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Early and accurate diagnosis of pneumonia is crucial to improve cure rates and 
reduce mortality. Traditional chest X-ray analysis relies on physician experience, 
which can lead to subjectivity and misdiagnosis. To address this, we propose a 
novel pneumonia diagnosis method using the Fast-YOLO deep learning network 
that we introduced. First, we constructed a pneumonia dataset containing five 
categories and applied image enhancement techniques to increase data diversity 
and improve the model’s generalization ability. Next, the YOLOv11 network 
structure was redesigned to accommodate the complex features of pneumonia 
X-ray images. By integrating the C3k2 module, DCNv2, and DynamicConv, the 
Fast-YOLO network effectively enhanced feature representation and reduced 
computational complexity (FPS increased from 53 to 120). Experimental results 
subsequently show that our method outperforms other commonly used detection 
models in terms of accuracy, recall, and mAP, offering better real-time detection 
capability and clinical application potential.
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1 Introduction

In recent years, with the rapid development of deep learning technologies, the application of 
artificial intelligence in medical image diagnosis and analysis has made significant progress, 
particularly in disease prevention and diagnosis. Pneumonia, an acute respiratory infection 
caused by bacteria, viruses, or other pathogens, is typically diagnosed through chest X-rays. As a 
widely used and common medical imaging technique, chest X-rays are crucial in the early 
screening and diagnosis of respiratory diseases such as pneumonia. Pulmonary opacities or 
inflammatory lesions characterize the typical chest X-ray presentation of pneumonia. Due to the 
clinical manifestations of pneumonia often resembling those of other pulmonary diseases, 
coupled with the increasing number of cases and the accumulation of medical imaging data, the 
workload of radiologists has steadily increased. Traditional manual interpretation is often limited, 
and the efficiency and accuracy of human diagnoses are challenged. Therefore, developing an 
automated diagnostic system based on deep learning can assist physicians in efficiently screening 
imaging data and providing remote medical support in underserved regions, reducing 
misdiagnosis rates and enhancing the overall quality of healthcare services. YOLO (You Only 
Look Once), as an efficient and real-time object detection algorithm, has achieved promising 
applications in various fields. Its simple structure and fast processing speed make it well-suited 
for handling large-scale medical imaging data, enabling precise localization and classification of 
lesion areas quickly. In the application of pneumonia diagnosis, the YOLO algorithm can 
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accurately identify pneumonia lesions by analyzing the detailed features 
in chest X-ray images, assisting physicians in making rapid and accurate 
diagnoses. Further optimization of the YOLO model’s detection accuracy 
and robustness in complex environments, coupled with the 
characteristics of medical imaging, is expected to promote the 
development of automated pneumonia X-ray image recognition and 
diagnosis, facilitating the transition of medical image diagnosis from 
experience-driven to data-driven intelligence. Research on pneumonia 
diagnosis has been conducted in studies focused on depth image 
recognition detection, as shown by Rajendra et al. (2025); Garg et al. 
(2025); Yi et al. (2025); Buriboev et al. (2024); Sharma and Guleria 
(2024). For example, Dey et al. (2021) proposed an improved VGG19 
deep learning architecture for diagnosing chest X-rays, introducing a 
feature integration scheme that combines deep and handcrafted features 
for diagnosing lung abnormalities. Kulkarni et al. (2023) explored how 
to integrate variational quantum circuits into classical neural networks 
for pneumonia detection from chest X-rays, showing that the hybrid 
network outperformed classical networks on various performance 
metrics. Majumder et al. (2024) employed a split learning scheme to 
address the issue of limited medical data at individual hospitals, training 
a single model on a server. This study utilizes an asynchronous split 
learning approach to overcome challenges posed by unreliable network 
connections, ensuring the learning process can continue even during a 
network failure. Raghaw et  al. (2024) proposed a novel explainable 
contrast-based extended convolution network (XCCNet) for pediatric 
pneumonia detection, addressing issues with low radiation intensity and 
traditional image processing methods that are time-consuming and fail 
to capture prominent features. By integrating feature visualization and 
explainability methods, this approach directly aligns with the regions of 
interest on the X-ray images that indicate the presence of pneumonia or 
normality. Extensive evaluations on four datasets confirmed the 
advantages of XCCNet. Although deep learning has shown significant 
potential in pneumonia detection, it still faces several challenges, 
including issues related to data, model generalization, computational 
resources, interpretability, and clinical validation, as discussed by Ren et 
al. (2024); Pramanik et al. (2022); Debbagh et al. (2023). In X-ray images, 
pneumonia lesions may exhibit low contrast with surrounding normal 
tissue or be  affected by noise, making it difficult for the model to 
distinguish the pathological regions accurately. Furthermore, imaging 
data from different devices and hospitals may vary (e.g., image resolution, 
quality, acquisition angle, etc.), undermining the model’s generalization 
capability across different environments. For medical image analysis, 
clinicians must understand how the model arrives at its diagnosis. 
However, the limited interpretability of existing models may reduce the 
trust healthcare professionals place in them, affecting their 
clinical applicability.

