented on stationary 
exoskeletons that support shoulder and elbow joints to compensate 
for the weight of the arm (Hsieh et al., 2015; Spagnuolo et al., 2015). 
Anti-gravity support benefits upper-limb rehabilitation primarily 
by reducing the amount of fatigue experienced by acute and sub-
acute patients, thus enabling an increase in the quality and dose 
of training (Kwakkel and Meskers, 2013). It is also effective for 
improving motor control and decreasing spasticity (Prange et al., 
2006; Brewer et al., 2007). 

Wearable exoskeletons featuring a rigid structural design with 
a direct implementation of the actuation system (i.e., DC motors) 
usually lack backdrivability. This results from the implementation 
of small actuators with high gear ratios in order to minimize 
weight. In this context, a natural and smooth physical human-
robot interaction (pHRI) cannot solely be mediated through 
physiological signals or gravity support. The pHRI must be safe, 
but also reactive and compliant to the user’s movement intentions 
(De Santis et al., 2008). To that end, a straightforward approach is 
to measure interaction forces with sensors connected in series with 
the kinematics chain (Nef et al., 2006). Admittance control is an 
appropriate and commonly adopted force-based control to actuate 
the robot (Kilic, 2017; Topini et al., 2022; Zeng and Hemami, 1997) 
as opposed to impedance control which is used with position-based 
and usually backdrivable systems. However, admittance control 
is prone to instability, especially when the human joint becomes 
stiffer during pHRI (Landi et al., 2017; Wang et al., 2015). For 
instance, oscillations of the end-effector can arise during a reaching 
task when the wrist needs to stiffen to stabilize the hand for a 
grasp. A possible strategy to prevent oscillations and instability is to 
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dampen the system by adjusting the parameters of the admittance 
control scheme. A simplistic approach is to set these parameters 
sufficiently high in order to constantly dampen the pHRI, however, 
the transparency of the robotic system, i.e., its capacity to not 
apply resistance or assistance to free motion (Proietti et al., 2016), 
is then affected. The capability of haptic rehabilitation devices 
to provide transparent behavior is important for quantitatively 
assessing the patient’s ability to perform movements without being 
disturbed by the device dynamics (Tagliamonte et al., 2011). Thus, 
in order to allow free motion, but at the same time stabilize 
the pHRI, the admittance control parameters need to be adapted 
dynamically. A variable admittance control scheme adapts its 
parameters either by detecting the instability (Landi et al., 2017; 
Dimeas and Aspragathos, 2016) or by estimating the stiffness of the 
human limb (Castellini et al., 2014; Raiano et al., 2020). 

The present work investigates a novel approach combining 
variable admittance control for sEMG-based and gravity-based 
support implemented on a wearable and non-backdrivable wrist 
exoskeleton. In this context, we test whether (1) variable admittance 
control will stabilize the pHRI while allowing transparent motion, 
and (2) the sEMG-based and gravity-based controllers will enhance 
wrist functionality and promote voluntary effort. For this purpose, 
we performed a proof of concept study and implemented different 
control strategies using a 1 DOF device actively supporting wrist 
extension and flexion movements (Lambelet et al., 2020, 2017). 
The controllers were assessed in a visuomotor goal-directed task 
which required participants to move their wrist to different target 
positions. The variable admittance scheme and both controllers 
were optimized in a group of ten healthy participants and then 
tested in six stroke patients. 

2 Materials and methods 

First, this section describes the implementation on the 
exoskeleton of the variable admittance scheme and the controllers. 
A short characterization of the variable admittance scheme is 
provided, followed by a description of how we evaluated the 
controllers in a behavioral task with healthy and stroke participants. 

2.1 Apparatus 

2.1.1 The eWrist 
The eWrist depicted in Figure 1A is a fully wearable 1 DOF 

force controlled wrist exoskeleton that actively supports extension 
and flexion movements (Lambelet et al., 2020, 2017). It actuates the 
wrist with a torque up to 3.7 Nm, an angular velocity up to 530◦/s 
over a range of motion (ROM) of 215◦ . A load cell measures the 
force applied by the user on the handle. Absolute angular position 
and velocity are measured with a Hall encoder placed at the wrist 
axis and a Hall sensor integrated on the motor shaft, respectively. 
An inertial measurement unit (IMU) measures the orientation 
of the exoskeleton. Because of high reduction gear ratios, the 
transmission mechanism of the device is not backdrivable. The 
eWrist is fixed on the forearm and hand of the user as shown in 
Figure 1C. The variable admittance scheme is implemented in a 
real-time microcontroller (Teensy 3.2, MK20DX256 32 bit ARM 

Cortex-M4 72 MHz) and actuates the handle of the exoskeleton 
based on interaction forces as shown in Figure 2. During the 
visuomotor task the Teensy collects and transmits force, angular 
position/velocity and IMU data to a host computer via serial 
communication (USB). 

2.1.2 The Myo armband 
The Myo armband was1 a commercially available device from 

Thalmic Labs. It measures sEMG activity on the forearm and 
consists of eight dry sEMG sensors. It has a sampling frequency 
of 200 Hz for raw sEMG data and communicates via Bluetooth 
Low Energy (BLE) making it easy to connect to other devices 
wirelessly. The raw data ranges from –128 to +128 and is unitless. 
The Myo armband can be easily donned, doffed, and adjusted to 
many forearm sizes (see Figure 1B). 

2.2 Control 

The core control of the eWrist is based on a variable admittance 
scheme that uses measured pHRI forces Fmeas to generate a motion 
(see block admittance controller in Figure 2). The sEMG- and 
gravity-based controllers produce a mechanical support that is 
either based on the sEMG signal measured on the forearm with 
the Myo armband or based on the spatial orientation of the 
forearm module measured with an IMU. Both sEMG- and gravity-
based controllers generate a fictive additional force (Femg and Fgrav, 
respectively) that is subtracted from Fmeas, the result of which Fdiff 

is the input to the variable admittance scheme, as shown in Figure 2. 
This additional force can be fine tuned with gains (Gemg and Ggrav). 
In this study, the sEMG- and gravity-based controllers were never 
used simultaneously along with the admittance controller, i.e., it 
was either the admittance + sEMG (cf. Equation 1) or admittance 
+ gravity (cf. Equation 2). 

Fdiff = Fmeas − Femg (1) 

or 

Fdiff = Fmeas − Fgrav (2) 

Note that given our sign convention, Femg and Fgrav are being 
subtracted from Fmeas to stabilize the support and prevent any 
runaway effects. For instance, in the case of the sEMG controller, 
a support is provided by the exoskeleton as long as the measured 
sEMG activity exceeds the measured interaction force. 

2.2.1 Variable admittance scheme 
Admittance control receives a force input and outputs a motion 

in response as shown in Equation 3. Two parameters, namely 
virtual inertia M (Nm · s2/rad) and virtual damping B (Nm · 
s/rad) can be tuned to change the dynamic behavior of the 

1 The Myo armband was discontinued in October 2018. 
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FIGURE 1 

(A) The forearm module of the eWrist, where the motor and worm drive can be shifted up in order to uncouple the handle from the motor (see 
orange arrow). (B) The Myo gesture control armband from Thalmic Labs. (C) Illustration of the wrist angular position θ and the referentials used to 
compute Fgrav , i.e., the earth referential R0 in green, the forearm module referential R1 in red, and the hand referential R2 in blue. 
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FIGURE 2 

Block diagram of the variable admittance scheme and the two controllers. The elements within the purple dotted line form the sEMG-based 
controller, where the sEMG signal is normalized based on the participant’s MVC and converted to a force Femg via the gain Gemg. The elements within 
the blue dotted line form the gravity compensation controller that produces a force Fgrav based on the exoskeleton’s orientation and normalized via 
the gain Ggrav . Subsequently,  Femg and Fgrav are fed to the admittance controller. The elements within the green line are implemented in the Teensy 
microcontroller and run at 1 kHz, while the elements within the red line run on the host computer at 60 Hz. 

exoskeleton. Equation 3 expresses the equation of motion in the 
time domain and its conversion to the Laplace domain with respect 
to angular velocity. 