To address these issues, this paper proposes an optimized 
detection model based on the FAST-YOLO network, exploring its 
application in pneumonia diagnosis using chest X-ray images. By 
improving the network structure of YOLOv11 and refining the 
training strategy, the model effectively preserves feature expression 
capabilities while significantly reducing computational complexity. 
Enhance lesions’ recognition accuracy and localization precision in 
pneumonia X-ray images. The Fast-YOLO network utilizes the C3k2-
DCNV2-DynamicConv module, effectively maintaining feature 
representation while reducing computational complexity. When 
dealing with geometric deformations, multi-scale, and dynamic 
variations in scenes, the dynamic adjustment of convolutional kernel 

weights enhances model performance, improving computational 
efficiency while reducing the number of parameters. Experimental 
results demonstrate that the proposed FAST-YOLO model based on 
C3k2-DCNV2-DynamicConv accurately detects and classifies 
pneumonia lesions in chest X-ray images, providing clinicians with an 
efficient and accurate auxiliary tool. This helps accelerate the diagnosis 
process and improve diagnostic accuracy.

Related program will be open source in the future: https://github.
com/Zhaobin7/Fast-Yolo.

2 Pneumonia dataset and evaluation 
metrics

2.1 Pneumonia dataset

MIMIC-CXR (MIMIC Chest X-ray) is an open-source chest X-ray 
dataset, and the dataset is designed to provide data support for medical 
image analysis, disease prediction, and the development of automated 
diagnostic systems. It contains a large number of accurately annotated 
chest X-ray images along with corresponding pathology reports, 
covering a variety of pulmonary diseases, with pneumonia being one 
of the key categories. The MIMIC-CXR dataset includes over 200,000 
chest X-ray images, representing a diverse range of chest diseases, such 
as pneumonia, tuberculosis, and pneumothorax, with the majority of 
the images sourced from hospitalized patients. All images are stored in 
DICOM (Digital Imaging and Communications in Medicine) format, 
ensuring high resolution and clear image quality (Ali et al., 2024; Tang 
et al., 2024; Mabrouk et al., 2022). However, despite the detailed disease 
labels provided in the pathology reports, the reports are written by 
different radiologists, which may introduce subjectivity and label 
inconsistency. This variance can potentially affect the training 
performance of disease diagnostic models. To address this, this paper 
re-annotated the MIMIC-CXR dataset and constructed a YOLO-based 
pneumonia detection dataset, as shown in the Figure 1.

Pneumonia dataset combines field-captured images with online 
resources, ultimately collecting 4,194 pneumonia detection images 
(El-Ghandour and Obayya, 2024; Wu et al., 2024; Prince et al., 2025; 
Lu et al., 2025). During the experiment, the LabelImg tool was used 
for image annotation, completing annotation tasks for five categories: 
bacterial pneumonia, viral pneumonia, healthy, tuberculosis, and 
others. The specific annotation details are shown in Table 1.

2.2 Loss function and evaluation metrics

The pneumonia X-ray image detection system requires not only 
high-precision lesion detection but also the use of scientifically 
designed loss functions and evaluation metrics to optimize model 
performance (Liu et al., 2025; Nabeya et al., 2025). The loss function 
is a key element in the model training process, as its primary function 
is to measure the difference between the predicted results and the 
ground truth, providing guidance for parameter updates. A well-
designed loss function can effectively balance the weights of different 
tasks, improving detection accuracy and robustness. Evaluation 
metrics play a crucial role during the testing phase, quantifying the 
model’s performance in real-world applications. Through these 
metrics, researchers and developers can systematically assess the 
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model’s strengths and weaknesses, identifying areas for improvement 
and providing a basis for further optimization.

The loss function of object detection algorithms typically includes 
the following components:

 1. Localization loss Equation 1:
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Where coordλ  is a weight factor; obj1  is an indicator function, when 
the sample contains the object, obj1 =1. The four parameters of the 
bounding box are: ix  and iy  representing the coordinates of the center 
point, iw  representing the width, and ih  representing the height.

 2. Confidence loss Equation 2:
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Where iC  is the confidence of the predicted box and 
ˆ

iC  is the 
confidence of the ground truth box. noobj1  is an indicator function, 
when the sample contains the object, noobj1 =1.

 3. Classification loss Equation 3:
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Where ,i cP  is the predicted probability for the i -th box belonging 
to class c, and ˆ

,i cP  is the actual probability of the class.
The loss function for object detection algorithms typically 

includes the following components:

 1. Precision Equation 4:

 ( )Precision / 100%TP TP FP= + ×  (4)

TP (True Positive) refers to the number of actual positive samples 
correctly predicted by the model, FP (False Positive) refers to the 
number of actual negative samples incorrectly predicted as positive.

FIGURE 1

Example images from the NEU-MCD dataset. This figure shows sample chest X-ray images from the NEU-MCD pneumonia detection dataset.

TABLE 1 Lung condition categories and labels.

Category of labels Number of labels

Pneumonia bacteria 1,293

Pneumonia virus 1,178

Sick 1,231

Healthy 1,188

Tuberculosis 1,366
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 2. Recall Equation 5:

 ( )Recall / 100%TP TP FN= + ×  (5)

FN (False Negative) indicates the number of actual positive 
samples incorrectly predicted as negative by the model.

 3. F1 score Equation 6:
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F × ×
=

+  
(6)

 4. mAP Equation 7:
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N  represents the total number of sample categories, while ( )iP R  
denotes the precision at a specific recall rate (Recall) for the i-th class. 

iAP (Average Precision) represents the average precision for the i th 
class, which is used to evaluate the detection performance of 
that class.

 5. FPS Equation 8:

 /PS FigureNumber TotalTime=  (8)

FigureNumber indicates the total number of processed images, 
which is a key parameter in the evaluation process. TotalTime refers 
to the time required to process all images.

3 FAST-YOLO network

3.1 Overview of YOLOv11

YOLOv11 represents the latest advancement in the YOLO series, 
maintaining the efficient single-stage object detection framework typical 
of YOLO architectures. The architecture comprises three primary 
components: the Backbone, the Neck, and the Head. The Backbone is 
responsible for extracting multi-scale feature maps from the input 
images, utilizing efficient convolutional modules that enhance feature 
extraction capabilities and computational efficiency. These extracted 
feature maps are then fed into the Neck component, which further 
processes and fuses the features, enhancing inter-scale relationships to 
better capture image details and multi-scale targets. This fusion is 
accomplished through convolutional layers and attention mechanisms 
within the Neck. The Head subsequently utilizes these refined feature 
maps from the Neck to perform object localization and classification 
tasks, ultimately generating bounding boxes and class labels.

Despite YOLOv11’s strong performance in general domains, it 
exhibits certain limitations when processing complex medical images 

characterized by low contrast, high noise, or small lesions. Specifically, 
when images contain complicated backgrounds or small lesions with 
minimal contrast against the background, conventional convolutional 
neural networks and standard YOLO frameworks lack sufficient 
sensitivity and precision. To address these challenges, we integrated 
the C3k2-DCNv2-DynamicConv module into the YOLOv11 
architecture. The C3k2 module enhances overall feature 
representation capabilities through efficient feature extraction. 
DCNv2 reduces computational complexity, improving the model’s 
efficiency in handling multi-scale targets, making it particularly 
suitable for environments with limited computational resources. 
DynamicConv adapts convolutional kernels dynamically based on 
the input image’s varying characteristics, selecting the most 
appropriate kernels and thus enhancing the model’s adaptability 
under conditions of low contrast and complex backgrounds. These 
enhancements significantly improve the model’s performance in 
complex imaging scenarios while ensuring Fast-YOLO achieves a 
superior balance between computational efficiency and 
detection accuracy.

3.2 C3k2-DCNV2-DynamicConv

3.2.1 C3k2 module
Feature Extraction: The C3k2 module captures detailed features 

like edges, corners, and textures. The number of kernels (k) determines 
the feature dimensionality, with more kernels enabling more complex 
feature learning.