M ¨ θ + B ̇θ = F · L 
L(·)⇒ ω = 

L 

Ms + B 
· F (3) 

where ¨ θ and θ̇ are the angular acceleration and angular velocity of 
the wrist in the time domain, respectively, ω the angular velocity 
in the Laplace domain, L the distance between the mechanical axis 
and the average pressure point of the hand on the handle (set at 8 
cm), and F the force applied on the handle. 

A discretized version of the admittance scheme is implemented 
in the Teensy microcontroller with the Tustin transformation 
(Lambelet et al., 2020). A variable admittance scheme is used 
to both reject disturbances in the pHRI, but also to render low 
inertia and transparent behavior of the device. To that end, B 
is dynamically adjusted either to dampen the system in case of 

instabilities or to free it during smooth motion (Dimeas and 
Aspragathos, 2016; Grafakos et al., 2016). The adaptation of B is 
represented by the block parameters adaptation in Figure 2 and is 
described in Equation 4. 

Bn = Bmin + Gstif (θ) · Is,n, n = {1, 2, 3, ...} 
Mn = Mmin 

(4) 

where Bn and Mn are the current damping and inertia values, 
respectively. Bmin and Mmin are the minimal damping and inertia 
values set at 0.04 (Nm · s/rad) and 0.004 (Nm · s2/rad), respectively, 
which render maximal transparency during smooth human-robot 
interactions. Gstif (θ) is a non-linear gain depending on the angular 
position of the wrist θ , Is,n the current index of stability, and n 
the control loop counter. In our implementation of the variable 
admittance scheme, Mn was kept constant and only Bn was 
dynamically adjusted (Dimeas and Aspragathos, 2016). 
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Gstif (θ) expresses the change in passive stiffness of the wrist 
joint according to its angular position. The passive stiffness 
increases close to the limits of the joint’s ROM (i.e., more likely 
to generate oscillations in the pHRI) and is the lowest around a 
straight wrist position. Therefore, by acting on Bn, Gstif (θ) dampens 
the system faster (i.e., to dissipate energy and attenuate oscillations) 
for large wrist angles than for small wrist angles. Gstif (θ) changes 
continuously based on the wrist angle θ , is subject-dependent, and 
is set during a calibration phase. More information on Gstif (θ) is  
provided in the Supplementary Equation S1. Is,n is a recursive index 
which varies according to both the frequency and the magnitude of 
the oscillations measured in the force signal as shown in Equation 5. 

Is,n = Ifreq,n · Imag,n + λ · Is,n−1 (5) 

where Ifreq,n is the current frequency index, Imag,n the current 
magnitude index, λ a parameter set at 0.7 that controls the 
frequency and magnitude parameters of the output Is,n, and Is,n−1 

the previous index of stability. 
Ifreq encodes the frequency of oscillations, whereas Imag encodes 

the magnitude of these oscillations as shown in Equations 6, 7. Both 
indexes are computed in real-time on the Teensy over a moving 
window of length m = 200 samples. The moving window moves in 
increments of eight samples since Is is computed every eight loops 
of the admittance control loop (i.e., at 1,000/8 = 125 Hz) to limit 
impacting the assistance. 

Ifreq,n = 

m 
i=1 signChangei 

#signChangemax 
(6) 

where signChangei is a boolean value and indicates whether the 
sign of the force changed at sample i in the moving window, and 
#signChangemax the maximum number of sign changes of the force 
in the moving window, which normalizes Ifreq,n between 0 and 1, 
and which was determined empirically and normalized to m/8. 

Imag,n = 

 
1 
m ((fh,n)

2 + · · · + (fh,n−m)2) 

fmax 
(7) 

where fh,n is the latest force sample, fh,n−m the oldest force sample, 
and fmax the maximum value of the force which normalizes Imag,n 

between 0 and 1, and which was determined empirically and set to 
8 N.  

The dynamic adaptation of Bn was evaluated in a setup where 
the eWrist was exposed to various stiffnesses. For this purpose, 
the forearm part of the device was firmly fixed and its handle 
linked to a rod. This rod was fixed to a rotating lever to which 
a spring of constant k = 698 N/m was attached as shown in 
Figures 3A, B. The spring could be moved along the lever in order 
to modulate the stiffness experienced by the exoskeleton from 0.5 
to 20 Nm/rad. This range of stiffnesses is typical during active 
stiffening of the wrist joint (Halaki et al., 2006; Kuchenbecker 
et al., 2003; Leger and Milner, 2000). In Figure 3C, the handle was 
initialized to 10◦ in flexion and released to analyse the evolution 
of the movement when (1) Bn was kept constant at Bmin and 
(2) Bn was adjusted dynamically as described in Equation 4. In  
(3), the handle was manually excited first with high frequency 

and low magnitude oscillations, and then low frequency and high 
magnitude oscillations. 

In Figure 3C1, one observes that without a dynamic adaptation 
of Bn, the device enters a resonant mode and cannot stabilize 
when the stiffness was set to 10 and 20 Nm/rad. However, the 
oscillations attenuate with lower stiffnesses. On the other hand, 
when Bn is dynamically adjusted, the system stabilizes for all 
stiffnesses as shown in Figure 3C2. Figure 3C3 shows how Ifreq,n and 
Imag,n respond to high frequency and high magnitude oscillations, 
respectively. Moreover, it takes about 2 s for both indexes to come 
back to their initial level once the excitation terminates. 

2.2.2 sEMG-based controller 
The sEMG controller inputs an additional force Femg to the 

variable admittance scheme as shown in Figure 2. First, raw sEMG 
data from the Myo armband are rectified and processed with a 
moving average filter (window length = 40 samples) followed by 
a Kalman filter2 to extract the envelope of the signal (cf. sEMG 
processing block in Figure 2). Kalman filtering on sEMG data offers 
low time lag and high computational efficiency as shown in Lyu 
et al. (2020). Two electrodes are assigned to measure the activity of 
extensor muscles, and another two electrodes assigned to measure 
the activity of flexor muscles. A weighted sum of the signals 
from each of these groups of two electrodes is performed and 
then normalized to the maximum voluntary contraction (MVC) 
(Corbett et al., 2011) separately for extension MVCext and flexion 
MVCflex. Then the difference between the normalized extension 
and flexion sEMG signal pMVCdiff is computed. 