Spatial Dimension Reduction: A stride of 2 halves the feature map’s 
width and height, preserving key features while reducing 
computational complexity, eliminating the need for pooling, and 
performing downsampling via convolution.

Computational Efficiency Optimization: A 3 3×  convolution kernel 
has a lower computational cost than larger kernels (such as 5 5×  or 
7 7× ), while still providing sufficient feature extraction capacity. 
Combined with stride 2, this module design is suitable for building 
efficient deep networks.

Hierarchical Feature Representation: By stacking consecutive C3k2 
modules, spatial dimensional compression occurs while 
simultaneously increasing feature complexity along the channel 
dimension ( )k , enabling the representation of multi-level features.

3.2.2 DCNV2 module
Feature Extraction: DCNV2 is a variant of depthwise convolution, 

where each input channel undergoes independent convolution, 
typically with 3 3×  or 5 5×  kernels. It also incorporates pointwise 
convolution, using 1 1×  kernels to map each output channel of the 
depthwise convolution to the target channels.

Innovation: The key innovation of DCNV2 lies in reducing the 
computational load of convolution operations, making it more 
efficient, particularly in resource-constrained environments such as 
mobile or embedded devices.

Computational Complexity Analysis: Compared to standard 
convolution, DCNV2 significantly reduces computational complexity. 
For a standard K K×  convolution with inC  input channels and outC  
output channels, the computational complexity is Equation 9:

 Complexity 
2

in outC C K H W= × × × ×  (9)
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For DCNV2, the computational complexity of depthwise convolution  
is Equation 10: 

Depthwise Convolution Complexity 2
inC K H W= × × ×  (10)

The complexity of pointwise convolution is Equation 11:

Pointwise Convolution Complexity in outC C H W= × × ×  (11)

Thus, the total computational complexity of DCNV2 is Equation 12:

DCNV2 Complexity 
2

in in outC K H W C C H W= × × × + × × ×  (12)

DCNV2 is more efficient, especially when outC  is large, as 
pointwise convolution dominates the computation, while depthwise 
convolution significantly reduces unnecessary calculations.

3.2.3 DynamicConv module
Dynamic Kernel Generation: DynamicConv generates 

convolution kernels based on input features, using computed 
representations to create kernel weights via a neural network. 
These kernels are dynamic and computed for each input sample 
based on its features.

Adaptive Convolution Kernel Selection: DynamicConv can also 
adaptively choose from a set of pre-defined kernel candidates, 
selecting the most suitable one based on input features.

Efficient Feature Extraction: By adjusting kernels to match data 
characteristics, DynamicConv better captures local features, 
especially when data varies significantly (such as different styles in 

image classification or varying backgrounds in object detection), 
improving adaptability.

3.3 FAST-YOLO network

The core of YOLOv11 continues the approach of single-stage 
detection as seen in previous YOLO versions (Liu et al., 2025; Nabeya 
et  al., 2025; Hakim et  al., 2025; Han et  al., 2025; Lekshmy and 
Rahiman, 2025). As shown in Figure  2, the Fast-YOLO network 
architecture consists of three main components: Backbone and Head 
for outputting target results.

 1. Backbone: The Backbone integrates and processes extracted 
features to enhance semantic information. It consists of Conv, 
C2PSA, DynamicConv, DCNv2, and C3k2 modules. The Conv 
module includes convolutional layers, batch normalization 
(BN), and activation functions. The C2PSA module enhances 
fine-grained features across channels and spatial dimensions 
to improve detail perception. The C3k2 model maintains 
feature representation while reducing complexity. DCNv2 
expands the receptive field and enhances feature extraction in 
dynamic scenarios. DynamicConv dynamically adjusts kernel 
weights, improving performance while reducing parameters 
and increasing efficiency. The Neck module boosts small-
object detection by enhancing feature expression and receptive 
field, improving detection performance.

 2. Head: The Head performs final regression predictions, using 
the Backbone’s feature map to detect bounding boxes and 
categories. The Upsample module restores the image’s 

FIGURE 2

Structure of the FAST-YOLO. This figure illustrates the architecture of the Fast-YOLO network, which includes the Backbone, Neck, and Head 
components. The Backbone extracts features from the input images, the Neck processes and fuses these features, and the Head outputs the final 
detection results.
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spatial resolution to its original dimensions. The Head 
network uses the Generalized Intersection over Union 
(GIoU) loss and Weighted Non-Maximum Suppression 
(NMS) to optimize bounding box localization and category 
prediction accuracy. It adapts to targets of various sizes in 
complex scenes.