Secondly, pMVCdiff is attenuated by a non-linear gain Gatt (θ), 
which is a function of the wrist angle θ (cf. attenuation function 
block in Figure 2). Similar to Gstif (θ), as the wrist angle reaches the 
limit of the joint’s ROM, the passive stiffness increases and requires 
extensive muscle contractions to further move the wrist or simply 
hold the position. Therefore, the sEMG signal, and ultimately the 
supportive force Femg , needs to be attenuated for high wrist angles 
(i.e., higher than 80% of ROMpas). Consequently, Gatt (θ) boosts 
movement initiation for small wrist angles, but prevents excessive 
mechanical support close to the joint’s limit. Gatt (θ) is subject-
dependent and is determined during the calibration phase. It relies 
on MVCext/MVCflex and ROMpas, and two separate gains are used 
for extension and flexion [see Supplementary Equation S2 for more 
details on Gatt (θ)]. 

Finally, a constant gain Gemg (different for extension and 
flexion) transforms the unitless sEMG signal pMVCdiff into a 
force Femg . The decision to use one of the two gains is based on 
the sign of pMVCdiff . A positive difference represents extension, 
whereas a negative difference represents flexion. Gemg was adjusted 
to provide appropriate mechanical support. The sEMG processing 
and attenuation function blocks within the red line in Figure 2 are 
processed in real-time at 60 Hz by the host computer. The time 
delay between the generation of raw sEMG and movement onset 
was evaluated over two separate measurements each consisting of 
32 trials to 0.188 s, which is generally considered acceptable (Farrell 
and Weir, 2007). Note that the characteristics of the high frequency 

2 KalmanFilter from the Python library pykalman was used. 
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FIGURE 3 

(A) Picture and (B) schematic of the experimental setup where stiffnesses perceived by the eWrist can be modulated by moving the spring k along l. 
(C) Results from the evaluation where in (1) Bn was kept constant, and in (2) Bn was adjusted dynamically. In (3), the system was manually excited with 
high frequency and magnitude oscillations. 

components of the sEMG signal is captured within the Myo 
armband, processed, averaged, and sent over BLE. Using averaged 
sEMG signals proved to work effectively with our simplistic 
approach that compares extensor and flexor muscle activity in 
the forearm. 

2.2.3 Gravity compensation controller 
Similar to the sEMG controller, the gravity compensation 

controller inputs an additional force Fgrav to the variable admittance 
scheme as shown in Figure 2. This controller continuously 
compensates the weight of the user’s hand in extension or flexion 
based on the spatial orientation of the forearm module (φ, ψ , and 
Z) and the angular position of the wrist θ . Measurements from the 
IMU and the wrist angular encoder are used to compute zhand, 
the z-component of the normal vector to the hand z2 expressed 

in the Earth’s referential R0 (x0, y0, z0), as depicted in Figure 1C. 
First, spatial orientation of the hand referential R2 relative to R0 

is calculated via the multiplication of Rx1(φ), Ry1(ψ), and Rx2(θ). 
These three matrices encode for the rotation (relative to R0) around 
the pitch (x1) and roll (y1) axes of the exoskeleton, and for the 
rotation (relative to the exoskeleton’s referential R1) around the 
wrist axis (x2), respectively. The result is then multiplied by z to 
extract the normal vector z2 as shown in Equation 8. 

Rx1(φ) = 

⎡ 

⎢⎣ 

1 0 0 
0 cos(φ) − sin(φ) 
0 sin(φ) cos(φ) 

⎤ 

⎥⎦ 

Ry1(ψ) = 

⎡
⎢⎣ 

cos(ψ) 0  − sin(ψ) 
0 1 0 

sin(ψ) 0 cos(ψ) 

⎤ 

⎥⎦ 
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Rx2(θ) = 

⎡ 

⎢⎣ 

1 
sin(θ) 
cos(θ) 

⎤ 

⎥⎦ , z  = 

⎡ 

⎢⎣ 

0 
0 
1 

⎤ 

⎥⎦ 

z2 = Rx1(φ) · Ry1(ψ) · Rx2(θ) · z  = 

⎡ 

⎢⎣ 

− sin(ψ) 
− sin(φ)cos(ψ) sin(θ) 
cos(φ) cos(ψ)cos(θ) 

⎤ 

⎥⎦ (8) 

zhand is the z-component of z2 and varies between 0 and 1 according 
the hand’s orientation as shown in Equation 9. 

zhand = z T · z2 = cos(φ) cos(ψ)cos(θ) (9) 

The gravity compensation force Fgrav applied by the exoskeleton 
on the user’s hand is computed as a fraction of the hand’s weight 
Whand, as illustrated in Equation 10. 

Fgrav = zhand · Whand = cos(φ) cos(ψ)cos(θ) · Whand (10) 

Finally, a constant gain Ggrav (different for extension and 
flexion) is used to fine-tune and adjust the mechanical support. 
When ˙ θ is positive the extension gain is used, and when ˙ θ is 
negative the flexion gain is used. The gravity compensation block 
within the green line in Figure 2 is processed in real-time at 1 kHz 
by the Teensy microcontroller. 

2.3 Subjects 

Ten healthy participants [seven males, mean age: 27.7 ± 3.8, 
ranging: (22, 33) years] and ten stroke survivors were recruited. In 
the healthy participant group, eight were identified as right-handed 
and two as ambidextrous according to the Edinburgh inventory 
(Oldfield, 1971). In the stroke survivor group, one withdrew for 
reasons unrelated to the study, one had very little sEMG activity, 
and two had very high co-contraction levels, which left six stroke 
survivors [four males, mean age: 57.3 ± 12.7, ranging: (40, 70) 
years] that performed the task. Details about stroke participants can 
be found in Table 1. The study was approved by the institutional 
ethics committee of ETH Zurich (2020-N-126). All subjects gave 
written informed consent in accordance with the Declaration of 
Helsinki before participating in the experiment. 

2.4 Experimental setup 

The experimental setup includes a host computer (see Figure 2) 
for data processing/recording and displaying the visuomotor 
task, the eWrist for actively supporting the wrist and measuring 
interaction force, angular position/velocity and IMU data, and 
the Myo armband for collecting sEMG signals on the forearm as 
depicted in Figure 4. Participants were seated on a chair in front 
of a screen with the eWrist and Myo armband mounted on their 
left forearm/hand for healthy participants and on their impaired 
forearm/hand for stroke participants. The forearm was placed on an 
armrest whose height was adjusted so that the shoulder was at 45◦ 

of abduction and the elbow formed an angle of 90◦ . Moreover, the 
hand protruded from the armrest so as to allow extension/flexion 
wrist movements. 

2.5 Visuomotor task 

To assess the functionality of the variable admittance scheme 
and the controllers, a goal-directed experiment was developed in 
the form of a visuomotor task (VMT). The goal of the VMT was 
to reach targets with a cursor whose position is directly mapped in 
real-time to the angular position θ of the exoskeleton. The targets 
were placed at different positions on the screen (i.e., different θ) and 
required the participants to perform extension (θ > 0) and flexion 
(θ < 0) wrist movements to reach them (see Figure 1C). Once a 

FIGURE 4 

Experimental setup of the visuomotor task. 

TABLE 1 Details on stroke participants (N = 6). 