 3. Loss Function: The IoU loss includes CIoU, DIoU, or EIoU to 
improve overlap between predicted and ground truth boxes. 
Classification optimization uses Label Smoothing to 
reduce overfitting.

 4. Data Augmentation: Combining Mixup, Mosaic, and Copy-
Paste augmentation methods enhances the model’s 
adaptability to complex scenes. Techniques such as CutMix 
and Random Erasing are used to simulate target detection in 
occlusion environments.

4 Results

The operating environment of the experimental server is shown:

Name Version.

OS Ubuntu MATE 18.04.

CPU Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz.

RAM 256GB.

GPU GeForce RTX 3090*2.

Driver 455.23.05.

CUDA 11.1.

Python 3.7.13.

Torch 1.10.1 + cu11.

Torch vision 0.11.2++cu111.

In this paper, we disclose the hyperparameter configuration used 
in our experiments to ensure the reproducibility of our research. These 
hyperparameters were optimized experimentally to balance accuracy, 
efficiency, and training stability, as shown in Table 2.

4.1 Pneumonia X-ray image detection

To evaluate the performance of the FAST-YOLO algorithm in 
multi-object detection tasks, this study conducted comparative 
experiments between FAST-YOLO and other mainstream algorithms. 
A unified dataset and configuration parameters are used throughout 
the experimental process. The experimental results are shown in 
Figure 3, where the values annotated within the recognition boxes 
represent confidence scores. This metric is a crucial indicator for 
assessing the reliability of the algorithm’s object detection in images. 
The confidence score can be regarded as a model’s assessment of the 
probability of the presence of a particular object, with values ranging 
from 0 to 1. Higher confidence values indicate a higher level of 
certainty in the model’s judgment regarding the object’s presence.

As illustrated in Figure 4, during the training process spanning 500 
epochs, the FAST-YOLO model approaches convergence at 
approximately the 80th epoch. Moreover, the precision, recall, and 

mAP@0.5 values and accuracy are all close to 100%. This demonstrates 
that the FAST-YOLO model, due to the incorporation of C3k2-DCNV2-
DynamicConv, exhibits superior performance in terms of convergence 
speed as well as precision, recall, mAP@0.5, and mAP@0.5:0.95.

In object detection tasks, each detection result typically requires 
the assignment of a class label to evaluate the model’s classification 
performance across different categories. After training the FAST-
YOLO model, a confusion matrix is generated using the test set to 
comprehensively assess the model’s overall performance. As shown in 
Figure  5, the results indicate that the FAST-YOLO’s classification 
performance is satisfactory, providing a more thorough evaluation of 

TABLE 2 FAST-YOLO experiment hyperparameter configuration.

Parameter name Parameter value

Epochs 500

Patience 100

Batch 16

Imgsz 640

Workers 8

Optimizer auto

Seed 0

Close_mosaic 10

Amp TRUE

Fraction 1

Mask_ratio 4

Dropout 0

Max_det 300

Lr0 0.01

Lrf 0.01

Momentum 0.937

Weight_decay 0.0005

Warmup_epochs 3

Warmup_momentum 0.8

box 7.5

Cls 0.5

Hsv_h 0.015

Hsv_s 0.7

Hsv_v 0.4

Shear 0

Perspective 0

Flipud 0

Fliplr 0.5

Bgr 0

Mosaic 1

Mixup 0

Translate 0.1

Scale 0.5

Degrees 0

Copy_paste 0
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the model’s actual performance in object detection tasks, thereby 
offering strong support for subsequent optimization and improvements.

As shown in Figure 6, the performance of the Fast-YOLO model is 
comprehensively evaluated using performance metrics such as the 

P-curve, R-curve, F1-curve, and PR curve. These metrics provide 
multidimensional perspectives for analyzing the model’s strengths and 
weaknesses in different task scenarios, effectively revealing its overall 
performance characteristics. The P-curve (Precision Curve) primarily 

FIGURE 3

X-ray image test for pneumonia. This figure presents chest X-ray images from the Fast-YOLO model, with detected conditions labeled along with their 
associated confidence scores. These scores represent the model’s confidence in the presence of the detected conditions, ranging from 0 to 1.

FIGURE 4

FAST-YOLO algorithm training process. This figure shows the training process of the Fast-YOLO algorithm over 500 epochs. The model begins to 
converge after approximately 80 epochs, with performance metrics such as precision, recall, and mAP@0.5 approaching high values.
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reflects the model’s false positive rate, evaluating its performance in 
reducing erroneous detections by displaying precision variations at 
different thresholds. The R-curve (Recall Curve) reveals the model’s 
false negative rate, showing its ability to identify true targets in object 
detection tasks. The F1 curve, based on the weighted harmonic mean 
of precision and recall, assesses the balance between accuracy and 
completeness in the model’s performance. The PR curve (Precision-
Recall Curve) further demonstrates the trade-off between precision 
and recall at different thresholds, offering a more comprehensive 
performance evaluation, especially when addressing class imbalance 
issues. By analyzing these four metrics, the overall performance of the 
Fast-YOLO model in multiple key dimensions can be assessed. The 
results show that Fast-YOLO exhibits outstanding performance across 
various evaluation indicators, confirming its practical application value 
in complex task environments.

4.2 Comparison of performance across 
different detection models

In order to validate the effectiveness of the proposed method for 
pneumonia X-ray image detection and assess the performance of the 
improved algorithm, a comparison is conducted under the same dataset 
and experimental conditions. The networks are trained for 500 epochs, 
and the improved model is tested alongside lightweight object detection 

models, including YOLOv7-Tiny, YOLOv5s, YOLOv5n, YOLOv3-Tiny, 
D-FINE-L, RTMDet-L, and YOLOv3-spp (Liu et al., 2025; Nabeya et al., 
2025; Hakim et al., 2025; Han et al., 2025; Lekshmy and Rahiman, 2025; 
Lyu et al., 2022; Peng et al., 2024). The test results are shown in Table 3. 
Fast-YOLO demonstrates exceptional performance across multiple 
evaluation metrics, effectively validating its superiority in X-ray 
pneumonia diagnosis. Fast-YOLO significantly outperforms other 
algorithms with a frames per second (FPS) rate of 150. A higher FPS 
indicates that Fast-YOLO can rapidly process images, crucial for real-
time diagnosis. The precision of Fast-YOLO reaches 95.2%, surpassing 
other models, indicating higher accuracy in identifying pneumonia 
lesions and reducing false detection rates, thereby enhancing the 
reliability of diagnostic results. Fast-YOLO also achieves a recall of 
94.9%, the highest among all algorithms. It demonstrates its greater 
sensitivity in detecting pneumonia-affected regions and effectively 
minimizing missed diagnoses, which is significant for critical lesions in 
medical diagnostics. Furthermore, in the comprehensive metric of 
mAP@0.5:0.95, Fast-YOLO excels with a score of 97.8%, significantly 
outperforming other algorithms. This metric evaluates the algorithm’s 
performance across various intersection-over-union (IOU) thresholds, 
highlighting Fast-YOLO’s stability and robustness in different detection 
tasks. Overall, Fast-YOLO excels in precision, recall, and processing 
speed and outperforms other YOLO versions across multiple metrics, 
confirming its considerable advantages in the application of X-ray 
pneumonia diagnosis.

FIGURE 5

Confusion matrix evaluates the performance of classification models. This figure presents the confusion matrix used to assess the classification 
performance of the Fast-YOLO model. It shows the model’s ability to correctly classify pneumonia and healthy images during the detection process.
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4.3 Generalization experiment of 
fast-YOLO

The previous experiments have demonstrated the excellent 
performance of the Fast-YOLO algorithm on multi-object work piece 
classification datasets. To investigate the generalization capabilities of 
the Fast-YOLO network further and analyze its detection performance 
on other publicly available datasets, this section collects the open-
source dataset for welding parts defect detection and fish classify 
detection for experimentation.

The experimental results of fish detection are shown in Figure 7. 
There are 13 categories of fish detection: angel fish, blue tang, butterfly 
fish, clown fish, goldfish, gourami, morish idol, platy fish, ribboned 
sweetlips, three striped damsel fish, yellow cichlid, yellow tang, 
and zebrafish.

As shown in Table  4, Fast-YOLO demonstrates superior 
performance in fish detection research, with a significant advantage 
in FPS, enabling faster completion of fish detection tasks, particularly 
in real-time processing applications. The high recall rate of Fast-YOLO 
indicates its ability to effectively detect a more significant number of 

FIGURE 6

(a) P curve, (b) R curve, (c) F1 curve, and (d) PR curve performance indicators. This figure displays performance curves for the Fast-YOLO model, 
including the Precision Curve (P curve), Recall Curve (R curve), F1 Curve, and Precision-Recall (PR) Curve. These curves help assess the model’s 
performance in different task scenarios.