Subject Age 
(years) 

Sex Time PS 
(month) 

Stroke type Imp. side Handedness FM-UE ROMact (◦) ROMpas (◦) 

S1 70 Male 167 Haem. Left Right 44 –33 / 42 –58 / 76 

S2 54 Male 144 Haem. Left Right 43 –50 / 54 –68 / 74 

S4 64 Male 162 Haem. Right Ambidextrous 52 –31 / 34 –71 / 60 

S6 70 Male 52 Isch. Left Right 23 –45 / 11 –71 / 72 

S7 40 Female 36 Haem. Right Left 22 –57 / 56 –77 / 78 

S10 47 Female 59 Isch. Right Left 26 –52 / 22 –68 / 62 

PS, poststroke; FM-UE, Fugl-Meyer for upper extremities; haem., haemorrhagic; isch., ischemic. 
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FIGURE 5 

(A) Calibration window of the VMT where sEMG activity, force, wrist angle and IMU readouts are displayed in real-time. (B) VMT during vertical and 
(C) horizontal movements. (D) Left: calibration phase where in (i) MVC (indicated with a red bar) is measured on the two selected electrodes (in 
yellow) for extension and flexion separately, in (ii) low sEMG activity is required to assess Whand, in (iii) active and passive (with the help of the 
experimenter) ROM is assessed, and in (iv) the gains are adjusted. Right: description of the two different sequences for healthy and stroke 
participants. *The order of the conditions was pseudo-randomized across participants. 

target appeared, participants had 5 s to acquire it. When the cursor 
was in the target, the latter started to turn green as an indication of 
correct positioning. The target was acquired if the cursor remained 
1 s within the target’s boundaries. Once a target was acquired or 5 
s elapsed, the target disappeared and the cursor was moved back 
into the home rectangle (see Figure 5B). The VMT was performed 
by both healthy and stroke participants, but the testing profile for 
each cohort was different. Before each testing session, a calibration 
phase was performed for each participant. The VMT was designed 
in Python 3.6 and implemented on the host computer running 
Ubuntu 18.04 LTS.3 

2.5.1 Calibration phase 
The calibration phase depicted in Figure 5D consisted of (i) 

manually selecting two channels for extension and two channels 
for flexion, and determining the maximum voluntary contraction 
(MVC), (ii) assessing the weight of the user’s hand, (iii) evaluating 
the active and passive ROM of the wrist joint, and (iv) adjusting the 
sEMG and gravity gains Gemg and Ggrav, respectively (see Figure 2). 

3 Processor: Intel(R) Core(TM) i7-4710MQ CPU @ 2.50GHz, RAM: 16GB. 

2.5.1.1 Selection of channels and MVCs 
In order to obtain the largest sEMG difference pMVCdiff 

during extension (positive diff.) and flexion (negative diff.) 
movements, a compromise was made between selecting two 
channels with the highest sEMG activity for a given movement, 
but also the lowest agonist/antagonist overlap with the two 
other channels of the opposite movement. MVC was measured 
as the maximum sEMG activity that can be sustained for 1 
s over an epoch of 5 s. MVC is computed for each selected 
channel individually and a weighted average is performed to 
obtain a single MVC value for extension MVCext and flexion 
MVCflex. Thereafter, sEMG signals are normalized to MVCext 
and MVCflex. During calibration, participants received real-time 
visual feedback of the activity of all 8 channels as shown 
in Figure 5A. 

2.5.1.2 Assessment of the hand’s weight 
The hand’s weight Whand was measured by the load cell when 

the participant was wearing the exoskeleton, the forearm placed 
horizontally and orientated for vertical hand movements (see 
Figure 5B), and θ set at 17◦ in extension (see Figure 1C). During 
the measurement, participants were asked to fully relax their wrist 
joint, which could be verified by checking sEMG activity. 
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2.5.1.3 Evaluation of the wrist’s ROM 
First the active ROM ROMact was assessed, and then the passive 

ROM ROMpas. The participant was wearing the device (which was 
uncoupled from the motor to allow a free wrist motion) and was 
asked first to fully flex and then fully extend the wrist. Maximal 
angles reached in extension and flexion were obtained from the 
real-time angle readout depicted in Figure 5A. For the passive ROM 
assessment, the wrist of the participant was manually flexed and 
extended by the experimenter until discomfort was reported. 

2.5.1.4 Adjustment of sEMG and gravity gains 
Gemg and Ggrav were fine-tuned to provide adequate mechanical 

support to the participant. While Gemg was adjusted to find a 
balance between increasing the normal excursion of the wrist and 
maintaining good control of the device, Ggrav was set to accurately 
support the wrist weight in the horizontal position. Further fine-
tuning was performed based on the participant’s feedback. 

2.5.2 Assessment of variable admittance scheme 
with healthy participants 

The functionality of the variable admittance scheme was 
evaluated with healthy participants performing the VMT. For this 
purpose, the task was performed with and without adaptation 
of the damping parameter Bn (damping factor). Both the sEMG 
and gravity controllers were evaluated (controller factor). In order 
to assess the influence of gravity, the task was executed in two 
different orientations, i.e., during vertical and horizontal wrist 
movements (see Figures 5B, C). The testing profile depicted in 
Figure 5D consisted of two sequences, one for each orientation. 
The first sequence was always performed in the vertical orientation 
followed by the horizontal orientation. A sequence was composed 
of four conditions in which the controller and damping factors 
were interchanged (i.e., sEMG+damping, sEMG+no damping, 
gravity+damping, and gravity+no damping) and the order of these 
factors was pseudo-randomized across participants. Each condition 
was composed of 4 blocks. A block included eight trials (i.e., eight 
targets to acquire), where the height of targets were set to 40%– 
80% of ROMpas (i.e., four targets per height). The order of targets 
was pseudo-randomized. The first block of a condition was always 
extension trials followed by flexion trials, and continued in an 
alternating manner. Blocks were separated by a 20 s break. 

2.5.3 Assessment of controllers with stroke 
participants 

The sEMG and gravity controllers were evaluated with stroke 
survivors performing the VMT. Both controllers were compared 
to a control condition later named “transparent mode”. In the 
transparent mode, the motor is physically uncoupled from the 
handle (see orange arrow in Figure 1A), which allows the latter 
to move freely in extension and flexion directions—the wrist joint 
is therefore not mechanically supported. The transparent mode 
is not a controller per se, but a control condition. Only the 
angular position of the wrist θ and IMU data are recorded. In 
this assessment, the testing profile was similar to the previous 
experiment (see Figure 5D) except for the following points: (1) the 
adaptation of Bn was always enabled, (2) a sequence consisted of 

three conditions, one for each control mode (i.e., sEMG, gravity, 
and transparent), and the order of the control modes was pseudo-
randomized across participants, (3) a condition was composed of 
six blocks, and (4) a block consisted of eight trials with the height 
of targets set to 20%, 40%, 60%, and 80% of ROMpas (i.e., two targets 
per height). 

2.6 Evaluation metrics 

During the VMT, all data generated by the eWrist and the Myo 
armband were continuously recorded and saved. To quantitatively 
assess the variable admittance scheme and the controllers, the 
following metrics were investigated: 

• Maximal angular velocity θ̇max 

• Maximal angular acceleration ¨ θmax 

• Normalized integrated interaction torque T̂int 
• Normalized integrated jerk (NIJ) 
• Number of acquired targets 

2.6.1 Maximal angular velocity and acceleration 
θ̇max and θ̈max reflect the transparency of the device. The higher 

the velocity and acceleration, the more transparent the device. 
θ̇max and θ̈max were calculated offline from θ via the FDM (finite 
difference method) described in Equation 11. 

θ̇n = 
θn − θn−1 

t 
, ¨ θn = 

θ̇n − θ̇n−1 

t 
, n = {1, 2, 3, ...} (11) 

where θn / θ̇n and θn−1 / θ̇n−1 are the current and previous angular 
position / velocity measurements, respectively, n the control loop 
counter, and t = tn −tn−1 the time difference between the current 
and previous timestamp. As the sampling time interval of the VMT, 
t is not constant and varies around 0.017 s (60 Hz). 

Before the discrete differentiation to obtain θ̈n, θ̇n was low-pass 
filtered with a Butterworth filter.4 Both metrics were computed over 
the movement initiation and rise phases of the trial, and for trials 
where the target was reached (see Figure 6). 

2.6.2 Normalized integrated interaction torque 
T̂int defined in Equation 12 is another indicator of the 

transparency of the device. The lower the interaction torque, 
the more transparent the device. T̂int was computed over the 
movement initiation and rise phases of the trial, and for trials where 
the target was reached (see Figure 6). 

T̂int = 
1 

tmir 
· 

nend 

i=nstart 

Tint,it (12) 

where tmir = tnend − tnstart is the duration of the movement
initiation and rise phases, nstart the starting sample point of the 
movement initiation phase, nend the ending sample point of the rise 

4 2nd order 2 Hz cut-off frequency. 
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FIGURE 6 

The three phases of a successful trial. The plain curve is the 
normalized (to ROMpas) angular trajectory θ̂ , the dotted line is the 
target level, and the gray horizontal bars are the targets zones and 
the home zone. A successful trial (i.e., target acquired) is composed 
of the movement initiation phase (in green), the rise phase (in blue), 
and the stabilization phase (in purple). A target is reached when the 
cursor enters the corresponding gray zone. 

phase, Tint,i the current interaction torque, and t = ti − ti−1 the 
time difference between the current and previous timestamp. 

2.6.3 Normalized integrated jerk 
The NIJ defined in Equation 13 is an empirical measurement 

of movement smoothness. The smaller the jerk, the smoother and 
less fragmented the movement (Hogan and Sternad, 2009). NIJ was 
computed over the whole trial, and for trials where the target was 
reached (see Figure 6). 

NIJ = 
t5 

trial 
2 · s 2 

trial 
· 

nend 

i=nstart 

jerk2 
i t (13) 

where ttrial = tnend − tnstart and strial are the duration and path 
length of the trial, nstart and nend the starting and ending sample 
points of the trial, jerk = d3θ/dt3 the 3rd derivative of the angular 
position θ , and t = ti − ti−1 the time difference between the 

current and previous timestamp. t5 
trial 

2·s2trial 
is a normalizing factor to 

obtain a unit-free measure (Teulings et al., 1997). 
¨ θ was low-pass filtered with a Butterworth filter (see text 

footnote 4) before the discrete differentiation to obtain jerk. 

2.6.4 Number of acquired targets 
The overall performance of stroke participants in the task is 

assessed via the number of targets they could acquire. 

2.7 Data analysis 

A repeated measures ANOVA (α = 5%) was used to analyse 
data from healthy participants. The general model consisted in five 
factors with 2 levels each, namely: direction (extension/flexion), 
orientation (vertical/horizontal), controller (sEMG/gravity), height 

(40%/80%), and damping (with/without dynamic damping). Data 
were tested for normality. Moreover, the median across all trials 
of a given condition and subject was entered into the model. The 
median of these medians is then reported at the group level in 
the figures. The statistical analysis was performed on four sub-
models, where a sub-model only considers a given direction and 
orientation. The rationale for this approach is that: (1) based on the 
orientation, gravity influences both controllers differently, (2) the 
different posture of the forearm in each orientation can influence 
the sEMG readout (due to different position of muscles relative to 
electrodes) and the ROM of the wrist joint, and (3) while the gravity 
controller supports the hand in the extension-vertical condition, 
it resists movement in the flexion-vertical condition. No statistical 
analysis was performed on stroke data because of the small sample 
size and high variability across participants, therefore, the results 
are descriptive. 

2.8 Qualitative evaluation 

Stroke participants completed two questionnaires during the 
testing session to quantify their subjective opinion of the different 
control modes and the visuomotor task in general. The first 
questionnaire is based on a 5 point Likert scale (Joshi et al., 
2015) and assesses the mechanical support provided by both 
sEMG and gravity controllers. The questions were orientated 
around seven different aspects of the mechanical support, namely: 
force, speed, stability, consistency, lag, accuracy and ROM. 
Each of these aspects were evaluated independently. The second 
questionnaire is the Raw NASA-Task Load Index (RTLX) (Hart, 
2006), which assesses the workload experienced during the VMT 
with the following aspects: mental/physical/temporal demands, 
performance, effort and frustration (Hart, 2006; Rubio et al., 
2004). Each controller (sEMG and gravity) was assessed separately 
with both questionnaires, whereas the transparent mode was only 
evaluated with the RTLX. Finally, all participants could provide 
further comments at the end of the questionnaires. 

3 Results 

This section presents the behavioral results from healthy and 
stroke participants performing the VMT with the implemented 
controllers. The subjective evaluation of the controllers is 
also presented. 

3.1 Assessment of variable admittance 
scheme with healthy participants 

First, the results from the evaluation of the variable admittance 
scheme with healthy participants are presented. We predicted that 
adaptive damping would reduce jerk without generating higher 
interaction torques in the pHRI. We also predicted that adapted 
damping would not decrease maximal movement velocity and 
acceleration compared to the non-adaptive condition. 

Figure 7A presents the NIJ results at the group level. A 
significant main effect of damping (df = 1, F ≥ 50.569, p ≤ 0.001) 
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A B 

C D 

FIGURE 7 

The boxplots show the median, interquartile range (IQR), and min./max. values of ten healthy participants for all factor permutations. The adaptive 
damping condition is shown in blue and the non-adaptive damping condition in pink. (A) Normalized integrated jerk (NIJ) and (B) interaction torque 
T̂int. (C) Maximal angular velocity θ̇max and (D) acceleration θ̈max . 

and height (df = 1, F ≥ 71.632, p ≤ 0.001) factors is observed 
across all models. A strong interaction effect (df = 1, F ≥ 51.823, 
p ≤ 0.001) between damping and height was also observed across 
all models, which is clearly driven by increased jerk at the higher 
target level when Bn was not dynamically adapted. However, when 
Bn was actively adapted, jerk remained consistently low across all 
conditions. Moreover, while there was not a significant difference 
in jerk between the sEMG controller and the gravity controller for 
vertical orientations (df = 1, F ≤ 0.844, p ≥ 0.382), there was a 
significant difference for horizontal orientations (df = 1, F ≥ 5.115, 
p ≤ 0.050). 

In Figure 7B, T̂int varies substantially across conditions. Note 
that for a given direction, a negative interaction torque indicates 
that the device was supporting the movement, while a positive 
torque means that the hand was driving the movement. In the 
flexion-vertical-gravity condition, T̂int is largely positive since 
participants had to counteract the upward supporting force 
imparted by the gravity controller. In all four models, T̂int was 
significantly more positive in the adaptive damping condition (df 
= 1, F ≥ 5.298, p ≤ 0.047). This suggests that the user was slightly 
more supported (or less hindered) by the device when the damping 
was not dynamically adapted. 
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In Figure 7C, θ̇max was significantly greater at higher target 
levels compared to lower target levels in all models (df = 1, F ≥ 
36.275, p ≤ 0.001), and was significantly greater when damping was 
not adaptive compared to adaptive damping (df = 1, F ≥ 6.455, 
p ≤ 0.039). The same pattern of results was observed for ¨ θmax 

(see Figure 7D), main effect of target height: df = 1, F ≥ 10.160, 
p ≤ 0.015; main effect of damping condition: df = 1, F ≥ 8.391, 
p ≤ 0.023). Both the maximal angular velocity and acceleration 
results are inconsistent with our prediction that adaptive damping 
would not alter transparent rendering. In both metrics, the pHRI 
was consistently faster and more reactive when Bn was not 
dynamically adapted. Based on these results, we conclude that the 
implemented controllers offer a trade-off between faster but more 
jerky movements vs. slower but more stable movements. For stroke 
rehabilitation, stability is more important than speed, therefore, we 
favored the former for the assessment with stroke participants. 