TABLE 3 The performance comparison of the different algorithms.

Algorithms FPS precision recall mAP@0.5 mAP@0.5:0.95

YOLOv5n 103 94.6% 94.2% 97% 77.7%

YOLOv5s 90 95% 96.3% 98.3% 83%

YOLOv7-Tiny 91 93.9% 96.2% 97.9% 79.8%

YOLOv11 55 94.4% 95.8% 97.6% 97.6%

Fast-YOLO 120 95.2% 94.9% 97.8% 97.8%

RTMDet-L 46 94.2% 95.1% 97.3% 82.5%

D-FINE-L 51 94.8% 95.5% 97.7% 85.9%
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fish targets, reducing missed detections and ensuring the 
comprehensiveness of the results. Fast-YOLO also excels in mAP@0.5 
and mAP@0.5:0.95, demonstrating a decisive advantage in detection 
accuracy and object localization capabilities. Its detection performance 
is more stable across different IoU thresholds, meeting the demands 
of various detection conditions. The model’s robust real-time 
processing ability and high-precision detection results enhance its 
applicability in dynamic environments.

The experimental results of welded defect detection are shown in 
Figure  7. The welded surface defect detection components are 
classified into eleven categories: perforation, weld seam, crescent 
bend, water stain, oil stain, four plates, foreign object, indentation, 
shock mark, flexural fracture, and scratch (see Figure 8).

As shown in Table 5, Fast-YOLO exhibits significantly better FPS 
performance in detecting surface defects in welded components than 
other YOLO algorithms, enabling rapid feedback in industrial 
production and reducing detection delays. Although YOLOv7-Tiny 
slightly outperforms in terms of precision, the advantages of Fast-
YOLO in recall and FPS speed compensate for the gap in accuracy, 
resulting in superior overall performance. The higher recall of Fast-
YOLO indicates greater sensitivity in defect identification, allowing 
for more comprehensive detection of surface defects in welded 
components and minimizing missed detection. The mAP@0.5 and 
mAP@0.5:0.95 metrics, which assess the algorithm’s performance 
across multiple IOU thresholds, demonstrate that Fast-YOLO’s 
detection capability is more robust under various conditions, making 

FIGURE 7

Experiment of fish classification detection. This figure shows the results of the fish classification detection experiment using the Fast-YOLO model. The 
model detects multiple fish species, with detection boxes around each fish and their corresponding classification scores.

TABLE 4 The performance comparison of the different algorithms.

Algorithms FPS precision recall mAP@0.5 mAP@0.5:0.95

YOLOv5n 101 64.7% 75.3% 74.6% 36.0%

YOLOv5s 99 57.6% 68.4% 69.6% 31.0%

YOLOv7-Tiny 94 61.5% 69.1% 73.0% 36.0%

YOLOv11 76 89.4% 89.5% 93.3% 79.7%

Fast-YOLOv11 108 90.6% 89.4% 94.3% 73.6%
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it particularly suitable for the detection of variable surface defects in 
welded components.

From the above data, it can be found that the related evaluation 
indicators get better results in different data sets, which fully proves 
the generalization performance of the Fast-YOLO network.

5 Ablation experiment

We conducted ablation experiments by individually removing the 
C3k2, DCNv2, and DynamicConv modules to verify their 
respective effectiveness.

Removing the DCNv2 module resulted in Fast-YOLO achieving 
an FPS of 113, slightly lower than the original model’s FPS, along 
with decreases in precision, recall, mAP@0.5, and mAP@0.5:0.95. 
This indicates that the DCNv2 module effectively enhances the 
model’s feature extraction capabilities and expands its 
receptive field.

When removing the C3k2 module, Fast-YOLO’s FPS significantly 
dropped to 53. Although precision, recall, mAP@0.5, and 
mAP@0.5:0.95 metrics showed slight improvements, the 
computational efficiency was greatly reduced. This demonstrates that 
the C3k2 module effectively maintains feature representation while 
significantly reducing computational complexity.

FIGURE 8

Experiment of welding parts defect detection. This figure shows the results of the welding parts defect detection experiment using the Fast-YOLO 
model. The model detects various defects in welded components, with detection boxes around the identified defects and their corresponding 
confidence scores.