3.2 Assessment of controllers with stroke 
participants 

Figure 8 presents the percentage of acquired targets during 
the VMT for all stroke participants. Generally, the benefit of the 
device with the implemented controllers remains limited. In the 
transparent mode, participants had difficulties to reach the 80% 
targets especially in the extension-vertical condition since they had 
to move against gravity. This problem is somewhat less severe for 
the flexion-vertical condition and for both horizontal conditions. 
Whereas most participants benefited from the sEMG and anti-
gravity support in the extension-vertical condition for the higher 
targets (especially S2, S4, and S7), less benefit was observed in other 

conditions. In particular, the anti-gravity controller negatively 
affected flexion movements since participants had to overcome the 
upward supporting force. 

Although both controllers increased the ROM of 
participants and helped them to reach higher targets (see 
Supplementary Figure S1), they were still unable to stabilize their 
wrist to acquire the target within 5 s. This is particularly true for 
lower targets in the horizontal orientation with the sEMG-based 
controller. The loss of control could be the combined effect of 
not being influenced by gravity and the higher sensitivity of the 
controller at smaller angles due to Gatt (θ). 

In the extension-horizontal-gravity condition, which requires 
only variable admittance control since no gravity compensation 
force was generated, participants also experienced difficulties to 
stabilize their wrist within the target boundaries. These instabilities 
could have been caused by an inability to relax the wrist joint, 
and could not be resolved by the dynamic damping. Moreover, as 
the horizontal condition was always performed after the vertical 
condition, fatigue and spasticity were more likely to be present 
during this phase, which could have resulted in increased stiffness 
of the joint. Nevertheless, participants S6 and S10 did appear to 
benefit from the mechanical support and acquired more targets 
compared to the transparent mode, especially in the extension-
vertical condition (but also in both horizontal orientations). 
Interestingly, both S6 and S10 were amongst the most impaired of 
our participants, with FM-UE scores of 23 and 26 respectively. 

3.2.1 Subjective evaluation 
A synthesis of the two questionnaires that stroke participants 

completed immediately after using a controller for the first time is 
presented in Figure 9. 

FIGURE 8 

Percentage of acquired targets in stroke participants in all conditions. The median across participants is shown. 
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FIGURE 9 

Score comparison derived from questionnaires for stroke participants where the median is shown. (A) Scores from the questionnaire assessing the 
mechanical support. The average score over all aspects is 66.1 ± 12.8 for sEMG and 64.1 ± 12.9 for Gravity. (B) Scores from the RTLX questionnaire. 
The average workload score excluding Performance (Grier, 2015) is 40.2 ± 25.2 for sEMG, 39.0 ± 21.4 for Gravity, and 44.8 ± 23.2 for Transparent. 

Figure 9A shows the scores of the questionnaire assessing 
mechanical support from the eWrist during the VMT, which is 
based either on sEMG signals or on the orientation of the device. 
The score ranges from 0 to 100. A high score indicates that the 
aspect of the mechanical support being rated was appropriate. 
Based on the median score for each aspect, both the sEMG and 
gravity controllers were evaluated in a similar way. Generally, 
participants found that the supporting torque was too weak [Force 
median score (sEMG/gravity): 50.0/41.7], especially in the flexion-
vertical-gravity condition where the device resisted the movement. 

However, they did rate the assistive movements as sufficiently fast 
(Velocity score: 83.3/95.8). Moreover, the sEMG controller was 
found to be less stable than the gravity controller (Stability score: 
68.7/87.5). The support from both controllers was perceived to 
be consistent with the movement intention (Consistency score: 
87.5/87.5), and the lag between the intention to move and the 
assistance provided by the device was sufficiently low (Lag score: 
87.5/87.5). Because of a low supportive torque, participants tended 
to undershoot higher targets, and because of the high sensitivity 
of the controllers, they tended to overshoot lower targets, which 
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impacted their accuracy (Accuracy score: 62.5/66.7). For the same 
reason, they found that the assistance was active across a range of 
motion that was too small (RoM score: 58.3/45.8). 

Figure 9B shows the scores of the RTLX questionnaire, 
which also ranges from 0 to 100 and reflects the workload 
experienced during the task. The lower the score, the lower the 
perceived workload. A high score in Performance indicates that 
the participants felt that they were successful in performing the 
task. In most cases and based on the median score for each aspect, 
all three control modes were evaluated equally. Mental, physical 
and effort ratings (median scores for sEMG/Transparent/Gravity: 
40/40/40, 87.5/67.5/80, and 77.5/67.5/77.5, respectively) exhibit 
large variability across participants. Generally, they found the task 
very demanding mentally and physically, most likely because of 
its difficulty (to reach 80% of the passive ROM) and its duration 
(∼ 1.5 h). As a result of the perceived difficulty, they rated their 
performance to be rather low (Performance score: 60/50/57.5). 
All participants reported that they were not rushed (Temporal 
score: 17.5/12.5/17.5) during the task, nor frustrated (Frustration 
score: 7.5/7.5/10). 

In the comments left by the participants, some reported that 
the scoring of performance and effort was mainly influenced by 
the difficulty of reaching higher targets. They also highlighted 
the resistance of the gravity controller in the vertical movement 
condition and stressed that it was difficult and unnatural to hold 
the forearm position for the horizontal movement condition. Apart 
from that, all participants expressed interest and motivation in 
the experiment, and reported that the task encouraged active 
participation and was challenging. None of them expressed any 
discomfort due to the device. Generally, participants considered 
that the duration of the testing session was adequate, however, 
S7 and S10 showed clear signs of fatigue at the end of the 
session. Finally, participants were asked to score their most favored 
(+1) and least favored (–1) control modes. As shown in Table 2, 
the sEMG controller was favored slightly more than the gravity 
controller or the transparent mode. 

4 Discussion 

This study explored the implementation of a variable 
admittance scheme on a non-backdrivable portable wrist 
exoskeleton. In addition, an sEMG-based and a gravity-based 
controller were implemented in order to enhance the functionality 

TABLE 2 Control mode preference of stroke participants. 

Subject sEMG Gravity Transparent 

S1 +1 –1 0 

S2 +1 0 –1 

S4 0 +1 –1 

S6 0 +1 –1 

S7 0 –1 +1 

S10 0 –1 +1 

Total 2 –1 –1 

of the wrist and promote voluntary effort. The variable admittance 
scheme and both controllers were first optimized with ten healthy 
participants performing a visuomotor task, and then evaluated in 
six chronic stroke patients performing the same task. The results 
with healthy participants showed that the variable admittance 
scheme could successfully and significantly improve the stability 
of the pHRI, but at the cost of a decrease in transparency. 
Furthermore, while both controllers improved the ROM of the 
wrist for stroke patients, the stabilization during target acquisition 
remained challenging. This was particularly true with the sEMG 
controller for the most distant targets, but also for near targets 
during horizontal wrist movements. Finally, the results also showed 
that patients with higher levels of impairment were more likely to 
benefit from the support provided by the eWrist. 