TABLE 5 The performance comparison of the different algorithms.

Algorithms FPS precision recall mAP@0.5 mAP@0.5:0.95

YOLOv5n 107 67.4% 43.9% 49.3% 22.3%

YOLOv5s 93 64.3% 51.3% 53.6% 24.3%

YOLOv7-Tiny 94 73.3% 49.9% 54.5% 24.3%

YOLOv11 57 53% 65.6% 64.3% 33.2%

Fast-YOLOv11 112 69.7% 61.6% 65.1% 34.0%
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Removing the DynamicConv module decreased Fast-YOLO’s FPS 
to 67, accompanied by slight reductions in various detection accuracy 
metrics. This shows that the DynamicConv module effectively reduces 
model parameters and enhances computational efficiency.

Overall, the experimental results indicate that integrating C3k2, 
DCNv2, and DynamicConv modules allows Fast-YOLO to achieve an 
optimal balance between detection accuracy and computational 
efficiency, confirming the effectiveness of the combined modules (see 
Table 6).

6 Broader impact

In clinical settings, the quality of X-ray images is often affected by 
factors such as equipment variability, imaging angles, and noise, which 
may result in low contrast or distortion. To address the diversity in 
sources and quality of clinical images, the Fast-YOLO model employs 
data augmentation techniques to diversify training data. Moreover, the 
network structure of Fast-YOLO has been specifically optimized to 
maintain robust feature extraction capabilities, particularly for images 
affected by low contrast or noise. By integrating the C3k2 module, 
DCNv2, and DynamicConv, the model efficiently and accurately 
identifies pneumonia lesions even under poor image quality conditions.

In addition, Fast-YOLO exhibits excellent computational 
efficiency, enabling real-time processing of large volumes of X-ray 
images in high-workload clinical environments. During emergencies, 
this rapid image-processing capability assists physicians in making 
timely diagnostic decisions, thus significantly improving clinical 
workflow efficiency and diagnostic speed. These advantages facilitate 
the effective integration of Fast-YOLO into routine hospital workflows.

7 Conclusion

To address the limitations of traditional YOLO models in 
detecting small targets and recognizing low-contrast lesions in 
pneumonia X-ray images, structural optimizations and parameter 
adjustments were made to the YOLOv11 model. The proposed 
pneumonia diagnosis method based on the Fast-YOLO deep learning 
model integrates image enhancement techniques with network 
structure optimization, significantly improving the efficiency and 
accuracy of pneumonia detection. By redesigning the YOLOv11 
network and incorporating the C3k2 model, DCNv2 module, and 
DynamicConv mechanism, the model effectively tackles challenges 
such as low contrast, uneven distribution of local lesions, and 
geometric deformations in pneumonia X-ray images, thereby 
enhancing feature extraction capability and computational efficiency 

in complex environments. Experimental results demonstrate that, 
compared to other mainstream object detection models, the Fast-
YOLO model outperforms traditional convolutional neural network 
methods in comprehensive performance. Additionally, it offers 
significant computational resource advantages. In comparison to 
other widely used detection models, Fast-YOLO not only improves 
detection speed but also excels in generalization, meeting the 
diagnostic needs for pneumonia images across various real-world 
scenarios, highlighting its significant application value and potential 
for widespread adoption.

Despite the promising performance of the Fast-YOLO 
optimization model in pneumonia X-ray image detection, certain 
limitations still exist. While the model generally shows high detection 
accuracy, its ability to detect tiny lesions remains an area for further 
improvement. Future research could explore enhancing the network 
architecture, incorporating multi-scale feature fusion strategies, and 
strengthening noise resistance to improve further the model’s stability 
and robustness in complex environments. The pneumonia X-ray 
image detection method based on the Fast-YOLO optimized model 
offers an efficient and accurate solution for the early diagnosis of 
pneumonia with promising clinical applications. As the model 
architecture continues to be optimized and computational hardware 
performance improves, Fast-YOLO is expected to demonstrate more 
significant application potential in object detection. Future research 
can integrate larger-scale clinical data and multi-modal information 
(such as CT images or patient history data) to refine the detection 
algorithms further, thereby enhancing the accuracy and applicability 
of automated pneumonia diagnosis systems. This contributes to the 
advancement of intelligent healthcare and provides crucial support for 
auxiliary diagnosis in medical practice.
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