4.1 Considerations on the variable 
admittance scheme 

Humans are dynamic systems characterized by a time-varying 
impedance and their interaction with non-backdrivable haptic 
devices featuring admittance control can lead to instabilities. This 
usually occurs when the human limb stiffens to stabilize its motion 
(Ferraguti et al., 2019). In addition, during interaction with an 
unstable robot limb stiffness is increased by the central nervous 
system in order to reduce these external perturbations (Burdet et al., 
2001). As the stiffness of the user is not directly measurable, the 
controller cannot easily account for this issue. 

In this work, the frequency and magnitude of the interaction 
force signal was analyzed to detect instabilities and dampen 
the system accordingly using a variable admittance scheme. The 
implemented variable admittance control scheme acted solely 
on the damping parameter to attenuate instabilities. Damping 
is a velocity-dependent parameter that dissipates energy in 
the pHRI. Therefore, increased damping leads to more energy 
dissipation and the restoration of stable behavior, but at the 
same time imposes increased resistive force during steady velocity 
movements. Previous studies have shown that only adapting the 
damping and not the inertia parameter could unbalance the 
admittance dynamics and affect the usability of the robot (Lecours 
et al., 2012). It was suggested that adapting the inertia term 
(instead of damping) is more beneficial for low-effort movements, 
and only affects acceleration/deceleration phases (Dimeas and 
Aspragathos, 2016). However, the optimal strategy depends on 
robot structural dynamics, the limitations of the actuators and 
sensors, and the implementation of the admittance control scheme, 
which highlights the need to make design decisions on a case-by-
case basis (Topini et al., 2022). 

We based our decision on initial experiments where we 
investigated the effect of adapting: (1) only the damping, (2) only 
the inertia, and (3) both terms while keeping a constant ratio 
between them. These experiments revealed that adjusting only the 
damping was most promising because it had the highest impact 
on stability compared to the two other options. Nevertheless, 
deeper consideration of the other options, especially with regard to 
parameter tuning, might have also revealed positive effects on both 
stability and transparency. 
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Several alternative strategies could have been considered. 
First, the position of the robot can be used to dissociate low 
frequency components of the human movement from high 
frequency components caused by the instability (Ryu et al., 
2008). However, the admittance control scheme described in 
Equation 3 acts as a low pass filter for high frequency position 
oscillations. Consequently, the reduced magnitude in the frequency 
domain deteriorates the detection of instability, which is de facto 
not a suitable approach for admittance control (Dimeas and 
Aspragathos, 2016). Moreover, whereas previous studies have used 
a fast Fourier transform (FFT) to analyse the frequency domain 
(Dimeas and Aspragathos, 2016; Ryu et al., 2008), the present 
work implemented a less computationally demanding algorithm 
for use on a microcontroller. The algorithm simply counts the 
number of times the force signal changes sign in a moving window 
of m = 200 samples, while this window moves in increments of 
eight samples. The window length m and the increment size were 
optimized to obtain sensitive and reactive damping adaptation, 
but also to not significantly slow down the control loop running 
at 1 kHz. The execution time to compute the index of stability 
Is is around 200 μs. These parameters were tuned on a single 
healthy subject and never changed for the behavioral assessments. 
Although user-dependent adjustment of these parameters would 
improve performance, the algorithm appeared to be a reliable and 
suitable solution for embedded systems with limited computing 
power as shown in Figure 3C. Note that the gains Gstif , Gatt , Gemg , 
and Ggrav are subject-dependent and were always calibrated before 
each test session for healthy and stroke participants. 

Second, the implemented method does not prevent instability 
but only eliminates the negative effects of oscillatory behavior. 
Therefore, instead of acting upon the instability retroactively, 
other methods analyzed co-activation level in the muscles in order 
to detect an increase of stiffness in the limb and proactively 
dampen the system (i.e., before the disturbance occurs) (Grafakos 
et al., 2016; Castellini et al., 2014; Gallagher et al., 2014; 
Raiano et al., 2020). By comparing the co-activation level in the 
forearm (extensor vs flexor) between the movement initiation/rise 
phases and the stabilization phase of a trial (see Figure 6), 
a higher co-activation level was observed in the latter phase 
(see Supplementary Figure S2). This demonstrates an increase of 
stiffness in the wrist joint during target acquisition. Such a strategy 
proved to be robust with healthy subjects manipulating end-
effectors. It would be interesting to test a similar strategy with stroke 
survivors who exhibit irregular sEMG patterns. 

Third, our feed-forward approach of adapting the variable gain 
Gstif (θ), which is subject-dependent and dampens the system more 
rapidly for higher wrist angles, was motivated by the increase in 
stiffness of the wrist joint close to the limit of its ROM. This 
assumption proved to be correct as shown in Figure 7A where the 
pHRI was significantly more jerky for the most distant targets. 
This gain accounts for the passive stiffness of the joint related 
to its biomechanical properties, however, stroke survivors may 
exhibit an involuntary increase in stiffness over the whole ROM 
because of tremor or spasticity that may evolve over the course 
of rehabilitation. In such cases, it might be promising to explore 
whether a feedback approach analyzing co-activation level or 
abnormal contractions in the muscles could improve stability of the 
control mechanism. 

In summary, our variable admittance control strategy, which 
can be implemented on a microcontroller, reduced involuntary 
oscillations caused by changes in wrist stiffness. This was achieved 
at the cost of reduced transparency, which was still sufficient 
to allow functional movements. Nevertheless, future work might 
make use of muscular co-activation detected from the sEMG signals 
to dampen the system either proactively or via a co-activation-
specific feedback mechanism. 

4.2 Considerations on the sEMG controller 

The performance of the sEMG-based controller with stroke 
participants was surprisingly lower for near targets in horizontal 
orientations compared to the other control modes as shown 
in Figure 8. This decrease in performance results from a loss 
of control due to higher sensitivity of the controller (see 
Supplementary Figure S3) where jerk is more important for the 
sEMG controller compared to the gravity controller in these 
conditions). The higher sensitivity of the sEMG controller for near 
targets comes from the combined effect of Gstif (θ) and Gatt (θ), 
which confer less damping and a more reactive response to the 
sEMG signal for small angles. The gain Gatt (θ) models the increase 
of sEMG production required to move the wrist close to the limits 
of its ROM, and prevent excessive mechanical support that would 
push the wrist beyond these limits. Although Gatt (θ) is subject-
dependent and based on the calibrated MVC and passive ROM, 
its combined effect with Gemg can result in an overly sensitive 
controller at small wrist angles. Moreover, since Gatt (θ) is based  
on isometric contractions, it can introduce a systematic error when 
applied under dynamic conditions (Clancy and Hogan, 1997). With 
Gemg a trade-off had to be found in order to increase the ROM while 
maintaining good controllability. 

The sEMG-torque relationship is complex and is influenced by 
many factors such as electrode placement relative to the innervation 
zone, muscle length, cross talk from nearby muscles, and number 
of motor units recruited (Farina et al., 2001). Moreover, several of 
these factors vary non-linearly with respect to movement velocity 
and joint position (Farina, 2006; Solomonow et al., 1991). The 
simple and straightforward approach adopted in this work was 
motivated by (1) a belief that the human central nervous system 
could compensate for a less accurate torque estimate provided by 
the robot as long as the latter is physiologically coherent, and (2) an 
envisioned implementation on an embedded system with limited 
processing power (Lenzi et al., 2012). For optimal performance 
of the sEMG-based controller, the electrodes must be carefully 
selected in order to maximize pMVCdiff during extension and 
flexion movements. Two electrodes were chosen for each direction 
so as to limit the effect of single electrode variations and thus 
to capture a more general pattern of activation. However, this 
strategy reaches its limits in the case of systematic co-contractions 
in the forearm, and consequently the activation patterns between 
extension and flexion movements cannot be sufficiently dissociated. 
In this study, the electrodes were selected by the experimenter, 
however, an automatic selection that minimizes overlap between 
extension and flexion activations could be implemented. 

Finally, one assumption was that the sEMG-based controller 
might further excite the system in case of instabilities in the 
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pHRI. As the user fights against the oscillations, they produce 
counterproductive sEMG patterns that are picked up by the 
controller and further excites the system. However, our results 
show that jerk is not significantly different between the sEMG 
and the gravity controller (see Figure 7A) suggesting that this is 
unlikely to have occurred. An explanation could be that given 
our setup and filtering process, the readout of sEMG signals 
was too slow to pick up fast oscillating patterns in the muscle 
activity, and thus could not influence the controller. This problem 
could arise with faster sampling rates, however, there are studies 
suggesting that sEMG-based admittance controllers with high 
sampling rates (e.g., 1 kHz) enhance stability, as they can detect 
the user’s intention before human active force is measured, thereby 
minimizing response delays and reducing oscillatory behavior by 
synchronizing the human-robot interaction (Xie et al., 2021). 

4.3 Considerations on the behavioral 
evaluations 

In this work, the implemented controllers were evaluated 
during both vertical and horizontal wrist movements in order 
to assess the influence of gravity on the control of a portable 
exoskeleton. With healthy participants, this influence can be 
observed in the absolute value of the interaction torque T̂int , which 
was generally lower for horizontal movements as for vertical (see 
Figure 7B). This discrepancy is normal for the gravity controller 
but requires further explanations for the sEMG controller. In the 
extension-vertical condition, the hand had to be moved against 
gravity, which triggered more muscle activation and thus generated 
more support from the device (i.e., negative T̂int). This support 
is less pronounced in the extension-horizontal condition since 
less muscle activation was required to move the hand. A similar 
general trend is observed with θ̇max and θ̈max (see Figures 7C, 
D). Especially in the extension-vertical conditions, the higher 
muscle activation and the anti-gravity supportive torque moved 
and accelerated the user’s hand faster. Moreover, as the MVC 
calibration was solely performed in the vertical orientation, the 
performance of the sEMG controller could have been affected 
when performing the task in the horizontal orientation. Indeed, 
the position of muscles relative to the electrodes might have 
shifted due to the supination of the forearm (Kim et al., 2018). 
Finally, as the gravity controller depends on θ , this resulted in 
less support for larger angles as shown in Figure 7B for the 
extension-vertical condition. 

The fatigue of stroke patients significantly affected the sEMG 
controller (Farina et al., 2001). Especially for the most distant 
targets, the fatigue added to the difficulty of the task resulted in 
more pronounced levels of co-contraction that ultimately decreased 
the efficiency of the controller (see Supplementary Figure S2). 
Moreover, actively holding the forearm for the horizontal condition 
added an extra contribution to fatigue. To counterbalance the effect 
of fatigue, the order of controllers in the task was changed across 
participants. The width of the target, which is a critical factor 
in determining task difficulty, was empirically set with healthy 
participants performing the task. It reflects an unimpaired ability 

level that stroke survivors should have when using the device. 
Moreover, the difficulty to reach the most distant targets was largely 
expressed in the workload feedback with the Physical and Effort 
aspects (see Figure 9B). In these two aspects, the transparent mode 
scores better (i.e., lower workload) than both controllers. This 
could explain a lower efficiency of the controllers for distant targets 
or an unsatisfied expectation toward the controllers. Finally, the 
large variability in some of the aspects of the workload scores 
may reflect a different level of involvement of participants in 
the task. 

4.4 Limitations and future directions 

There were a couple of limitations in our subjective evaluation 
of the controllers. Given our testing profile, the questionnaires for 
a given controller were always completed by the participant after 
the first sequence of vertical trials. This permits (1) to assess the 
condition in which the controllers support the wrist the most (i.e., 
during vertical movements), and (2) to obtain the most accurate 
and vivid feedback. However, the first control mode to be assessed 
does not benefit from a prior comparison, and the horizontal 
orientation is not represented in the subjective feedback. Moreover, 
the assessment of the mechanical support could have been laborious 
for participants with somatosensory deficits. Unfortunately, this 
aspect of their impairment was unknown. Half of the stroke 
survivors tested in this study presented moderate to low deficits in 
wrist function, and therefore felt more impaired by the device than 
helped. We should have not only recruited more impaired patients 
in the acute/sub-acute phase, but also a larger sample size. The small 
sample size and the wide impairment range of the tested cohort 
explains the low statistical power and large variability in the results. 
Testing a larger sample size would have allowed us to determine 
from which level of deficit a patient could benefit most from the 
device. Furthermore, the stroke survivors recruited in this study 
were volunteers and highly motivated, so may not be representative 
of the broader stroke population. 

Future work could focus on combining features from both 
controllers in order to enhance the mechanical support. For 
instance, the intention of the patient could be captured through the 
sEMG signal to enable/disable the support of the gravity controller. 
This could apply when the sEMG signal is too weak and noisy 
for proportional control, but the intention could still be picked 
up via classification or regression methods (Khokhar et al., 2010; 
Ameri et al., 2019). In the same vein, the spatial orientation of the 
device could be used to adapt the gains of the controllers (especially 
sEMG) to make the pHRI more stable. As envisioned in this study, 
the developed controllers and algorithms should remain simple 
and efficient enough to be implemented in embedded systems. In 
this regard, the host computer in this study (cf. outlined in red in 
Figure 2) has already been implemented in the microcomputer of 
the eWrist (Lambelet et al., 2020). Moreover, our controller has 
the potential to extend to hand and grasp functions using end-
effector robots, where assist-as-needed therapy can benefit from 
sEMG feedback and enhanced stability (Xie et al., 2021; Topini 
et al., 2022). 
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5 Conclusion  

In the context of non-backdrivable exoskeletons for 
rehabilitation therapy, it is important that the physical human-
robot interaction remains reactive and stable. However, instabilities 
can occur when the limb of the user stiffens to stabilize its motion. 
In this paper, we implemented a variable admittance control 
scheme together with an sEMG-based controller that promotes 
voluntary effort, and with a gravity compensation controller that 
supports weakness in the wrist joint. We have demonstrated that 
the implemented control scheme remains stable during a passive 
stiffening of the wrist joint, but impacted the transparency of 
the device. Moreover, we have shown that our controllers could 
enhance the capability of stroke survivors in the most extreme wrist 
positions even though stabilizing the device within a given target 
remained challenging. This may have been perceived as requiring 
a high physical effort, but this is not necessarily a disadvantage, 
as the purpose of the device is to facilitate the patient’s voluntary 
effort to perform movements that are not possible without the 
support. Finally, this work has drawn attention to the influence 
of gravity on the proportional control of a portable exoskeleton, 
paving the way for further development in that field. 
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